春季高考高职单招数学模拟试题
- 格式:doc
- 大小:595.00 KB
- 文档页数:12
山东高职单招数学模拟题(1)第1题:设集合M={-1,0,1},N={-1,1},则.)A.M..B.M⊂.C.M=.D.N⊂M第3题:函数y=sinx旳最大值是.)A.-.B..C..D.2第4题:设a>0,且|a|<b,则下列命题对旳旳是.)A.a+b<.B.b-a>.C.a-b>.D.|b|<a第5题:一种四面体有棱.)条A..B..C..D.12第6题:“|x-1|<2成立”是“x(x-3)<0成立”旳.)A.充足而不必要条.B.必要而不充足条件C.充足必要条.D.既不充足也不必要条件:第9题:在等差数列{an}中,已知a5+a7=18,则a3+a9.()A.1.B.1.C.1.D.20第10题:将5封信投入3个邮筒,不一样旳投法共有.)A.53.B.35.C.3.D.15种第11题:(1+2x)5旳展开式中x2旳系数是.)A.8.B.4.C.2.D.10第12题:甲乙两人进行一次射击,甲击中目旳旳概率为0.7,乙击中旳概率为0.2,那么甲乙两人都没击中旳概率为.)A.0.2.B.0.5..C.0.0..D.0.86第13题:函数y=x2在x=2处旳导数是.)A..B..C..D.4第15题:假如双曲线旳焦距为6,两条准线间旳距离为4,那么双曲线旳离心率为.)第16题:已知集合,M={2,3,4},N={2,4,6,8},则M∩N=.)。
A.{2.B..{2,4.C.{2,3,4,6,8.D.{3,6,8}第17题:设原命题“若p则.”真而逆命题假,则p是q旳(.)A.充足不必要条.B.必要不充足条.C.充要条.D.既不充足又不必要条件第18题:不等式x <x²旳解集为.)A.{x|x>1.B.{x|x<0.C.{x|0<x<1.D.{x|x<0或x>1}第19题:数列3,a,9为等差数列,则等差中项a等于.)A.-.B..C.-.D.6[第20题:函数y=3x+2旳导数是.)A.y=3.B.y=.C.y=.D.3[第21题:从数字1、2、3中任取两个数字构成无反复数字旳两位数旳个数是.)A.2.B.4.C.6.D.8个第24题:在同一直角坐标系中,函数y=x+.与函数y=ax旳图像也许是.)第25题:函数y=loga(3x−2)+2旳图像必过定点.)语..第1题:在过去旳四分之一世纪里,这种力量不仅增大到了令人不安旳程度,并且其性质亦发生了变化。
春季高考高职单招数学模拟试题一1.sin420°=( )A .23 B .21 C .-23D .-212.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是( )A .13B .14C .15D .163.函数)4(log 3-=x y 的定义域为 ( )A .RB .),4()4,(+∞-∞C .)4,(-∞D . ),4(+∞ 4.sin14ºcos16º+cos14ºsin16º的值是( )A .23 B .21 C .-23D .-215.函数∈=x x y (cos 2R )是( )A .周期为π2的奇函数B .周期为π2的偶函数C .周期为π的奇函数D .周期为π的偶函数 6.已知直线l 过点(0,1)-,且与直线2y x =-+垂直,则直线l 的方程为( )A .1y x =-B .1y x =+C .1y x =--D .1y x =-+7.已知向量(1,2)a = ,(2,3)b x =-,若a ∥b ,则x =( )A .3B .34C .3-D .34-8.已知函数)2(21)(≠-=x x x f ,则()f x ( ) A .在(-2,+∞)上是增函数 B .在(-2,+∞)上是减函数 C .在(2,+∞)上是增函数D .在(2,+∞)上是减函数9.从含有两件正品12,a a 和一件次品1b 的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为( )A .13 B .49 C .59 D .2310.若实数x y 、满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z y x =-的最大值为( )A .1B .0C .1-D .2-11.执行右面的程序框图,如果输入的n 是4,则输出的P 是( )A .8B .5C .3D .212.已知函数|lg |,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)13.已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则 A B 等于( )A .{1,2,3,4,5}B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}14.若函数()=f x (6)f 等于( )A .3B .6C .9D15.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-16.两个球的体积之比为8:27,那么这两个球的表面积之比为( )A .2:3B .4:9CD.17.已知函数()sin cos =f x x x ,则()f x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数18.向量(1,2)=- a ,(2,1)=b ,则( )A .// a bB .⊥ a bC . a 与 b 的夹角为60D . a 与 b 的夹角为3019.已知等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( )A .15B .30C .31D .6420.阅读下面的流程图,若输入的a ,b ,c 分别是5,2,6,则输出的a ,b ,c 分别是( ) A .6,5,2 B .5,2,6 C .2,5,6 D .6,2,521.已知函数2()2=-+f x x x b 在区间(2,4)内有唯一零点,则b 的取值范围是( )A .RB .(,0)-∞C .(8,)-+∞D .(8,0)-22.在ABC ∆中,已知120=A ,1=b ,2=c ,则a 等于( )ABCD春季高考高职单招数学模拟试题二1.下列各函数中,与x y =表示同一函数的是( )A .x x y 2= B .2x y = C .2)(x y = D .33x y =2.抛物线241x y -=的焦点坐标是( )A .()1,0-B .()1,0C .()0,1D .()0,1-3.设函数216x y -=的定义域为A ,关于x 的不等式a x<+12log 2的解集为B ,且A B A = ,则a 的取值范围是( )A .()3,∞-B .(]3,0C .()+∞,5D .[)+∞,54.已知x x ,1312sin =是第二象限角,则=x tan ( )A .125B .125-C .512 D .512-5.等比数列{}n a 中,30321=++a a a ,120654=++a a a ,则=++987a a a ( ) A .240 B .240± C .480 D .480± 6.tan 330︒= ( )ABC. D. 7.设b >a >0,且a +b =1,则此四个数21,2ab ,a 2+b 2,b 中最大的是( )A .bB .a 2+b 2C .2abD .218.数列1,n +++++++ 3211,,3211,211的前100项和是:( ) A .201200 B .201100 C .101200 D .1011009.过椭圆1253622=+y x 的焦点1F 作直线交椭圆于B A 、两点,2F 是椭圆的另一焦点,则2ABF ∆的周长是( )A .12B .24C .22D .1010.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是( )A .(,0)12π-B .(,0)6π-C .(,0)6πD .(,0)3π11.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是 ( )12.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 ( )A .()()f x f x =-B .()1f x f x⎛⎫= ⎪⎝⎭C .()f x x >D .()2f x >13.如图,D 是△ABC 的边AB 的三等分点,则向量A .23CA AB + B .13CA AB +C .23CB AB +D .13CB AB +14.如果执行右面的程序框图,那么输出的S 等于( A .45 B .55 C .90 D .110A B C D春季高考高职单招数学模拟试题三1.已知集合{1,2,3,4}M =,集合{1,3,5}N =,则M N 等于( )A .{}2B .{}3,2C .{}3,1D .{}5,4,3,2,12.复数1ii+在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知命题2:,210,p x R x ∀∈+>则 ( ) A .2:,210p x R x ⌝∃∈+≤ B .2:,210p x R x ⌝∀∈+≤C .2:,210p x R x ⌝∃∈+<D .2:,210p x R x ⌝∀∈+<4.一个空间几何体的三视图如右图所示,这个几何体的体积是( )A .2B .4C .6D .85.要得到函数2sin()6y x π=+的图象,只要将函数2sin y x =的图象( )A .向左平移6π个单位B .向右平移6π个单位C .向左平移3π个单位D .向右平移3π个单位6.已知一个算法,其流程图如右图所示,则输出的结果是( )A .3B .9C .27D .81 7.在空间中,下列命题正确的是( )A .平行于同一平面的两条直线平行B .垂直于同一平面的两条直线平行C .平行于同一直线的两个平面平行D .垂直于同一平面的两个平面平行8.若AD 为ABC ∆的中线,现有质地均匀的粒子散落在ABC ∆内,则粒子在ABD ∆内的概率等于( )A .54B .43C .21D .329.计算sin 240︒的值为( )A .23-B .21-C .21D .2310."tan 1"α=是""4πα=的 ( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件 D .既不充分也不必要条件11.下列函数中,在),0(+∞上是减函数的是( )A .xy 1=B .12+=x yC .x y 2=D .x y 3log = 12.已知直线的点斜式方程是21)y x -=-,那么此直线的倾斜角为( )A .6π B .3π C .32π D .65π13.已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩≥≥0≥4,则z x y =+的最小值等于( )A .0B .C .4D .514.设椭圆的两焦点为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( ) A .22 B .212- C .22- D .12-春季高考高职单招数学模拟试题四1.下列说法正确的是( )A .*N φ∈B .Z ∈-2C .Φ∈0D .Q ⊆2 2.三个数0.73a =,30.7b =,3log 0.7c =的大小顺序为( ) A .b c a << B .b a c <<C .c a b <<D .c b a <<3.2sin cos 1212ππ⋅的值为( )A .12 BCD .14.函数4sin 2(R)y x x =∈是 ( )A .周期为π2的奇函数B .周期为π2的偶函数C .周期为π的奇函数D .周期为π的偶函数5.已知(1,2)=, (),1x =,当2+与-2共线时,x 值为( )A .1B .2C .13D .126.某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为( )A .5,10,15B .5,9,16C .3,9,18D .3,10,17正(主)视侧(左)俯视图7.在下列函数中:①12()f x x =, ②23()f x x =,③()cos f x x =,④()f x x =, 其中偶函数的个数是 ( )A .0B .1C .2D .38.某样本数据的频率分布直方图的部分图形如下图所示,则数据在[50,70)的频率约为( )A .0.25B .0.05C .0.5D .0.0259.把函数)34cos(π+=x y 的图象向右平移θ(θ>0)个单位,所得的图象关于y 轴对称,则θ的最小值为( )A .6πB .3π C .32π D .34π10.如图,大正方形的面积是13直角三角形的较短边长为2.向大正方形内投一飞镖,则飞镖落在小正 方形内的概率为( )A .113B .213C .313D .41311. 已知x 、y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-.3,0,05x y x y x 则y x 42+的最小值为( )A .6B .12C .6-D .12- 12.条件语句⑵的算法过程中,当输入43x π=时,输出的结果是( )A .2-B .12-C .12D .213.下列各对向量中互相垂直的是( )A .)5,3(),2,4(-==B .)4,3(-=,)3,4(=C .)5,2(),2,5(--==b aD .)2,3(),3,2(-=-=b a14.对于常数"0",,>mn n m 是方程122=+ny mx 的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件高考高职单招数学模拟试题五1.设全集U ,集合A 和B ,如图所示的阴影部分所表示的集合为( ) A .()u A C B ⋃ B .()u C A B ⋂ C .()u C A B ⋂ D .()u A C B ⋂ 2.已知命题p : 2,10,x R x x p ∃∈+-<⌝则为( )A .2,10x R x x ∃∈+->B .2,10x R x x ∀∈+-≥C .2,10x R x x ∃∉+-≥D .2,10x R x x ∀∈+-> 3. 统计某产品的广告费用x 与销售额y 的一组数据如下表: 广告费用 2 3 5 6 销售额y 7 9 12若根据上表提供的数据用最小二乘法可求得y 对x 的回归直线方程是,则数据中的的值应该是( )A .7.9B .8C .8.1D .94.一个几何体的三视图都是边长为2的正方形,则该几何体的表面积是( ) A .4 B .8 C .16 D .245.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,且2220a b c +-<,则ABC ∆是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6. 已知函数)(x f 的图象是一条连续不断的,)(,x f x 的对应值如下表:则在下列区间内,函数)(x f 一定有零点的是( )A .)1,2(--B .)1,1(-C .(1,2)D .(2,3)7.在直角坐标系中,直线l 的倾斜角30β= ,且过(0,1),则直线l 的方程是( )A .13y x =- B .13y x =+ C .1y =- D .1y =+ 8.已知定义在R )9. 双曲线22145x y -=的渐近线方程为( )A.4y x =± B .2y x =± C .5y x =± D .5y x =±10. 已知(,)2a ππ∈,4sin 5α=,则cos()πα+=( )A . 32B . 32-C . 23D . 23-11.已知圆221:1O x y +=,圆222:(1)(2)16O x y -+-=,则圆1O 和圆2O 的位置关系是( ) A . 内含 B . 内切 C . 相交 D . 外离12. 等于已知向量(1,2),(3,2),a b =-= 且,n xa yb =+ 则x=1,y=1是m //n的( )A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分也不必要条件13.函数2,(1)(),(1)x x f x x x ≤⎧=⎨>⎩且1()2f x =,则x =( )A . 12B .2 C .2- D .2或2-14. 某公司生产一种产品,每生产1千件需投入成本81万元,每千件的销售收入R (x )(单位:万元)与年产量x(单位:千件)满足关系:2()324(010)R x x x =-+<≤该公司为了在生产中获得最大利润(年利润=年销售收入—年总成本),则年产量应为( )A . 5千件B .C .9千件D . 10千件高考高职单招数学模拟试题六1.复数2i i +等于( )A .1i +B .1i -C .1i -+D .1i --2.已知函数()22xf x =+,则(1)f 的值为( )A .2B .3C .4D .6 3.函数y =) A .[)1,0- B .()0,+∞ C .[)()1,00,-+∞ D .()(),00,-∞+∞4.执行如图所示的程序框图,若输入的x 的值为3,则输出的y 的值为( ) A .4 B .5 C .8 D .10 5.若x R ∈,则“x =1”是“x =1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D . 既不充分又不必要条件 6.下列函数中,在其定义域内既是奇函数,又是减函数的是( )A .3y x =-B .sin y x =C .tan y x =D .1()2xy = 7. 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )8. 已知cos α=45,(,0)2απ∈-,则sin α+cos α等于( )A .-15B . 15C .-75D .759. 函数()23-+=x x f x的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.若变量,x y 满足约束条件2,2,2,x y x y ≤⎧⎪≤⎨⎪+≥⎩则y x z +=2的最大值是( )A .2B .4C .5D .611.若双曲线方程为221916x y -=,则其离心率等于( ) A .53 B .54 C .45 D . 35 12.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )13.过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是( )A .x y 3=B .x y 3-= C.y x = D .y x = 14. 已知()f x 是奇函数,且当0x ≥时,2()f x x x =-+,则不等式()0xf x <的解集为( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞高考高职单招数学模拟试题七1.若集合A ={}0,1,2,4,B ={}1,2,3,则B A =( )A .{}0,1,2,3,4B .{}0,4C .{}1,2D .{}3 2.不等式032<-x x 的解集是( )A .)0,(-∞B .)3,0(C .(,0)(3,)-∞+∞D .),3(+∞3.函数11)(-=x x f 的定义域为( ) A .}1|{<x x B . }1|{>x x C .}0|{≠∈x R x D .}1|{≠∈x R x 4.已知等差数列{}n a 的前n 项和n S ,若1854=+a a ,则8S =( ) A .72 B . 68C . 54D . 905.圆22(1)3x y -+=的圆心坐标和半径分别是( )A .(1,0),3-B .(1,0),3 C.(1- D.(16.已知命题:,sin 1,p x R x ∀∈≤则p ⌝是( ).A .,sin 1x R x ∃∈≥B .,sin 1x R x ∀∈≥C .,sin 1x R x ∃∈>D .,sin 1x R x ∀∈> 7.若a R ∈,则0a =是()10a a -=的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件8.下列函数)(x f 中,在()+∞,0上为增函数的是( )A .xx f 1)(=B .2)1()(-=x x fC .x x f ln )(=D . xx f ⎪⎭⎫⎝⎛=21)(9.设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f = ( ) A .3- B . 1- C .1 D .3 10.过点A (2,3)且垂直于直线052=-+y x 的直线方程为( )A .042=+-y xB .072=-+y xC .032=+-y xD .052=+-y x 11.0167cos 43sin 77cos 43cos +的值为( ) A .1 B .1-D .21- 12.函数2log ,(0,16]y x x =∈的值域是( )A .(]4,-∞-B .(]4,∞-C [)+∞-,4.D .[)+∞,4 13.已知函数()123+++=x x x x f ,则()x f 在(0,1)处的切线方程为( )A .01=--y xB .01=++y xC .01=+-y xD .01=-+y x14.如图,21F F 、是双曲线1C :1322=-y x 与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点.若A F F F 121=,则2C 的离心率是( )A .31 B .32 C . 32或52 D .52春季高考高职单招数学模拟试题(一)ADDBB ADDBA CCCAB BABAA DC 春季高考高职单招数学模拟试题(二)春季高考高职单招数学模拟试题(三)CDACA DBCAA ACBD春季高考高职单招数学模拟试题(四)BDACD CCBBA CBBB春季高考高职单招数学模拟试题(五)春季高考高职单招数学模拟试题(六)CCCCA AABCD DBDD春季高考高职单招数学模拟试题(七)CBBAD CACAA DBCB。
春季高考高职单招数学模拟试题班级:姓名:座号:成绩:一、选择题:本大题共14个小题,每小题5分,共70分。
在每小题给出的四个选项中,只有一项符合题目要求,请将答案填写在答题卡上。
1.已知集合{1,2,3,4}M=,集合{1,3,5}N=,则M N等于().{2}A.{2,3}B.{1,3}C.{1,2,3,4D2.复数1ii+在复平面内对应的点在()A第一象限B.第二象限C.第三象限D3.已知命题2:,210,p x R x∀∈+>则()A.2:,210p x R x⌝∃∈+≤B.2:,210p x R x⌝∀∈+≤C.2:,210p x R x⌝∃∈+< D.2:,210p x R x⌝∀∈+<4.一个空间几何体的三视图如右图所示,这个几何体的体积是()A. 2B.4C.6D.85.要得到函数2sin()6y xπ=+的图象,只要将函数2siny x=的图象()(A)向左平移6π个单位(B)向右平移6π个单位(C)向左平移3π个单位(D)向右平移3π个单位6.已知一个算法,其流程图如右图所示,则输出的结果是().3A.9B.27C.81D7. 在空间中,下列命题正确的是()A.平行于同一平面的两条直线平行B.垂直于同一平面的两条直线平行C.平行于同一直线的两个平面平行D.垂直于同一平面的两个平面平行8.若AD为ABC∆的中线,现有质地均匀的粒子散落在ABC∆内,则粒子在ABD∆内的概率等于()4.5A3.4B1.2C2.3D9. 计算sin240︒的值为().A1.2B-1.2C D⒑"tan1"α=是""4πα=的()(A)必要而不充分条件(B)充分而不必要条件(C)充要条件(D)既不充正(主)视侧(左)俯视图分也不必要条件11. 下列函数中,在),0(+∞上是减函数的是( ).A xy 1=.B 12+=x y .C x y 2= .D x y 3l o g =⒓已知直线的点斜式方程是21)y x -=-,那么此直线的倾斜角为( ).6A π.3B π2.3C π 5.6D π13.已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩≥≥0≥4,则z x y =+的最小值等于( ).0A .1B .4C .5D14、设椭圆的两焦点为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( )A 、22 B 、212- C 、22- D 、12-厦门市海沧中学高职高考 数学模拟试卷答题卡一、 请将选择题答案填入:题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案非选择题(共80分)二、 填空题:本大题共4个小题,每小题5分,共20分。
春季高考高职单招数学模拟试题班级: 姓名: 座号:一、选择题:本题共22小题,1-10题,每小题2分,11-22题,每小题3分,共56分. (1)sin420°=A .23 B .21 C .-23D .-21(2)将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是(A )13(B )14(C )15(D )16(3)函数)4(log 3-=x y 的定义域为 ( )A .RB .),4()4,(+∞-∞C .)4,(-∞D . ),4(+∞(4)s in14ºcos16º+cos14ºsin16º的值是( )A .23 B .21 C .-23D .-21(5)函数∈=x x y (cos 2R )是(A )周期为π2的奇函数(B )周期为π2的偶函数(C )周期为π的奇函数 (D )周期为π的偶函数(6)已知直线l 过点(0,1)-,且与直线2y x =-+垂直,则直线l 的方程为(A )1y x =- (B )1y x =+ (C )1y x =-- (D )1y x =-+(7)已知向量(1,2)a = ,(2,3)b x =-,若a ∥b ,则x =(A )3(B )34(C )3- (D )34-(8)已知函数)2(21)(≠-=x x x f ,则()f x (A )在(-2,+∞)上是增函数 (B )在(-2,+∞)上是减函数 (C )在(2,+∞)上是增函数(D )在(2,+∞)上是减函数(9)若实数x y 、满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z y x =-的最大值为(A )1(B )0(C )1-(D )2-(10)从含有两件正品12,a a 和一件次品1b 的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为 (A )13 (B )49 (C )59 (D )23(11)执行右面的程序框图,如果输入的n 是4,则输出的P 是(A )8 (B )5 (C )3 (D )2(12)已知函数|l g|,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是(A )(1,10)(B )(5,6)(C )(10,12)(D )(20,24)(13)已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则 A B 等于( )A .{1,2,3,4,5}B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}(14)若函数()=f x (6)f 等于( )A .3B .6C .9D(15)直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-(16)两个球的体积之比为8:27,那么这两个球的表面积之比为( )A .2:3B .4:9CD.(17)已知函数()sin cos =f x x x ,则()f x 是( ) A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数(18)向量(1,2)=- a ,(2,1)=b ,则( )A.//a b B.⊥a b C.a与b的夹角为60 D.a与b的夹角为30 (19)已知等差数列{}n a中,7916+=a a,41=a,则12a的值是()A.15 B.30 C.31 D.64(20)阅读下面的流程图,若输入的a,b,c分别是5,2,6,则输出的a,b,c分别是()A.6,5,2 B.5,2,6 C.2,5,6 D.6,2,5(21)已知函数2()2=-+f x x x b在区间(2,4)内有唯一零点,则b的取值范围是()A.R B.(,0)-∞C.(8,)-+∞D.(8,0)-(22)在ABC∆中,已知120=A,1=b,2=c,则a等于()A B D二、填空题:本大题共4小题,每小题3分,共12分.(23)把110010(2)化为十进制数的结果是.(24)给出下列四个命题①平行于同一平面的两条直线平行;②垂直于同一平面的两条直线平行;③如果一条直线和一个平面平行,那么它和这个平面内的任何直线都平行;④如果一条直线和一个平面垂直,那么它和这个平面内的任何直线都垂直.其中正确命题的序号是(写出所有正确命题的序号).(25)已知直线l:1y x=+和圆C:2212x y+=,则直线l与圆C的位置关系为.(26)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.三、解答题:本大题共4小题,共32分.解答应写出文字说明、证明过程或演算步骤.(27)(8分)如图是一名篮球运动员在某一赛季10场比赛的得分的原始记录的径叶图,(28) (8分)在等差数列{n a }中,已知a 2=2,a 4=4,(1)求数列{n a }的通项公式n a ; (2)设2n a n b ,求数列{n b }前5项的和S 5。
河北省高职单招考试数学模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1 B.[)0,+∞ C.(){}1,1 D.()0,+¥3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.944.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或 D.{}|03x x <<5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()xf xg x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae -=+在定义域上是奇函数”的充分不必要条件11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.14.如图,在正方体''''ABCD A B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.15.在()()5122x x -+展开式中,4x 的系数为______.16.关于x 的方程ln 10xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.河北省高职单招考试数学模拟卷答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】利用复数除法运算求得z ,从而求得z ,由此得到z 对应的坐标,进而求得z 在复平面内对应的点所在象限.【详解】因为()()()2(1)2221322255i i i i i i iz i i i -+++--+--+====--⨯+,所以3155z i =--,z 对应点为31,55⎛⎫-- ⎪⎝⎭,所以z 在复平面内对应的点位于第三象限.故选:C.【点睛】本小题主要考查复数的除法运算,共轭复数,考查复数对应点所在象限的判断,属于基础题目.2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1B.[)0,+∞C.(){}1,1 D.()0,+¥【答案】B 【解析】【分析】先求出集合,A B ,即可求出交集.【详解】{}|21A x y x R ==-= ,{}[)2|0,B y y x ===+∞,[)0,A B ∴=+∞ .故选:B.【点睛】本题考查函数定义域和值域的求法,考查集合交集运算,属于基础题.3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.94【答案】A【分析】根据4124yx -⎛⎫= ⎪⎝⎭可得24x y +=,之后利用基本不等式得到2112(2)(2222x y xy x y +=⋅≤=,从而求得结果.【详解】因为(),0,x y ∈+∞,且421224yx y --⎛⎫== ⎪⎝⎭,所以42x y -=-,即24x y+=,所以有2112(2)(2222x y xy x y +=⋅≤=,当且仅当22x y ==时取得最大值2,故选:A.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有利用基本不等式求积的最大值,属于简单题目.4.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或D.{}|03x x <<【答案】C 【解析】【分析】由题意得0a <,利用韦达定理找到,,a b c 之间的关系,代入所求不等式即可求得.【详解】不等式20ax bx c ++>的解集为{}|12x x -<<,则1x =与2x =是方程20ax bx c ++=的两根,且0a <,由韦达定理知121b a -=-+=,122ca=-⨯=-,即=-b a ,2c a =-,则不等式()()2112a x b x c ax ++-+<可化简为()()21122a x a x a ax +---<,整理得:230ax ax -<,即(3)0ax x -<,由0a <得0x <或3x >,故选:C.【点睛】本题主要考一元二次不等式,属于较易题.5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-【答案】D 【解析】【分析】根据三角函数的导函数和已知定义,依次对其求导,观察得出4()(),n n f x f x n N +=∈,可得解.【详解】1()sin f x x = ,()''1()sin cos f x x x ∴==,'12()()cos f x f x x ==,()23'()(cos )sin f x f x x x '===-,()34'()(sin )cos f x f x x x '==-=-,()45'()(cos )sin f x f x x x '==-=,由此可知:4()(),n n f x f x n N +=∈,24201()()cos f x f x x ∴==-.故选:D.【点晴】本题考查三角函数的导数,依次求三角函数的导数找到所具有的周期性是解决此问题的关键,属于中档题.6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种【答案】B 【解析】【分析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有1233339C C =⨯=,其余的分到乙村,若甲村有2外科,1名护士,则有2133339C C =⨯=,其余的分到乙村,则总共的分配方案为2×(9+9)=2×18=36种,故选B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 【答案】A 【解析】【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点122⎛⎫ ⎪ ⎪⎝⎭,则122α⎛⎫= ⎪ ⎪⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x xxx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--【答案】ABC 【解析】【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为()()()2122211i 1i 12i i z i i --====-++-,对于A:z 的虚部为1-,正确;对于B:模长z =,正确;对于C:因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D:z 的共轭复数为1i +,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件【答案】BD 【解析】【分析】根据不等式的性质可判断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当1a >时,可得11a<,故“1a >”是“11a<”的充分条件,故A 错误;对于B,由特称命题的否定是存在改任意,否定结论可知B 选项正确;对于C,若0ab <时,2b a a b +≤-=-,故C 错误;对于D,当1a =时,1()1xx e f x e -=+,此时()()f x f x -=-,充分性成立,当()1xxa e f x ae -=+为奇函数时,由1()1x x xx a e ae f x ae e a-----==++,()()f x f x -=-可得1a =±,必要性不成立,故D 正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【答案】ACD【分析】根据二项式系数的性质即可判断选项A;由n 为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,11()a b -的二项式系数之和为1122048=,故选项A 正确;因为11()a b -的展开式共有12项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C 正确,选项B 错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D 正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式的系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED ⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 【答案】AC【解析】A 中利用折前折后不变可知PD AD =,根据222PD CD PC +=可证CD PD ⊥,可得线面垂直,进而证明面面垂直;B 选项中AED ∠不是直角可知,PD ED 不垂直,故PC ED ⊥错误;C 中二面角P DC B --的平面角为PDE ADE ∠=∠,故正确;D 中PC 与平面PED 所成角为CPD ∠,计算其正切值即可.【详解】A 中,PD AD ===,在三角形PDC 中,222PD CD PC +=,所以PD CD ⊥,又CD DE ⊥,可得CD ⊥平面PED ,CD ⊂平面EBCD ,所以平面PED ⊥平面EBCD ,A 选项正确;B 中,若PC ED ⊥,又ED CD ⊥,可得ED ⊥平面PDC ,则ED PD ⊥,而EDP EDA ∠=∠,显然矛盾,故B 选项错误;C 中,二面角P DC B --的平面角为PDE ∠,根据折前着后不变知=45PDE ADE ∠=∠︒,故C 选项正确;D 中,由上面分析可知,CPD ∠为直线PC 与平面PED 所成角,在t R PCD V 中,2tan 2CD CPD PD ∠==,故D 选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.【答案】2【解析】【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===.故分布列为:ξ123p 153515故()1311232555E ξ=⨯+⨯+⨯=.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14.如图,在正方体''''ABCDA B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.【答案】90︒【解析】【分析】取CC '中点E ,连接ME ,连接ED 交D N '于F ,可知即DFN ∠为异面直线AM 与'D N 所成的角,求出即可.【详解】取CC '中点E ,连接ME ,连接ED 交D N '于F ,在正方体中,可知ME BC AD ∥∥,∴四边形AMED 是平行四边形,AM ED ∴ ,即DFN ∠为异面直线AM 与'D N 所成的角,可知在Rt ECD △和Rt NDD ' 中,,,90EC ND CD DD ECD NDD ''==∠=∠= ,ECD NDD '∴≅ ,CED FND ∴∠=∠,90CED EDC ∠+∠= ,90FND FDN ∴∠+∠= ,90DFN ∴∠= ,即异面直线AM 与'D N 所成的角为90 .故答案为:90 .【点睛】本题考查异面直线所成角的求法,属于基础题.15.在()()5122x x -+展开式中,4x 的系数为______.【答案】80【解析】【分析】将原式化为()()5521212x x x -+-,根据二项式定理,求出()512x -展开式中3x ,4x 的系数,即可得出结果.【详解】()()()()55512221212x x x x x -+=-+-,二项式()512x -的展开式的第1r +项为()152rr r r T C x +=-,令3r =,则()333345280T C x x =-=-,令4r =,则()444455280T C x x =-=,则()()5122x x -+展开式中,4x 的系数为2808080⨯-=.故答案为:80.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16.关于x 的方程ln 10x kx x --=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.【答案】21,1e e +⎡⎫⎪⎢⎣⎭【解析】【分析】分离参数,构造函数2ln 1(),(0,]x f x x e x x =+∈,利用导数讨论()f x 的单调性,再结合关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,即可求出k 的取值范围.【详解】ln 10x kx x --= ,2ln 1x k x x ∴=+,设2ln 1(),(0,]x f x x e x x =+∈,312ln ()x x f x x --∴=',设()12ln ,(0,]g x x x x e =--∈,2()10g x x∴=--<',即()g x 在(]0,e 是减函数,又(1)0g =,∴当01x <<时,()0>g x ,即()0f x '>,当1x e <<时,()0<g x ,即()0f x '<,()f x ∴在()0,1为增函数,在()1,e 为减函数,当0x →时,()f x →-∞,21()(1)1,e e f f e =+=,关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,由上可知211e k e +< ,∴实数k 的取值范围为21,1e e +⎡⎫⎪⎢⎣⎭.故答案为:21,1e e +⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用导数解决方程根的问题,属于较难题.。
2024广东春季高考数学模拟卷本试卷满分150分,考试用时120分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为实数集R,集合A={x|(x+1)(2-x)≥0},则∁R A=()A.{x|-1≤x≤2}B.{x|x<-1或x>2}C.{x|x≤-1或x>2}D.{x|-1<x<2}2.已知复数z满足z(2+i)=|3+4i|(其中i为虚数单位),则复数z-=()A.2-i B.-2+i C.2+i D.-2-i3.为贯彻落实健康第一的指导思想,切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,提高体质健康水平.某市抽调三所中学进行中学生体育达标测试,现简称为A校、B校、C校.现对本次测试进行调查统计,得到测试成绩排在前200名学生层次分布的饼状图、A校前200名学生的分布条形图,则下列结论不一定正确的是()A.测试成绩前200名学生中B校人数超过C校人数的1.5倍B.测试成绩前100名学生中A校人数超过一半以上C.测试成绩在51~100名学生中A校人数多于C校人数D.测试成绩在101~150名学生中B校人数最多29人4.函数f(x)=3xx2+cos x的图象大致为()5.已知函数y=f(x),x∈[-2π,2π]的图象如图所示,则该函数的解析式可能为()A.f(x)=cos x-|sin x|B.f(x)=sin x-|cos x|C.f(x)=cos x+|sin x|D.f(x)=cos2x-|cos x|6.根据中央对“精准扶贫”的要求,某市决定派7名党员去甲、乙、丙三个村进行调研,其中有4名男性党员,3名女性党员,现从中选3人去甲村,若要求这3人中既有男性,又有女性,则不同的选法共有()A .35种B .30种C .28种D .25种7.已知F 1,F 2分别为椭圆E :y 2a 2+x 2b2=1(a >b >0)的两个焦点,P 是椭圆E 上的点,PF 1⊥PF 2,且sin ∠PF 2F 1=3sin ∠PF 1F 2,则椭圆E 的离心率为()A.102B.104C.52D.548.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三13,23,记为第一次操作;再将剩下的两个区间0,13,23,1分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于2627,则需要操作的次数n 的最小值为()参考数据:lg 2≈0.3010,lg 3≈0.4771A .6B .7C .8D .9二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知曲线C 的方程为x 2m +1+y 23-m=1(m ∈R ),则()A .当m =1时,曲线C 为圆B .当m =5时,曲线C 为双曲线,其渐近线方程为y =±33xC .当m >1时,曲线C 为焦点在x 轴上的椭圆D .存在实数m 使得曲线C 为双曲线,其离心率为210.下列说法正确的是()A .直线(3+m )x +4y =5-3m 与2x +(5+m )y =8平行,则m =-1B .正项等比数列{a n }满足a 1=1,a 2a 4=16,则S 4=15C .在△ABC 中,B =30°,b =1,若三角形有两解,则边长c 的范围为1<c <2D .函数f (x )=a -12x +1为奇函数的充要条件是a =1211.已知函数f (x )=(2cos 2ωx -1)sin 2ωx +12cos 4ωx (ω>0),则下列说法正确的是()A .若f (x )的两个相邻的极值点之差的绝对值等于π4,则ω=2B .当ω=12时,f (x )在区间-π4,π4上的最小值为-12C .当ω=1时,f (x )在区间-π4,0上单调递增D .当ω=1时,将f (x )图象向右平移π8个单位长度得到g (x )=22sin 4x -π412.如图,在正方体ABCDA1B1C1D1中,点P在线段BC1上运动,则下列判断中正确的是()A.平面PB1D⊥平面ACD1B.A1P∥平面ACD1C.异面直线A1P与AD1所成角的范围是0,π3D.三棱锥D1APC的体积不变三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.函数f(x)=(x+2)e-x的图象在点(0,f(0))处的切线方程为________.14.已知随机变量X~N(0,σ2),且P(X>a)=m,a>0,则P(-a<X<a)=________.15.将一个正方形绕着它的一边所在直线旋转一周,所得几何体的体积为27π,则该几何体的全面积为________.16.如图,在四边形ABCD中,∠B=60°,AB=2,BC=6,且AD→=λBC→,AD→·AB→=-2,则实数λ的值为________,若M,N是线段BC上的动点,且|MN→|=1,则AM→·DN→的最小值为________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知数列{a n}是等差数列,且a1=1,a10-a2=8,求:(1){a n}(2)1a n a n+2n项和为S n,若S n≤m12(m∈N+)对任意n∈N+恒成立,求m的最小值.18.(本小题满分12分)在△ABC中,∠BAC的角平分线AD与边BC相交于点D,满足BD=2DC.(1)求证:AB=2AC;(2)若AD=BD=2,求∠BAC的大小.19.(本小题满分12分)如图,在三棱锥PABC中,AB⊥BC,PA=PB=PC=AC=4,O为AC中点.(1)证明:直线PO⊥平面ABC;(2)若点M在棱BC上,BM=1MC,且AB=BC,求直线PC与平面PAM所成角的余弦2值.20.(本小题满分12分)每年春天,婺源的油菜花海吸引数十万游客纷至沓来,油菜花成为“中国最美乡村”的特色景观,三月,婺源篁岭油菜花海进入最佳观赏期.现统计了近七年每年(2015年用x =1表示,2016年用x =2表示)来篁岭旅游的人次y (单位:万人次)相关数据,如下表所示:x1234567旅游人次y (单位:万人次)29333644485259(1)若y 关于x 具有较强的线性相关关系,求y 关于x 的经验回归方程y =b ^x +a ^,并预测2022年篁岭的旅游的人次;(2)为维持旅游秩序,今需A 、B 、C 、D 四位公务员去各景区值班,已知A 、B 、C 去篁岭值班的概率均为23,D 去篁岭值班的概率为13,且每位公务员是否去篁岭值班不受影响,用X 表示此4人中去篁岭值班人数,求X 的分布列与数学期望.参考公式:b ^=错误!,a ^=y --b ^x -.参考数据:错误!i =301,错误!x i -x -)(y i -y -)=140.21.(本小题满分12分)已知抛物线C 的顶点在坐标原点,焦点在y 轴的正半轴上,直线l :mx +y -32=0经过抛物线C 的焦点.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 相交于A 、B 两点,过A 、B 两点分别作抛物线C 的切线,两条切线相交于点P ,求△ABP 面积的最小值.参考答案1.答案:B解析:由(x+1)(2-x)≥0,解得-1≤x≤2,∴A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2}.2.答案:C解析:∵z(2+i)=|3+4i|=32+42=5,∴z=52+i=5(2-i)(2+i)(2-i)=2-i,则z-=2+i.3.答案:C解析:对于A,B校人数为200×34%=68,C校人数为200×20%=40,因为68>40×1.5=60,所以A正确;对于B,A校前100名的人数有29+25=54>50,所以B正确;对于C,A校在51~100名的学生有25人,C校在1~200名的学生有40人,也有可能在51~100名的学生有25人,所以C错误;对于D,A校在1~100名和151~200名的学生共有29+25+17=71人,A校在101~150的有21人,C校在1~200名的有40人,但在101~150的不一定有40人,而三个学校中在1~100名和151~200名内的人数至少有150人,所以B校至少有150-71-40=39人在1~100名和151~200名内,则B至多有68-39=29人在101~150内,所以D正确.4.答案:A解析:因为f(-x)=-3xx2+cos x=-f(x),所以f(x)为奇函数,其图象关于原点对称,排除B,D;因为f(π)=3ππ2-1>0,所以排除C.5.答案:A解析:取x=0,对于A:f(0)=cos0-|sin0|=1-0=1;对于B:f(0)=sin0-|cos0|=0-1=-1;对于C:f(0)=cos0+|sin0|=1+0=1;对于D:f(0)=cos0-|cos0|=1-1=0,结合图象中f(0)=1,故排除BD;取x=π2,对于A:fπ2cosπ2-|sinπ2|=0-1=-1,对于C:f π2=cosπ2+|sinπ2|=0+1=1,结合图象,可排除C.6.答案:B解析:从7名党员选3名去甲村共有C37种情况,3名全是男性党员共有C34种情况,3名全是女性党员共有C33种情况,3名既有男性,又有女性共有C37-C34-C33=30种情况.7.答案:B解析:F1,F2分别为椭圆E:y2a2+x2b2=1(a>b>0)的两个焦点,P是椭圆E上的点,PF1⊥PF2,且sin∠PF2F1=3sin∠PF1F2,由正弦定理可得|PF1|=3|PF2|,令|PF1|=3|PF2|=3n,则3n+n=2a,9n2+n2=4c2,可得52a2=4c2,所以椭圆的离心率为:e=ca=524=104.8.答案:D解析:记a n为第n次去掉的长度,a1=13,剩下两条长度为13的线段,第二次去掉的线段长为a2=2132=232,第n -1次操作后有2n-1条线段,每条线段长度为13n-1,因此第n 次去掉的线段长度为a n =2n -1×13n -1×13=2n -13n ,所以S n =13×1-23n1-23=1-23n ≥2627,23n ≤127,n (lg 2-lg 3)≤-3lg 3,n ≥3lg 3lg 3-lg 2≈8.13,n 的最小值为9.9.答案:AB解析:对于A ,m =1时,方程为x 22+y 22=1,即x 2+y 2=2,曲线C 是圆,A 正确;对于B ,m =5时,方程为x 26-y 221,曲线C 为双曲线,其渐近线方程为y =±33x ,B 正确;对于C ,m >1时,不妨令m =5,由选项B 知,曲线C 为双曲线,C 不正确;对于D ,要曲线C 为双曲线,必有(m +1)(3-m )<0,即m <-1或m >3,m <-1时,曲线C :y 23-m -x 2-(m +1)=1,m >3时,曲线C :x 2m +1-y 2m -3=1,因双曲线离心率为2时,它实半轴长与虚半轴长相等,而-(m +1)≠3-m ,m +1≠m -3,D 不正确.10.答案:BCD解析:若直线(3+m )x +4y =5-3m 与2x +(5+m )y =8平行,(+m )(5+m )=4×2(+m )×(-8)≠(3m -5)×2,解得:m =-7,故选项A 不正确;数列{a n }满足a 1=1,a 2a 4=16,所以a 23=16,所以a 3=a 1q 2=q 2=4,可得q =2,所以S 4=a 1(1-q 4)1-q =1-241-2=15,故选项B 正确;在△ABC 中,B =30°,b =1,由正弦定理可得c sin C =bsin B,即c =2sin C ,因为A +C =180°-30°=150°,因为C 有两个值,且两个值互补,若C ≤30°,则其补角大于150°,则B +C >180°不成立,所以30°<C <150°,因为C =90°时也是一解,所以30°<C <150°且C ≠90°,12<sin C <1,所以1<c =2sin C <2,故选项C 正确;函数f (x )=a -12x +1为奇函数,则f (0)=a -120+1=0,可得a =12,当a =12时,f (x )=12-12x +1,f (-x )=12-12-x +1=12-2x 2x +1=12-2x +1-12x +1=12-1+12x +1=-12+12x +1=-f (x ),所以当a =12时,f (x )是奇函数,函数f (x )=a -12x +1为奇函数的充要条件是a =12,故选项D 正确.11.答案:BD解析:f (x )=(2cos 2ωx -1)sin 2ωx +12cos 4ωx =cos 2ωx sin 2ωx +12cos 4ωx =12sin 4ωx +12cos 4ωx =22sin 4ωx +π4A .f (x )的两个相邻的极值点之差的绝对值等于π4,则T =2×π4=π2,2π4ω=π2,ω=1,A 错;B .当ω=12时,f (x )=22sin 2x +π4x ∈-π4,π4时,2x +π4∈-π4,3π4,f (x )的最小值为22×-22=-12,B 正确;C .当ω=1时,f (x )=22sin 4x +π4,x ∈-π4,0时,4x +π4∈-3π4,π4,因此在此区间上,函数不单调,C 错;D .ω=1时,f (x )=22sin 4x +π4f (x )图象向右平移π8个单位长度得到图象的解析式为g (x )=22sin 4x -π8+π4=22sin4x -π4D 正确.12.答案:ABD 解析:根据正方体的性质,可得DB 1⊥平面ACD 1,又由DB 1⊂平面PB 1D ,则平面PB 1D ⊥平面ACD 1,故A 正确;连接A 1B ,A 1C 1,在正方体中,可得平面BA 1C 1∥平面ACD 1,又由A 1P ⊂平面BA 1C 1,所以A 1P ∥平面ACD 1,故B 正确;当P 与线段BC 1的两端点重合时,A 1P 与AD 1所成角取最小值π3,当P 与线段BC 1的中点重合时,A 1P 与AD 1所成角取最大值π2,故A 1P 与AD 1所成角的范围是π3,π2,故C 错误;VD 1APC =VC AD 1P ,因为点C 到平面AD 1P 的距离不变,且△AD 1P 的面积不变,所以三棱锥C AD 1P 的体积不变,故D 正确.13.答案:x +y -2=0解析:∵f (x )=(x +2)e -x ,∴f ′(x )=e -x -(x +2)e -x =-(x +1)e -x ,则f ′(0)=-1.因为f (0)=2,所以所求切线方程为y -2=-x ,即x +y -2=0.14.答案:1-2m解析:由X ~N (0,σ2),且P (X >a )=m ,a >0,则P (X <-a )=m ,所以P (-a <X <a )=1-2m .15.答案:36π解析:将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π,设正方体的边长为a ,则V =πa 2·a =27π,解得a =3,∴该圆柱的全面积为S =2π×3×3+2×π×32=36π.16.答案:13114解析:因为AD →=λBC →,所以AD →∥BC →,因为∠B =60°,所以∠BAD =120°,所以AD →·AB →=|AD →|·|AB →|cos 120°=-12λ|BC →|·|AB →|=-12λ×6×2=-2⇒λ=13;建立如图所示的坐标系xOy ,因为∠B =60°,AB =2,BC =6,可得A (0,3),D (2,3),设M (m,0),因为|MN →|=1,则N (m +→=(m ,-3),DN →=(m -1,-3),AM →·DN →=m (m -1)+(3)2=m 2-m +3=m -12+114≥114,当m =12时等号成立,所以AM →·DN →的最小值为114.17.解析:(1)设数列{a n }公差为d ,则a 10=a 1+9d ,a 2=a 1+d ,则a 10-a 2=a 1+9d -(a 1+d )=8,解得d =1.∴{a n }的通项公式为:a n =1+(n -1)·1=n .(2)根据题意,S n =1a 1a 3+1a 2a +…+1a n a n +2=11×3+12×4+…+1n (n +2)=12×1-13+12-14…+1n -1n +2=12×1+12+13+…+1n -13+14+…+1n +2=12×1+12-1n +1+1n +2=34-2n +32·(n +1)·(n +2)<34.若S n ≤m 12(m ∈N +)对任意n ∈N +恒成立,则m 12≥34,解得m ≥9.∴m 的最小值为9.18.解析:(1)证明:因为AD 为∠BAC 的角平分线,故∠BAD =∠DAC ,在△ABD 中,由正弦定理可得:BD sin ∠BAD =ABsin ∠ADB,在△ADC 中,由正弦定理可得:DC sin ∠DAC =ACsin ∠ADC②,由①和②可得BD DC =AB ·sin ∠ADCAC ·sin ∠ADB,又∠ADC +∠ADB =180°,故sin ∠ADC =sin ∠ADB ,可得:BD DC =ABAC=2,即AB =2AC ;(2)由题意可知AD =BD =2,DC =1,由(1)知AB =2AC ,不妨设AB =2AC =2x .在△ABD 中,由余弦定理可得:AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,即4x 2=8-8cos ∠ADB ③,在△ADC 中,由余弦定理可得:AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC ,即x 2=5-4cos ∠ADC ④,由又∠ADC +∠ADB =180°,故cos ∠ADC =-cos ∠ADB ,由③和④可解得:x =3,cos ∠ADC =12,从而可得AB =23,AC =3,BC =3,在△ABC 中,由余弦定理得:cos ∠BAC =AB 2+AC 2-BC 22AB ·AC=12,又0°<∠BAC <180°,故∠BAC =60°.19.解析:(1)∵PA =PC ,且O 为AC 中点,∴PO ⊥AC ,∵AB ⊥BC ,且O 为AC 中点,∴OB =12AC =2,∵PA =PC =AC =4,且O 为AC 中点,∴PO =23,∵PB =4,OB =2,PO =23,∴PB 2=PO 2+OB 2,∴PO ⊥OB ,∵OB ,AC ⊂平面ABC ,且OB ∩AC =O ,∴PO ⊥平面ABC .(2)∵AB =BC ,且O 为AC 中点,∴AC ⊥OB ,从而OB ,OC ,OP 两两垂直,如图,建立以O 为原点,且OB ,OC ,OP 分别为x,y ,z 轴的空间直角坐标系,则A (0,-2,0),P (0,0,23),C (0,2,0),B (2,0,0),设M (x ,y ,z ),由BM =12MC ,即BM →=12MC →,所以(x -2,y ,z )=12(-x,2-y ,-z ),所x -2=-12xy =12(2-y )z =-12z,解得M 43,23,0,∴PC →=(0,2,-23),PA →=(0,-2,-23),PM →43,23,-23,不妨设平面PAM 的一个法向量为n =(x ,y ,z ),故n ⊥PA →,n ⊥PM →,-2y -23z =0,43x +23y -23z =0,令z =1,则x =23,y =-3,∴n =(23,-3,1),设直线PC 与平面PAM 所成角为θ,∴sin θ=|cos 〈PC →,n 〉|=|-23-2316·16|=34,因为θ0,π2,所以cos θ=1-sin 2θ=1-342=134,∴直线PC 与平面PAM 所成角的余弦值为134.20.解析:(1)由表知:x -=17(1+2+3+4+5+6+7)=4,y -=17(29+33+36+44+48+52+59)=43,则b ^=错误!=1409+4+1+0+1+4+9=5,a ^=y --b ^x -=3017-5×4=23,所以y =5x +23,因为2015年用x =1表示,所以2022年是x =8时,得y =5×8+23=63(万人次);(2)X 则P(X =0)=C 031-233×23=281,P(X =1)=C 131-23×23×23+C 031-2331-23=1381,P(X =2)=C 231-23×23×23+C 13×1-23×23×1-23=3081,P(X =3)=C 3323×23+C 23×1-23×2321-23=2881,P(X =4)=C 3323×1-23=881,则X 的分布列为X 01234P 281138130812881881故数学期望为E(X)=0×281+1×1381+2×3081+3×2881+4×881=73.21.解析:(1)设抛物线C 的方程为x 2=2py(p>0).∵直线l :mx +y -32=0经过抛物线C 的焦点,∴m ×0+p 2-32=0,解得p =3.∴抛物线C 的方程为x 2=6y.(2)设A(x 1,y 1),B(x 2,y 2)x 2=6ymx +y -32=0,得x 2+6mx -9=0.∵Δ=36m 2+36>0,x 1+x 2=-6m ,x 1x 2=-9,∴|AB|=1+m 2·36m 2+36=6(1+m 2).由x 2=6y 得y =x 26.∴y ′=x 3.∴抛物线C 经过点A 的切线方程是y -y 1=x 13(x -x 1),将y 1=x 216y =x 13x -x 216.同理可得抛物线C 经过点B 的切线方程为y =x 23-x 226.=x 13x -x 216=x 23x -x 226=x 1+x 22=x 1x 26,=-3m =-32.∴P 3mmx +y -32=0的距离d =|m ×(-3m )-32-32|m 2+1=3m 2+1,△ABP 的面积S =12|AB|d =12×6×(1+m 2)×3m 2+1=9(m 2+1)32.∵m 2+1≥1,∴S ≥9.当m =0时,S =9.∴△ABP 面积的最小值为9.22.解析:(1)由题意可得,f(x)<0在(0,+∞)上恒成立,即ax 2>x ln x ,∴a>ln x x 恒成立.令h(x)=ln x x ,则h ′(x)=1-ln x x 2,由h ′(x)>0得0<x<e ;由h ′(x)<0得x>e ;所以h(x)在(0,e )上递增,在(e ,+∞)上递减,因此h(x)max =h(e )=1e ,∴只需a>1e ;(2)由x ln x -ax 2=0知ln x =ax ,由题意,可得:ln m =am ,ln n =an ,所以ln m -ln n =a(m -n),即a =ln m -ln n m -n ,又ln m +ln n =a(m +n)=ln m -ln n m -n (m +n)=m n +1m n -1ln m n 令t =m n ,t ∈(1,2],则ln mn =t +1t -1ln t ,令g(t)=(t +1)ln t t -1,t ∈(1,2],则g ′(t)=t -2ln t -1t (t -1)2,令φ(t)=t -2ln t -1t ,则φ′(t)=1-2t +1t 2=(t -1)2t2≥0显然恒成立,∴φ(t)递增,∴t ∈(1,2]时,φ(t)>φ(1)=0,∴g ′(t)>0,即g(t)在t ∈(1,2]上递增,因此g(t)max =g(2)=3ln 2,∴ln m +ln n 最大值为3ln 2,∴mn 最大值为8.。
2024广东高职高考《数学》模拟卷含答案一、选择题(每小题4分,共40分)1. 若函数 f(x) = 2x - 3 在区间(2,+∞)上是增函数,则实数 a 的取值范围是()A. a > 2B. a ≤ 2C. a ≥ 2D. a < 2答案:B2. 已知函数 f(x) = x² - 2x + 1,下列结论正确的是()A. 函数在区间(-∞,1)上是增函数B. 函数在区间(1,+∞)上是增函数C. 函数的图像是开口向下的抛物线D. 函数的图像是开口向上的抛物线答案:B3. 若等差数列的前三项分别为 a, b, c,则第四项的值是()A. a + b + cB. a + 2b + cC. a + 3b + cD. a + 2b - c答案:D4. 若等比数列的前三项分别为 a, b, c,则第四项的值是()A. abcB. a²bC. ab²D. a³b²答案:C5. 已知向量 a = (2, 3),向量 b = (4, -1),则向量 a + b 的模长是()A. 3B. 5C. 6D. 7答案:B6. 若矩阵 A = \(\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}\),矩阵 B = \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\),则矩阵 A + B 的值是()A. \(\begin{pmatrix} 3 & 5 \\ 7 & 9\end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 3 & 4\end{pmatrix}\)C. \(\begin{pmatrix} 3 & 6 \\ 7 & 9\end{pmatrix}\)D. \(\begin{pmatrix} 1 & 2 \\ 3 & 5\end{pmatrix}\)答案:A7. 下列关于三角形面积的说法正确的是()A. 等腰三角形的面积等于底乘以高B. 等边三角形的面积等于底乘以高的一半C. 等腰三角形的面积等于底乘以高的一半D. 等边三角形的面积等于底乘以高答案:C8. 若正多边形边长为 a,则其面积 S 与边长 a 的关系是()A. S ∝ aB. S ∝ a²C. S ∝ a³D. S ∝ a⁴答案:B9. 若平行线 l₁:x + 2y - 3 = 0,l₂:x - 2y + 3 = 0,则两平行线间的距离 d 是()A. 2B. 4C. 6D. 8答案:C10. 若直线 y = 2x + 1 与圆 x² + y² = 4 相切,则切点的坐标是()A. (-1, -1)B. (1, 1)C. (-1, 1)D. (1, -1)答案:A二、填空题(每小题4分,共40分)11. 若函数 f(x) = 3x² - 4x + 1 在区间(1,+∞)上是增函数,则实数 a 的取值范围是 _______。
2024上海春季高考数学模拟试卷选择题1. 下列各式中,属于整式的是 ( )A. 1/xB. √(x+1)C. x^2 + 2xD. 2x - 3/x2. 下列方程中,是二元一次方程的是 ( )A. x^2 + y = 3B. 2x + 3y = 7C. x/y = 1D. y = 3x^23. 下列各数中,是负数的是 ( )A. -(-2)B. |-3|C. 0D. -√44. 下列各组数中,是同类项的是 ( )A. 2x^2y 与 3xy^2B. -5xy 与 5yxC. 4x 与 4x^2D. -2 与 3x5. 若 |a| = 5,则 a = ( )A. 5B. -5C. ±5D. 06. 下列计算正确的是 ( )A. 3a + 2b = 5abB. a^6 ÷ a^2 = a^3C. (a^3)^2 = a^6D. a + a = a^27. 下列命题是真命题的是 ( )A. 两条直线被第三条直线所截,同位角相等B. 直角三角形斜边上的中线等于斜边的一半C. 对角线相等的四边形是矩形D. 四个角相等的四边形是正方形8. 下列调查中,最适合用全面调查(普查)的是 ( )A. 了解某市居民的节水意识B. 了解某市中学生每天的学习时间C. 了解某市中学生目前使用手机的情况D. 了解一架“歼-20”隐形战机各零部件的合格情况9. 下列计算正确的是 ( )A. (a - b)^2 = a^2 - b^2B. a^3 - a^2 = aC. (x + y)^2 = x^2 + y^2D. (x - y)(x + y) = x^2 - y^210. 下列说法中,正确的是 ( )A. 有理数就是有限小数和无限小数的统称B. 一个有理数不是整数就是分数C. 正分数、零、负分数统称为分数D. 正数和负数统称为有理数填空题1. 方程 2x - 3 = 5 的解是 x = _______2. 若 x^2 - 4 = 0,则 x = _______3. 已知 |a| = 5,a 的可能取值为 _______4. 合并同类项:3x^2y - 2xy^2 + 5xy^2 - 4x^2y = _______5. 若 a // b,b // c,则 a // c,这是根据 _______6. 计算:(1/2 - √3)^0 = _______7. 某商场今年一月份的营业额为 100 万元,三月份的营业额为 144 万元,则平均每月增长的百分率为 _______8. 下列计算中,正确的是 _______A. √9 = ±3B. (-3)^2 = 6C. √(16/25) = 4/5D. 3√2 - 2√2 = √29. 若扇形的圆心角为 45°,半径为 3,则该扇形的弧长为 _______10. 已知点 P(a - 1, 2a + 3) 在 y 轴上,则 a = _______应用题1. 折扣问题小明在商场买了一双原价为200元的运动鞋,商场正在进行八折促销。
天津春季高考数学模拟试题Quantity, price, time and space are the most important things in investment.一、选择题1、设全集U={1,2,3,4,5,6},集合A={2,4,6},则CuA=A{2,4,6} B{1,3,5}C{1,2,3,4,5,6} D Φ2、已知1≤a≤5,则15a a -+- =A6 - 2a B2a-6 C-4 D43、函数)5ln(312x x x y -+-+-=的定义域= A.()()2,33,5⋃ B. [)()2,33,5⋃ C.[)[)2,33,5⋃ D.[)[]2,33,5⋃4、若)2(log log 2121x x -<,则x 的取值范围是A. 0,1B.1,+)∞C.0,2D.1,25、已知向量a=3,-2,b=4,3,则3a - 2b·a=A-21 B3 C27 D516、已知函数()()2123f x k x kx =-++为偶函数,则其单调递减区间为:A-∞,0 B0,+∞C-∞,1 D-∞,+∞7、在数列{an}中,a n+1 = a n +3,a 2 = 2,则a 7 =A11 B14 C17 D208、从4名男生中选1人,3名女生中选2人,将选出的3人排成一排,不同排 法共有:A24种 B35种 C72种 D210种9、袋中装有3个黑球和2个白球,一次取出两个球,恰好是黑、白球各一个的概率为:A 1/5B 3/10C 2/5D 3/510、函数1sin 3x y ⎛⎫=+ ⎪⎝⎭的最小正周期是: Aπ/6 Bπ/3 C3π D6π11、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,已知a 2 + b 2 – c 2 = ab, 则C= Aπ/6Bπ/3C5π/6D2π/312、用一个平面截正方体,所得的截面图形不可能是:A 等腰三角形B 直角三角形C 梯形D 矩形13、设a>0,若直线经过点a,0、0,2a 、1,2,则其方程是:A2x + y – 4 = 0 Bx + 2y – 5 = 0C2x - y = 0 D2x + y = 014、已知抛物线y 2 = mx 的准线方程为x = -2,则常数m=A4 B-4 C8 D-815、已知直线1l :2x + y + m = 0,直线2l :x + 2y + n = 0,则:A 1l 与2l 相交但不垂直B 1l 与2l 相交且垂直C 1l 与2l 行D 1l 与2l 的位置关系取决于m 、n 的值二、填空题16、不等式x + 32<1的解集是__________;17、已知m a = 4,b m = 8,m c = 16m>0,则a b c m +- =_______;18、若复数1+2ik+i 的实部和虚部相等,则实数k=________;19、半径为10的圆中,135°圆心角所对圆弧的长为________;20、已知tanα= 2,则tanπ/4+α________;21、在等比数列{an}中,公比q=3,前n 项和为n s ,则42s s = ___; 三、解答题22、已知二次函数fx = ax 2 + bx 满足:①f2=0;②方程fx=x 有两个相等的实数根,求:Ⅰ函数fx 的解析式Ⅱ函数fx 在区间0,3上的最大值和最小值23、正三棱柱的底面边长为4,过BC 的一个平面交棱AA1于点D,且AD=2,求: Ⅰ二面角A-BC-D 的度数Ⅱ三角形BCD 的面积24、已知椭圆的标准方程为221169144x y +=,双曲线的标准方程为221916x y -=,求: Ⅰ椭圆的焦点坐标Ⅱ双曲线的渐近线方程Ⅲ以椭圆的右焦点为圆心,且与双曲线的渐近线相切的圆的标准方程。
福建省春季高考高职单招数学模拟试题(一)班级: 姓名: 座号:一、选择题(本大题有15小题,每小题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}0,1,2,0,1M N ==,则M N =A .{}2B .{}0,1C .{}0,2D .{}0,1,2 2.某几何体的三视图如下图所示,则该几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥 3.当输入a 的值为1,b 的值为3-时,右边程序运行的结果是A .1B .2-C .3-D .2 4.函数2sin(2)6y x π=-的最小正周期是A .4πB .2πC .πD .2π 5.下列函数中,在()0,+∞上是减函数的是A .1y x =B .21y x =+C .2xy = D .()()00x x y x x >⎧⎪=⎨-≤⎪⎩6.不等式组101x y x -+≥⎧⎨≤⎩表示的平面区域是7.函数x y sin 1+=的部分图像如图所示,则该函数在[]π2,0的单调递减区间是A .[]0,πB .3,22ππ⎡⎤⎢⎥⎣⎦C .30,2π⎡⎤⎢⎥⎣⎦D .,22ππ⎡⎤⎢⎥⎣⎦2ππ 32π 2π8.方程320x -=的根所在的区间是A .()2,0-B .()0,1C .()1,2D .()2,3DC B A 俯视图侧视图正视图9.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ= A .6- B .6 C .32 D .32- 10.函数()2log 1y x =-的图像大致是11.不等式230x x ->的解集是A .{}03x x ≤≤B .{}0,3x x x ≤≥或C .{}03x x <<D .{}0,3x x x <>或 12.下列几何体的下底面面积相等,高也相等,则体积最大的是DC BA13.如图,边长为2的正方形内有一内切圆.在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是A .4πB .4πC .44π-D .π14.已知()3cos 5πα-=-,则cos 2a =A .1625B .1625-C .725D .725-15.在某五场篮球比赛中,甲、乙两名运动员得分的茎叶图如下.下列说法正确的是A .在这五场比赛中,甲的平均得分比乙好,且甲比乙稳定B .在这五场比赛中,甲的平均得分比乙好,但乙比甲稳定C .在这五场比赛中,乙的平均得分比甲好,且乙比甲稳定D .在这五场比赛中,乙的平均得分比甲好,但甲比乙稳定二、填空题(本大题有5小题,每小题3分,共15分。
2024年高职院校单独招生考试数学题库一、选择题1、若集合S={-2,0,2},则(A)A.2∈SB.-2∉S2、若集合S={a,b,c},则C.1∈S(A)A.a∈SB.b∉S3、若集合S={-2,0,2},则C.d∈S(A)A.-2∈SB.2∉S4、若集合S={-2,0,2},则C.1∈S(A)A.0∈SB.2∉SC.1∈S5、30︒=弧度(C)A.πB.3π C.π266、45︒=弧度(A)A.πB.4π C.π267、90︒=弧度(B)A.πB.3π C.π268、60︒=弧度(A)A.πB.3π C.π269、等差数列{a n}中,a1=1,a2=4,则A.7B.8C.9a3=(A)10、等差数列{a n}中,a1=2,a2=5A.7B.8C.9,则a3=(B)11、等差数列{a n}中,a1=-5,a2=-1,则A.3B.8C.9a3=(A)12、等差数列{a n}中,a1=1,a2=5A.7B.8C.9,则a3=(C)13、cosπ的值是(A)3A.1B.22 C.3 2214、sinπ的值是(C)3A.1B.22 C.3 2215、cosπ的值是(C)6A.1B.22 C.3 2216、sinπ的值是(B)4A.12B.22 C.3217、log216=(C)A.218、log39=B.3 C.4(A)A.219、log327=B.3 C.4(B)A.2B.3C.420、log381=(C)A.2B.3C.421、已知:sin α<0,tan α>0,则角α是(A )A.第三象限角B.第二象限角C.第四象限角22、已知:sin α>0,tan α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角23、已知:tan α<0,cos α>0,则角α是(C )A.第三象限角B.第二象限角C.第四象限角24、已知:tan α<0,cos α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角25、直线y =x -1的倾斜角为(A )A.π B.4πC.π3626、直线y =x +8的倾斜角为(A )A.π B.4πC.π3627、直线y =x +5的倾斜角为(A )A.π B.4πC.π3628、直线y =-x +5的倾斜角为(A )A.3π B.4πC.π3629、实数12与3的等比中项为(B )A.-6B.±6C .630、实数1与16的等比中项为(B )A.-4B.±4C .431、实数2与32的等比中项为(B )A.-8B.±8C .832、实数4与9的等比中项为(B )A.-6B.±6C.633、已知正方体的边长是1,则正方体的体积为(A )A.1B.8C.2734、已知正方体的边长是2,则正方体的体积为(B)A.1B.8C.2735、已知正方体的边长是4,则正方体的体积为(A)A.64B.8C.2736、已知正方体的边长是3,则正方体的体积为(C)A.1B.8C.2737、已知角A为第一象限角,cos A=4,则sin A=5(B)A.2B.53 C.4 5538、已知角A为第二象限角,sin A=3,则cos A=5(C)A.-25B.-35C.-4539、已知角A为第一象限角,sin A=3,则cos A=5(C)A.2B.53 C.4 5540、已知角A为第一象限角,sin A=4,则cos A=5(B)A.2B.53 C.4 5541、不等式x<2的解集是(A)A.{x-2<x<2}B.{x x<-2或x>2}C.{x x<2}42、不等式x>3的解集是(B)A.{x x<-3}B.{x x<-3或x>3}C.{x x>3}43、不等式x≥3的解集是(B)3-2x⎪A.{x x ≤-3} B.{x x ≤-3或x ≥3} C.{x x ≥3}44、不等式x >4的解集是(B )A.{x x <-4}B.{x x <-4或x >4}C.{x x >4}45、下列函数为奇函数的是(B)A.y =x4B.y =1x 3C.y =4x +546、下列函数为奇函数的是(B )A.y =1x 4B.y =x 3C.y =4x +547、下列函数为偶函数的是(A )A.y =3x 4B.y =7xC.y =2x +148、下列函数为偶函数的是(A )A.y =-x2 B.y =1xC.y =2x +149、设f (x )=1,则f (1)=(B )A.2B.1C.1250、设f (x )=8,则f ⎛1⎫=2(C )⎝⎭A.2 B.1 C.451、设f (x )=1则f (2)=(B )3A.2 B.1 C.1252、设f (x )=1则f (53A.2B.1C.)=(C )133+2x53、若角α终边上一点P(-12,5),则tanα的值为(B)A.-1213B.-512C.-51354、若角α终边上一点P(-5,-12),则cosα的值为(C)A.-1213B.5 C.-5121355、若角α终边上一点P(12,-5),则tanα的值为(B)A.-1213B.-512C.-51356、若角α终边上一点P(-5,-12),则sinα的值为(A)A.-1213B.512C.-51357、若函数y=A.[-1,+∞)1-x,则其定义域为B.[1,+∞)C.(-∞,1](C)58、若函数y=A.[-2,+∞)2-x,则其定义域为B.[2,+∞)C.(-∞,2](C)59、若函数y=A.[-1,+∞)x+1,则其定义域为B.[1,+∞)C.(-∞,1](A)60、若函数y=A.[-1,+∞)x-1,则其定义域为B.[1,+∞)C.(-∞,1](B)二、填空题1、{a,b}∩{a,c}={a}2、{2,3}∩{2,4}={2}3、{x,y}∩{y,z}={y}4、{-1,2}∩{1,2}={2}3565、数列-4,1,6,的前五项和为306、数列1,4,7,的前五项和为357、数列2,5,8,的前五项和为408、数列-1,2,5,的前五项和为259、函数y =sin ⎛4x +π⎫的最小正周期是π ⎪⎝⎭10、函数y =sin ⎛2x -π⎫的最小正周期是π⎪⎝⎭11、函数y =cos ⎛x +π⎫的最小正周期是2π⎪⎝⎭12、函数y =⎛1x -π⎫的最小正周期是4πcos ⎪⎝26⎭13、若log 2x =5,则x =3214、若log 4x =3,则x =6415、若log 5x =2,则x =2516、若log 3x =4,则x =8117、已知:cot α=3,则2cot α-4=1cot α+1218、已知:cot α=1,则52-5cot α15+10cot α=719、已知:tan α=2,则tan α+1=15-tan α20、已知:tan α=2,则tan α+1=36+tan α821、在0︒~360︒之间,与760︒角的终边相同的角是40∘22、在0︒~360︒之间,与770︒角的终边相同的角是50∘223、在0︒~360︒之间,与400︒角的终边相同的角是40∘24、在0︒~360︒之间,与390︒角的终边相同的角是30∘25、若复数z =-3+5i ,则复数的虚部为526、若复数z =12+3i ,则复数的实部为1227、若复数z 1=3+6i ,z 2=-3+2i ,则z 1-z 2=28、若复数z 1=7-2i ,z 2=-3+5i ,则z 1+z 2=6+4i 4+3i 29、若圆的标准方程为(x +1)2+(y -5)2=16,则圆的面积为16π30、若圆的标准方程为x 2+y 2=3,则圆的面积为3π31、若圆的标准方程为(x +1)2+y 2=16,则圆的面积为32、若圆的标准方程为x 2+y 2=25,则圆的面积为25π16π33、数列1,2,3,4,的第n 项为n 2345n +134、数列1,1,1,1,的第n 项为11⨯235112⨯313⨯414⨯5n1n (n +1)、数列,,,,的第项为14916n 236、数列12,3,5,7468,的第n 项为2n -12n37、函数y =x 2+4x -5的图像与y 轴的交点坐标是(0,-5)38、函数y =x 2+2x +2的图像与y 轴的交点坐标是(0,2)39、函数y =x 2+4x -5的图像与x 轴的交点坐标是(-5,0),(1,0)40、函数y =x 2-2x +3的图像与y 轴的交点坐标是(0,3)三、解答题1、已知:设全集为实数集R ,A ={x -3<x ≤5},B ={x x ≤3},C ={x x >-1}求:A∩B,A∪B,A∩B∩C解:A∩B={x-3<x≤3}A∪B={x x≤5}A∩B∩C={x-1<x≤3}2、已知:设全集为实数集R,A={x2<x<7},B={x x>3},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x3<x<7}A∪B={x x>2}A∩B∩C={x3<x≤4}3、已知:设全集为实数集R,A={x-1≤x≤5},B={x x≥2},C={x x<3}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x≤5}A∪B={x x≥-1}A∩B∩C={x2≤x<3}4、已知:设全集为实数集R,A={x-1<x<7},B={x x≥2},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x<7}A∪B={x x>-1}A∩B∩C={x2≤x≤4}5、已知:等差数列-2,2,6,.求:(1)公差d;(2)通项公式a n;(3)第9项a9;(4)前9项的和s9解:(1)d=4(2)a n=a1+(n-1)d=4n-6n (3)把n =9代入(2)得a 9=30(4)s =9(a 1+a 9)=9(-2+30)=1269226、已知:等比数列1,1,1,1,248求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =12(2)a n =()2n -1或a =1n 2n -1(3)把n =9代入(2)得a 9=1256a (1-q 6)⎛1⎫6⎪263(4)s =1=⎝⎭=61-q 1-13227、已知:等差数列-3,2,7,.求:(1)公差d ;(2)通项公式a n ;(3)第8项a 8;(4)前8项的和S 8解:(1)d =5(2)a n =a 1+(n -1)d =5n -8(3)把n =8代入(2)得a 8=32(4)s =8(a 1+a 8)=8(-3+32)=1168228、已知:等比数列1,3,9,27,求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =3(2)a =3n -1(3)把n =9代入(2)得a 9=38=6561a (1-q 6)(4)s 6=1=1-q1-361-3=3641-1。
2023年山东省春季高考数学模拟试卷(一)一、单选题:本大题共20小题,每题3分,共60分,在每小题列出的四个选项中,只有一项符合题目要求。
A .2或3B .2C .3D .11.(3分)设x 为实数,A ={1,2,3},B ={1,x },若A ∪B =A ,则x 的值为( )A .a +1>b +1B .2a <2bC .a +1<b +1D .a <b -12.(3分)已知a ,b ∈R ,a >b ,则下列不等式一定成立的是( )A .150°B.120°C .60°D .30°3.(3分)已知|a |=3,|b |=23,a •b =−3.则a 与b 的夹角等于( )→√→√→→→→A .-21B .-18C .24D .274.(3分)已知等差数列{a n }中,a 1=3,公差d =-3,则a 8等于( )A .0B .-2C .2D .-15.(3分)已知f (x )是奇函数,当x >0时f (x )=-x (1+x ),则f (-1)等于( )A .B .C .D .6.(3分)如图所示几何体是由一个球体和一个圆柱组成的,它的主视图是( )A .x -2y +4=0B .2x +y -7=0C .2x -y -1=0D .x +2y -8=07.(3分)过点A (2,3)且与直线l :2x -4y +7=0平行的直线方程是( )A .p 真q 真B .p 真q 假C .p 假q 真D .p 假q 假8.(3分)若命题“p ∧q ”与命题“¬p ∨q ”都是假命题,则( )A .m −2n B.m +2nC .2m +nD .−m +2n9.(3分)在△ABC 中,D 为AB 边的中点,记CA =m ,CD =n ,则CB =( )→→→→→→→→→→→→→A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)10.(3分)圆x 2+y 2-2x +4y +1=0的圆心为( )A .−1213B .125C .−125D .121311.(3分)已知α为第二象限角,且sinα=1213,则tanα的值为( )A .-960B .960C .448D .-44812.(3分)若(1-2x )n 的展开式有且只有第5项的二项式系数最大,则展开式中x 3项的系数为( )A .B .C .D .13.(3分)某同学离家去学校,为了锻炼身体,开始跑步前进,跑累了再走余下的路程,图中d 轴表示该学生离学校的距离,t 轴表示所用的时间,则符合学生走法的只可能是( )A .4种B .6种C .8种D .10种14.(3分)3名大学生利用假期到2个山村参加扶贫工作,每名大学生只能去1个村,则不同的分配方案共有( )15.(3分)如图,抛物线y =ax 2+bx +c 的对称轴是直线x =1,下列结论:①abc >0;②b 2-4ac >0;③8a +c <0;④5a +b +2c >0,正确的有( )A .4个B .3个C .2个D .1个A .(-1,1)B .[-1,1]C .{-1,1}D .{1}16.(3分)已知向量m =(-sinx ,sin 2x ),n =(sin 3x ,sin 4x ),若方程m •n =a 在[0,π)有唯一解,则实数a 的取值范围( )→→→→A .B .C .D .17.(3分)不等式x -y ≥0所表示的平面区域是( )A .14B .15C .110D .12018.(3分)张益唐是当代著名华人数学家.他在数论研究方面取得了巨大成就,曾经在《数学年刊》发表《质数间的有界间隔》,证明了存在无穷多对质数间隙都小于7000万.2013年张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p ,使得p +2是素数,素数对(p ,p +2)称为孪生素数.在不超过12的素数中,随机选取两个不同的数,能够组成孪生素数的概率是( )A .(1,3]B .(1,5]C .[3,+∞)D .[5,+∞)19.(3分)双曲线x 2−y2b 2=1的左焦点为F ,A (0,-b ),M 为双曲线右支上一点,若存在M ,使得|FM |+|AM |=5,则双曲线离心率的取值范围为( )√√√√20.(3分)血药浓度检测可使给药方案个体化,从而达到临床用药的安全、有效、合理.某医学研究所研制的某种治疗新冠肺炎的新药进入了临床试验阶段,经检测,当患者A 给药2小时的时候血药浓度达到峰值,此后每经过3小时检测一次,每次检测血药二、填空题:本大题共5小题,每小题4分,共20分。
春季高考数学模拟卷(本试卷共3页,满分150分)一、单项选择题(共30 小题,每小题4分,共120分)1. 已知集合 M=|1,2,3,4|,则下列关系正确的是( )A.0∈MB.1⊆MC.|2}∈MD.|1,2|UM=M2. 设x∈R,则' x²−5x <0”是“0<x<3”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3. 不等式|x|<2的解集为( )A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-∞,2)D.(-∞,-2]∪[2,+∞)4.不等式 2x²−7x +3>0的解集为( )A.(−3,−12)B.(12,3)C.(−∞,−3)∪(−12,+∞)D.(−∞,12)∪(3,+∞)5. 函数 f (x )=√x−5的定义域是( )A.(0,5)B.(0,+∞)C.(5,+∞)D.[5,+∞)6. 函数 y =x³−2的值域为( )A.(-2,+∞)B.(-∞,+∞)C.(1,+∞)D.(0,+∞)7. 函数f(x)=log ₂(x-1)是( )A. 在(0,+∞)上的增函数B. 在(0,+∞)上的减函数C. 在(1,+∞)上的增函数D. 在(1,+∞)上的减函数8. 函数 y =x²−2x −4的图像的顶点坐标为( )A.(-1,-5)B.(-1,5)C.(1,-5)D.(1,5)9.已知函数 f (x )=x³+x 若f(a)=4,则f(-a)=( )A.4B.-4C.5D.-510. 函数 y =−3x²+2x −5的对称轴为( )A.x =56B.x =−13C.x =12D.x =1311.已知幂函数y=f(x)的图象经过点 (16,12),则其解析式为( )A.f (x )=x 1−4B.f (x )=x 14C.f (x )=x²D.f (x )=x12.当a>0,且m,n∈R 时,下列选项不正确的是( )A.a 1a 2=a −1 B.√a 22=a C.a ′m+n =a ′m a ′n D.(aⁿ)²=a ′2+n13.log₃15−log₃5=( )A.-1B.1C.5D.314.7/4π化为角度是( )A.630°B.320°C.157.5°D.315°15.已知α是第二象限角, cosα=−13,则cos2α=( )A.29B.−79C.79D.−2316.若角α的终边与单位圆交于点 P (−35,45),则sinα=( )A.35B.−35C.45D.−4517. 已知|an|为等差数列. a₂+a₇=12,则|a ₙ|的前8项和S=( )A.48B.40C.38D.3618. 在等比数列|a ₙ|中 a 1=19,a 4=3,则a ₇=( )A.9B.27C.81D.24319. 数列2,a,10是等差数列,则等差中项a=( )A.3B.6C.-3D.-620.已知向量a=(2,4),则|-2a|=( )A.2 √5B.4 √5C.-2 √5D.-4√5 21. 已知直线x+2y-6=0.与直线mx-6y+3=0平行,则m=( )A.2B.13C.3D.-322. 直线 3x −2y +6=0与两坐标轴围成的三角形的面积为( )A.3B.32C.2D.52 23. 椭圆 x 23+y 24=1与x 轴正半轴的交点坐标为( )A.(0,2)B.(2,0)C.(0, √3)D.(√3,0) 24. 双曲线 x 29−y 216=1的渐近线方程为( )A.y =±34xB.y =+54xC.y =±43xD.y =+53x25.焦点在x轴,开口向右且焦点到准线的距离为3的抛物线方程为( )A.y²=−3xB.y²=6xC.y²=3xD.y²=−6x26.直径为6的球的体积为( )A.144πB.108πC.36πD.163π27.5 人站成一排,如果甲、乙两人必须不相邻,那么不同的排法总数为( )A.72种B.36种C.30种D.24种28. 若平面α∥平面β,直线a∥平面a,且a∉平面β,点P为平面β内一点,则过点 P且在平面β内的直线中( )A.不一定存在与a平行的直线B.只有一条与a平行的直线C.只有两条与a平行的直线D.存在无数条与a平行的直线29.魔术师将6个质地、颜色都相同的小球放到两个盒子里,且每个盒子里至少有一个小球,则不同的投放方法有( )A.15种B.12种C.10种D.5种30. 曲线y=x²;在x=-3.处的导数值为( )A.-6B.0C.6D.9二、判断题(共 10 小题,每小题3分,共30分。
春季高考高职单招数学模拟试题 (2)Word版含答案春季高考高职单招数学模拟试题一、选择题1.已知集合 $M=\{0,1,2\}$,$B=\{1,4\}$,那么集合$A\cup B$ 等于()A) $\{1\}$B) $\{4\}$C) $\{2,3\}$D) $\{1,2,3,4\}$2.在等比数列 $\{a_n\}$ 中,已知 $a_1=2$,$a_2=4$,那么 $a_5$ 等于A) 6B) 8C) 10D) 163.已知向量 $\vec{a}=(3,1)$,$\vec{b}=(-2,5)$,那么$2\vec{a}+\vec{b}$ 等于()A) $(-1,11)$B) $(4,7)$C) $(1,6)$D) $(5,-4)$4.函数 $y=\log_2(x+1)$ 的定义域是()A) $(0,+\infty)$B) $(-1,+\infty)$C) $(1,+\infty)$D) $[-1,+\infty)$5.如果直线 $3x-y=$ 与直线 $mx+y-1=$ 平行,那么$m$ 的值为()A) $-3$B) $-\dfrac{11}{33}$C) $\dfrac{11}{33}$D) $3$6.函数 $y=\sin(\omega x)$ 的图象可以看做是把函数$y=\sin(x)$ 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的 $\dfrac{1}{2}$ 倍而得到,那么 $\omega$ 的值为()A) 4B) 2C) 3D) $\dfrac{3}{2}$7.在函数 $y=x$,$y=2$,$y=\log_2(x)$,$y=\dfrac{3x}{x+3}$ 中,奇函数的是()A) $y=x$B) $y=2$C) $y=\log_2(x)$D) $y=\dfrac{3x}{x+3}$8.$\sin\left(\dfrac{11\pi}{12}\right)$ 的值为()A) $-\dfrac{1}{2}$B) $-\dfrac{\sqrt{2}}{2}$C) $\dfrac{\sqrt{2}}{2}$D) $\dfrac{1}{2}$9.不等式 $x^2-3x+2<0$ 的解集是()A) $x>2$B) $x>1$C) $1<x<2$D) $x2$10.实数 $\log_4 5+2\log_5 2$ 的值为()A) 2B) 5C) 10D) 2011.某城市有大型、中型与小型超市共 1500 个,它们的个数之比为 1:5:9.为调查超市每日的零售额情况,需通过分层抽样抽取 30 个超市进行调查,那么抽取的小型超市个数为()A) 5B) 9C) 18D) 2112.已知平面 $\alpha\parallel\beta$,直线 $m\in\alpha$,那么直线 $m$ 与平面 $\beta$ 的关系是()A。
综合模拟测试卷(四)本试题卷包括选择题.填空题和解答题三部分, 共6页, 时量120分钟, 满分120分.一、选择题(本大题共10小题, 每小题4分, 共40分, 在每小题给出的四个选项中, 只有一项是符合题目要求的)1.设集合A= , 则A 的真子集有( )个A.15B.16C.31D.322.设 、 是两个命题, 则“ 为真”是“ 为假”的( )条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要3.下列函数是对数函数的是( )A.x y 2=B.x y 2=C.2x y =D.x y 2log =4.设点A (2, 3), B (3, 4), 向量 , 则下列命题不正确的是( )A.向量AB 是单位向量B.a AB //C.a AB 与的夹角是πD.||5||AB a =5.若 , 则 ( )A.-B.C.-D. .6.设直线 , , 则下列说法正确的是( )A.21l l 与相交B.21//l lC.1l 的倾斜角为6πD.21l l 与之间的距离为27.动点P 到 . 的距离之和为8, 则P 的轨迹方程是( ) A.1162522=+y x B.171622=+y x C.171622=-y x D.116722=+y x8.下列命题中正确的一个是( )A.平行于同一平面的两直线平行B.平行于同一直线的两平面平行C.垂直于同一直线的两平面平行D.垂直于同一平面的两平面平行.9.将 个大学毕业生全部分配给 所学校, 不限制去每所学校的大学生人数, 则不同的分配方案有() A.35P B.35C C.35 D.5310.抛掷两枚骰子, 出现的点数和为 的概率为( )A. B. C. D.二、填空题(本大题共5小题, 每小题4分, 共20分)11.不等式2|1|≥-x 的解集用区间表示是 .12.一组数据8.12. .11.9的平均数是10, 则其方差是 .13.双曲线1422=-y x 的渐近线方程是 .14.若 的展开式中所有项的系数和为64, 则展开式中 的幂指数相同的项的系数是 .(结果用数字表示)15.函数)10lg(2)(lg )(2x x x f -=的值域为__________.三、解答题(本大题共7小题, 其中第21, 22小题为选做题, 共60分, 每小题10分.解答应写出文字说明或演算步骤)16.下图是某城市通过抽样得到的居民某年的月均用水量(单位: 吨)的频率分布直方图.1)求直方图中x 的值;(2分)2)若将频率视为概率, 从这个城市随机抽取3位居民(看作有放回的抽样), 求这三人中, 月均用水量在3至4吨的居民数X 的分布列、数学期望和方差.(8分)17.数列{ }满足 , 且 .数列{ }的前 项和记作 .1)求{ }的通项 及 ;(5分) 2)若 , 求数列{ }的前6项之和 .(5分)18.设函数 是定义在R 上的奇函数, 且 =30.1)求 的值;(3分) 2)说明 的单调性(简要说明理由及结论, 不需要证明);(3分)3)解不等式30)2(02<+<x x f .(4分)19.向量, , .(为坐标原点).1)求, , ;(4分)2)将四边形OABC绕着OC旋转一周, 求所得几何体的表面积与体积.(精确到0.01)(6分)20.抛物线的顶点在原点, 对称轴是X轴, 圆的圆心是抛物线的焦点F, 抛物线与圆的一个交点是A(4, 4). 1)求抛物线及圆的标准方程;(4分)2)设直线AF交抛物线于另一点B,交圆于另一点C,求BC的长度.(6分)注意: 第21题, 22题为选做题, 请考生选择其中一题作答.21.已知复数 的模为4, 幅角主值是 ,(1)求复数z ;(4分) (2)求复数1z .(6分) 22.(本题满分10分)某工厂用两种不同原料均可生产同一产品, 若采用甲种原料, 每吨成本1000元, 运费500元, 可得产品90千克;若采用乙种原料, 每吨成本为1500元, 运费400元, 可得产品100千克, 如果每月原料的总成本不超过6500元, 运费不超过2200元, 那么此工厂每月最多可生产多少千克产品?。
春季高考高职单招数学模拟试题LIAO一、选择题:本大题共14个小题,每小题5分,共70分。
在每小题给出的四个选项中,只有一项符合 1.如果集合{1,2}A =-,{|0}B x x =>,那么集合A B I 等于A. {2}B. {1}-C. {1,2}-D. ∅ 2.不等式220x x -<的解集为A. {|2}x x >B. {|0}x x <C. {|02}x x <<D. {|0x x <或2}x > 3.已知向量(2,3)=-a ,(1,5)=b ,那么⋅a b 等于A.-13B.-7C.7D.13 4.如果直线3y x =与直线1+=mx y 垂直,那么m 的值为A. 3-B. 13-C. 13D. 3 5.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽出一个容量为n 的样本,其中A 种型号产品有16件,那么此样本的容量为A.100B.80C.70D.60 6.函数1+=x y 的零点是A. 1-B. 0C. )0,0( D .)0,1(- 7.已知一个算法,其流程图如右图,则输出的结果是A.11B.10C.9D.8 8.下列函数中,以π为最小正周期的是A. 2sin xy = B. x y sin = C. x y 2sin = D .y 4sin =9.11cos6π的值为 A. 2-B. 2-C. 2D. 2 10. 已知数列{}n a 是公比为实数的等比数列,且11a =,59a =,则3a 等于A.2B. 3C. 4D. 5(第7题图)11.当,x y 满足条件,0,230x y y x y ≥⎧⎪≥⎨⎪+-≤⎩时,目标函数3z x y =+的最大值是A.1B.2C.4D.912.已知直线l过点P ,圆C :224x y +=,则直线l 与圆C 的位置关系是 A.相交 B. 相切 C.相交或相切 D.相离 13. 已知函数3()f x x =-,则下列说法中正确的是A. ()f x 为奇函数,且在()0,+∞上是增函数B. ()f x 为奇函数,且在()0,+∞上是减函数C. ()f x 为偶函数,且在()0,+∞上是增函数D. ()f x 为偶函数,且在()0,+∞上是减函数 14.已知平面α、β,直线a 、b ,下面的四个命题①a b a α⎫⎬⊥⎭∥b α⇒⊥;②}a b αα⊥⇒⊥a b ∥;③a b a b αβαβ⊂⎫⎪⊂⇒⊥⎬⎪⊥⎭;④a b a b αβαβ⊂⎫⎪⊂⇒⎬⎪⎭∥∥中,所有正确命题的序号是A. ①②B. ②③C. ①④D. ②④1、 若集合S={小于9的正整数},M={2,4},N={3,4,5,7},则(M C S )Y (N C S )=( )A {2,3,4,5,7}B {1,6,8}C {1,2,3,5,6,7,8}D {4} 2、不等式()23+x >0的解集是( ).A {x ︱∞-<x <∞+}B {x ︱x >-3}C {x ︱x >0}D {x ︱x ≠-3}3、已知322.1-=a ,437.0-=b ,1=c ,那么c b a ,,的大小顺序是( )。
A a <c <bB b <c <aC a <b <cD c <a <b 4、若Sina <0且Cosa <0,则a 是( ).A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角 5、若x 、y 为实数,则22y x =的充分必要条件是( ).A x =yB ︱x ︱=︱y ︱C x = y -D x =y =08、已知a >0,b <0,c <0,那么直线0=++c by ax 的图象必经过( )。
A 第一、二、三象限B 第一、二、四象限C 第一、三、四象限D 第二、三、四象限]9、已知点A(-1,3),B(-3,-1),那么线段AB 的垂直平分线方程是( )。
A 02=-y xB 02=+y xC 022=+-y xD 032=++y x10、甲、乙两人各进行一次射击,如果甲击中目标的概率为0.6,乙击中目标的概率为0.7,那么至少一人击中目标的概率是( )。
A 0.86B 0.42C 0.88D 0.90二、 填空题:本大题共4个小题,每小题5分,共20分。
请把答案写在答题卡相应的位置上。
15. 计算131()log 12-+的结果为 .16. 复数 i i ⋅+)1(在复平面内对应的点在第 象限.17.如图 ,在边长为2的正方形内有一内切圆,现从正方形内取一点P ,则点P 在圆内的概率为__ _.1、不等式︱2x -3︱<2的解集是 。
2、函数)5(log 3-=x y 的定义域是 。
(第17题图)19.(本小题满分8分)已知等差数列{}n a 满足:26,7753=+=a a a ,{}n a 的前n 项和为n S .求n a 及n S ;已知)2(log 5.0-x x ≥3log 5.0,求x 的取值范围。
20.(本小题满分8分)一批食品,每袋的标准重量是50g ,为了了解这批食品的实际重量情况,从中随机抽取10袋食品,称出各袋的重量(单位:g ),并得到其茎叶图(如图). (1)求这10袋食品重量的众数,并估计这批食品实际重量的平均数;(2)若某袋食品的实际重量小于或等于47g ,则视为不合格产品,试估计这批食品重量的合格率.21.(本小题满分10分)如图,在正方体1111D C B A ABCD -中,E 是棱1CC 的中点. (Ⅰ)证明:1AC ∥平面BDE ; (Ⅱ)证明:1AC BD ⊥.4 5 6 6 95 0 0 0 1 1 2(第20题图)D 1B 1C 1A 1DBECA(第21题图)22. (本小题满分10分)在平面直角坐标系xOy 中,角,(0,)22αβαβππ<<<<π的顶点与原点O 重合,始边与x 轴的正半轴重合,终边分别与单位圆交于,A B 两点,,A B 两点的纵坐标分别为53,135.(Ⅰ)求tan β的值; (Ⅱ)求AOB ∆的面积.23.(本小题满分12分)设半径长为5的圆C 满足条件:①截y 轴所得弦长为6;②圆心在第一象限.并且到直线02:=+y x l 的距离为556. (Ⅰ)求这个圆的方程;(Ⅱ)求经过P (-1,0)与圆C 相切的直线方程.24. (本小题满分12分)已知函数9()||f x x a a x=--+,[1,6]x ∈,a R ∈. (Ⅰ)若1a =,试判断并证明函数()f x 的单调性;(Ⅱ)当(1,6)a ∈时,求函数()f x 的最大值的表达式()M a .海沧中学2015届春季高考高职单招数学模拟试题 参考答案15. 2 16. 第二象限 17. 41π- 045 或4π 三.解答题19. (本小题满分8分)解:设等差数列{}n a 的首项为1a ,公差为d ,因为26,7753=+=a a a所以⎩⎨⎧=+=+261027211d a d a ………………………………2分解得2,31==d a ………………………………4分 从而12)1(1+=-+=n d n a a n ………………………………6分n n a a n S n n 22)(21+=+=………………………………8分 20.(本小题满分8分)解:(1)这10袋食品重量的众数为50(g ), …………………………2分 因为这10袋食品重量的平均数为491052515150505049464645=+++++++++(g ), 所以可以估计这批食品实际重量的平均数为49(g ); ………………………4分(2)因为这10袋食品中实际重量小于或等于47g 的有3袋, 所以可以估计这批食品重量的不合格率为103, ………………………6分 故可以估计这批食品重量的合格率为107. ………………………8分21.(本小题满分10分)(I)证明:连接AC 交BD 于O,连接OE, 因为ABCD 是正方形,所以O 为AC 的中点,因为E 是棱CC 1的中点,所以AC 1∥OE. ………………………………2分又因为AC 1⊄平面BDE,OE ⊂平面BDE,所以AC 1∥平面BDE. ………………………………5分 (II) 证明因为ABCD 是正方形,所以AC ⊥BD.因为CC 1⊥平面ABCD,且BD ⊂平面ABCD,所以CC 1⊥BD.又因为CC 1∩AC=C,所以BD ⊥平面ACC 1. ………………………………8分 又因为AC 1⊂平面ACC 1,所以AC 1⊥BD. ………………………………10分22.(本小题满分10分)解:(I)因为在单位圆中,B 点的纵坐标为35,所以3sin 5β=,因为2πβπ<<,所以4cos5β=-,所以sin3tancos4βββ==-. ………………………………3分(II)解:因为在单位圆中,A点的纵坐标为513,所以5sin13α=.因为02πα<<,所以12cos13α=.由(I)得3sin5β=,4cos5β=-,………………………………6分所以sin AOB sin()βα∠=-=sin cos cos sinβαβα-5665=. ………………………8分又因为|OA|=1,|OB|=1,所以△AOB的面积128|OA||OB|sin AOB265S=⋅∠=. ………………………………10分23.(本小题满分12分)(1)由题设圆心),(baC,半径r=5Θ截y轴弦长为6,2592>=+∴aaΘ4=∴a……………2分由C到直线02:=+yxl的距离为556(2)①设切线方程)1(+=xky由C到直线)1(+=xky的距离51152=+-kk……………8分512-=∴k∴切线方程:012512=++yx……………10分24.(本小题满分12分)(1)判断:若1a =,函数()f x 在[1,6]上是增函数. ……………1分证明:当1a =时,9()f x x x=-, 在区间[1,6]上任意12,x x ,设12x x <,12121212121212129999()()()()()()()(6)0f x f x x x x x x x x x x x x x x x -=---=----+=< 所以12()()f x f x <,即()f x 在[1,6]上是增函数. ……………4分(注:若用导数证明同样给分)(2)因为(1,6)a ∈,所以92(),1,()9,6,a x x a x f x x a x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩……………6分 ①当13a <≤时,()f x 在[1,]a 上是增函数,在[,6]a 上也是增函数,所以当6x =时,()f x 取得最大值为92; ……………8分 ②当36a <≤时,()f x 在[1,3]上是增函数,在[3,]a 上是减函数,在[,6]a 上是增函数,而9(3)26,(6)2f a f =-=, 当2134a <≤时,9262a -≤,当6x =时,函数()f x 取最大值为92; 当2164a <≤时,9262a ->,当3x =时,函数()f x 取最大值为26a -;………11分 综上得,921,1,24()2126, 6.4a M a a a ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩ ……………12分。