因式分解专题训练
- 格式:doc
- 大小:50.00 KB
- 文档页数:5
专题14.6 因式分解专项训练(50道)【人教版】考卷信息:本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度,综合性较强!一.解答题(共50小题)1.(2022•北碚区校级开学)因式分解:(1)8ab+2a;(2)x2y+2xy﹣15y;(3)9(x+2y)2﹣4(x﹣y)2;(4)a2+4ab﹣1+4b2.2.(2022春•桂平市期中)将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc3.(2022春•高密市期末)把下列各式进行因式分解(1)m(a﹣2)+n(2﹣a)(2)(x+y)2+4(x+y+1)(3)m(m﹣1)+m﹣1(4)x2﹣2xy+y2﹣1.4.(2022春•红旗区校级期中)因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.5.(2022春•玄武区校级期中)因式分解.(1)﹣25xy2z﹣10y2z2+35y3z.(2)(a﹣b)2﹣6(b﹣a)+9.(3)a4b4﹣81.(4)81x4﹣72x2y2+16y4.6.(2022春•江永县校级期中)因式分解.(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2+2(x2+2x)+1(4)x2+2x+1﹣y2(5)x3+3x2﹣4 (拆开分解法)7.(2022春•澧县期中)把下列多项式因式分解:(1)x3y﹣2x2y+xy;(2)9a2(x﹣y)+4b2(y﹣x).8.(2022春•钦州期末)因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)﹣8ax2+16axy﹣8ay2.9.(2022春•句容市期末)因式分解:(1)m2(a﹣b)+n2(b﹣a)(2)(a2+4)2﹣16a2.10.(2022秋•洪雅县期末)利用因式分解的知识计算:(1)35.6×0.25+67.4×0.25﹣23×0.25(2)502﹣492+482﹣472+462﹣452+…+22﹣12.11.(2022秋•戚墅堰区校级月考)因式分解①(a﹣b)(x﹣y)﹣(b﹣a)(x+y)②4x2﹣4y2.12.(2022秋•长葛市校级月考)因式分解:(1)3x2﹣12(2)3x(a﹣b)+2y(b﹣a);(3)(1﹣q)3+2(q﹣1)2;(4)(x+y)2+2(x+y)+1.13.(2022秋•泰山区期中)因式分解(1)4m(a﹣b)﹣6n(b﹣a);(2)16(m﹣n)2﹣9(m+n)2.14.(2022秋•射洪县校级期中)将下列各式因式分解:(1)x 3﹣x(2)﹣3ma 2+12ma ﹣9m(3)n 2(m ﹣2)+4(2﹣m )(4)(x ﹣3)3﹣2(x ﹣3)15.(2022秋•南开区期中)因式分解:(1)18axy ﹣3ax 2﹣27ay 2(2)(a 2+4)2﹣16a 2(3)c (a ﹣b )﹣2(a ﹣b )2c +(a ﹣b )3c .16.(2022春•商河县校级期中)因式分解(1)4a (x ﹣3)+2b (3﹣x )(2)x 4﹣18x 2+81(3)4b (1﹣b )3+2(b ﹣1)2.17.(2022春•高密市期末)把下列各式进行因式分解(1)49m 2+43mn +n 2 (2)a 3﹣4a 2﹣12a(3)x 2(x ﹣y )﹣y 2(x ﹣y )(4)(a +b )2﹣4(a +b ﹣1)18.(2022春•邵阳县校级期中)因式分解:(1)3a (x +y )﹣2(y +x );(2)16x 4﹣81y 4.19.(2022春•临清市期末)把下列各式进行因式分解:(1)﹣4a 3b 2+6a 2b ﹣2ab(2)(x ﹣3)3﹣(3﹣x )2(3)(x 2+x )2﹣(x +1)2.20.(2022春•聊城校级月考)因式分解(1)a 2(a ﹣b )+b 2(b ﹣a )(2)4a 2b 2﹣(a 2+b 2)2(3)(x +y )2﹣14y (x +y )+49y 2.21.(2022春•邵阳县期中)因式分解:x2+2xy2+2y4(2)4b2c2﹣(b2+c2)2(1)12(3)a(a2﹣1)﹣a2+1 (4)(a+1)(a﹣1)﹣8.22.(2022春•忻城县期中)把下列各式因式分解:(1)x2(x﹣y)+2xy(y﹣x)+y2(x﹣y);(2)(a+b+1)2﹣(a﹣b+1)2.23.(2022春•甘肃校级月考)把下列各式因式分解(1)4a2+6ab+2a(2)5a2﹣20b2(3)﹣8ax2+16axy﹣8ay2(4)a4﹣8a2b2+16b4.24.(2022秋•武平县校级月考)把下列各式因式分解:(1)3x﹣12x3;(2)9m2﹣4n2;(3)a2(x﹣y)+b2(y﹣x);(4)x2﹣4xy+4y2﹣1.25.(2022春•白银校级期中)把下列各式因式分解(1)a5﹣a;(2)a(m﹣2)+b(2﹣m);(3)m4﹣2m2n2+n4;(4)9(m+n)2﹣16(m﹣n)2.26.(2022秋•垦利县校级月考)因式分解:(1)m(a﹣3)+2(3﹣a);(2)2(1﹣x)2+6a(x﹣1)2;(3)(2x+y)2﹣(x+2y)2;(4)(p﹣4)(p+1)+3p(5)4xy2﹣4x2y﹣y3;(6)(m+n)2﹣4m(m+n)+4m2.27.(2022秋•西山区期中)因式分解(1)2n(m﹣n)+4(n﹣m)(2)3x2+9x+6(3)16(a﹣b)2﹣4(a+b)2(4)(a2﹣4a)2+8(a2﹣4a)+16.28.(2022秋•港闸区校级期中)因式分解(1)x2﹣9;(2)2a(x﹣y)﹣3b(y﹣x)(3)b3﹣4b2+4b(4)(x+y)2+2(x+y)+1.(5)(m2+n2)2﹣4m2n2(6)a2﹣2ab+b2﹣1.29.(2022秋•龙口市校级期中)因式分解:(1)﹣4x3+40x2y﹣100xy2(2)(x2+y2﹣z2)2﹣4x2y2.30.(2022秋•万州区校级月考)因式分解:(1)4ma2﹣8ma+4m(2)a2(x﹣y)+b2(y﹣x).31.(2022春•让胡路区校级期中)因式分解:(1)4x3﹣8x2+4x;(2)9(x+y+z)2﹣(x﹣y﹣z)2.32.(2022春•泰兴市校级期中)因式分解:(1)(a+b)2+6(a+b)+9;(2)(x﹣y)2﹣9(x+y)2;(3)a2(x﹣y)+b2(y﹣x).33.(2022秋•东海县校级月考)利用因式分解简便计算:(1)57×99+44×99﹣99;(2)10012×9912.34.(2022春•吴兴区校级期末)利用因式分解计算:(1−122)(1−132)(1−142)⋯(1−192)(1−1102).35.(2022秋•祁东县校级期中)因式分解.(1)a 2(x +y )﹣4b 2(x +y )(2)p 2(a ﹣1)+p (1﹣a )(3)20163−20162−201520163+20162−2017.36.(2022秋•简阳市期中)因式分解(1)m 2(a ﹣b )+n 2(b ﹣a )(2)(m 2+3m )2﹣8(m 2+3m )﹣20.37.(2022秋•东营期中)因式分解:(1)﹣12x 2y +x 3+36xy 2(2)(x 2y 2+3)(x 2y 2﹣7)+25(实数范围内).38.(2022秋•常宁市校级期中)因式分解(1)x 4﹣8x 2+16(2)a 2b ﹣2ab +b .39.(2022秋•无棣县校级月考)因式分解(1)64m 4﹣81n 4(2)﹣m 4+m 2n 2(3)a 2﹣4ab +4b 2(4)x 2+2x +1+6(x +1)﹣7.40.(2022秋•武城县校级月考)因式分解:(1)1﹣4m +4m 2(2)7x 3﹣7x(3)5x 2(x ﹣y )3+45x 4(y ﹣x )(4)x (m ﹣x )(m ﹣y )﹣m (x ﹣m )(y ﹣m )41.(2022秋•龙岩校级月考)因式分解(1)3x ﹣3x 3(2)2a 3b ﹣12a 2b +18ab(3)x 2+2x ﹣3.42.(2022秋•晋江市校级期中)因式分解:①m 2﹣9m②x (x ﹣y )﹣(x ﹣y )③3a2﹣6a+3④n2(m﹣2)+4(2﹣m)43.(2022春•重庆校级期中)因式分解及简便方法计算:(1)3x3y﹣6x2y2+3xy3(2)3.14×5.52﹣3.14×4.52.44.(2022秋•晋江市校级期中)因式分解:(1)9a3﹣6a2+3a(2)x3﹣25x(3)3ax2﹣6axy+3ay2(4)a2(x﹣y)﹣4(x﹣y)45.(2022秋•南江县校级期中)因式分解①4x2y2﹣9②2x3﹣4x2y+2xy2③4a2b2﹣(a2+b2)2④(x﹣y)2+4xy⑤x(m﹣x)(m﹣y)﹣m(x﹣m)(y﹣m)⑥x m+1﹣x m﹣1.46.(2022秋•丹棱县期中)因式分解:(1)3m(a﹣b)+5n(b﹣a)(2)2am2﹣8a(3)x3z+4x2yz+4xy2z(4)(2x+y)2﹣(x+2y)247.(2022春•安庆校级期中)把下列多项式因式分解①ab2﹣2ab+a②x2﹣y2﹣2y﹣148.(2022春•东台市校级期中)因式分解(1)4a2﹣16(2)(x﹣2)(x﹣4)+1(3)x4﹣8x2y2+16y449.(2022秋•平昌县校级期中)把下列各式因式分解:(1)﹣12a2bc2+6ab2c﹣8a2b2(2)8x2﹣3(7x+3)(3)(a2+4b2)2﹣16a2b2(4)x2(m﹣2)+y2(2﹣m)50.(2022春•东台市校级期中)因式分解:(1)a2b﹣4ab2+3a2b2(2)(x2+2x)2﹣(2x+4)2(3)(x2y2)2﹣4x2y2(4)(x2﹣2x)2+2(x2﹣2x)+1.。
()2x2 2 (x - 2)2 C 2 (x +2)(x - 2) D . 2 x x - ⎪ = ( 一、选择题1. (2015 年四川省宜宾市,5,3 分)把代数式 3x 3 - 12 x 2 + 12 x 分解因式,结果正确的是()A. 3x x 2 - 4 x + 4B. 3x (x - 4)C. 3x (x + 2)( - 2)D. 3x (x - 2)【答案】D【解析】因式分解就是把一个多项式转化成几个整式乘积的形式,在此一定要注意是“整式”的乘积,其次因式分解一定要彻底即分解到不能再分解为止。
2. (2015 浙江台州,6,4 分)把多项式 2 x 2 - 8 分解因式,结果正确的是()A . 2 (x2 - 8)B . ⎛ 4 ⎫ ⎝ x ⎭【答案】C3. (2015 山东临沂,9,3 分)多项式 mx 2 - m 与多项式 x 2 - 2 x + 1 的公因式是()A. x - 1B. x + 1C. x 2 - 1D. ( x - 1) 2【答案】A【解析】因为 mx 2 - m = m (x 2 - 1) m (x - 1)x + 1) , x 2 - 2 x + 1 = ( x - 1) 2 所以公因式为 x-1故选 A4. (2015 浙江省台州市,6,4)把多项式 2 x 2 - 8 分解因式,结果正确的是( )A . 2( x 2 - 8)B . 2( x - 2)2C . 2( x + 2)( x - 2)D . 2 x ( x - 4)x【答案】C【解答】 解:因式分解是将多项式化成几个整式的积的形式,A 选项提取 2 后括号中应为-4,B 选项公式套用错误,提取 2 后应使用平方差公式,C 选项正确,D 选项出现分式,故选 C5. (2015 山东省菏泽市,3,3 分)将多项式 ax 2-4ax +4a 分解因式,下列结果中正确的是()A. a (x -2)2B. a (x +2)2C. a (x -4)2D. a (x +2)(x -2)【答案】 A二、填空题1. (2015 四川省巴中市,12,3 分)分解因式:2a 2-4a +2= .【答案】2(a-1)2.2.(2015福建省福州市,11,4分)分解因式a2-9的结果是.【答案】(a+3)(a-3)3.(2015浙江省丽水市,11,4分)分解因式:9-x2=________.【答案】(3+x)(3-x)4.(2015四川省泸州市)分解因式:2m2-2=.【答案】2(m-1)(m+1)5.(2015浙江嘉兴,11,5分)因式分解:ab-a=_____________.【答案】a(b-1)6.(2015江苏省南京市,10,2分)分解因式(a-b)(a-4b)+ab的结果是▲.【答案】(a-2b)2【解析】(a-b)(a-4b)+ab=a2-4ab-ab+4b2+ab=a2-4ab+4b2=(a-2b)27.(2015广东省广州市,13,3分)分解因式:2mx-6my=.【答案】2m(x-3y)【解析】因式分解的方法:(1)提公因式法;(2)公式法.(3).公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).8.(2015贵州省安顺市,13,4分)分解因式:2a2-4a+2=_______.【答案】2(a-1)29.(2015山东省威海市15,3分)分解因式:【答案】-2y(x-3)-2x2y+12x y-18y=.22 x x x 【解析】 本题考查了因式分解的有关知识,可以先提取公因式- 2 y ,在运用完全平方公式进行因式分解 .- 2 x 2 y + 12 x y - 18 y = - 2 y (x - 3).10. (2015 浙江省温州市,11,5 分)分解因式:a 2-2a+1=_____________.【答案】 (a - 1)211. (2015 山东潍坊,15,3 分)因式分解: ax 2 - 7ax + 6a = __________ .【答案】 a (x -1)(x - 6)12. (2015 浙江省杭州市,12,4 分)分解因式:m 3n -4mn =.【答案】mn (m +2)(m -2)13. (2015 年山东省济宁市)分解因式:12 x 2 - 3 y 2 = .【答案】3(2x+y )(2x -y )14. (2015 内蒙古呼和浩特,12,3 分)分解因式:x 3-x =__________.【答案】x (x +1)(x -1).15. (2015 山东济南,16,3 分)分解因式: xy + x =.【答案】 (y + 1)【解析】 xy + x = (y + 1),故答案为 (y + 1)16.(2015 浙江宁波,14,4 分)分解因式: x 2 - 9 = .【答案】(x- 3)(x + 3)17. (2015 四川省绵阳市,15,3 分)在实数范围内因式分解: x 2 y - 3 y =__________. 【答案】 y( x - 3)( x + 3)【解析】 x 2 y - 3 y = y( x 2 - 3) = y( x - 3)( x + 3) ,故答案为 y( x - 3)( x + 3)18. (2015 湖南株洲,13,3 分)因式分解: x 2 ( x - 2) - 16( x - 2) =。
初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n-12mn+12n ; (2)a 2(x-y)+9(y-x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )【解析】【分析】(1)先提公因式,再用完全平方公式;(2)提公因式法分解因式.【详解】解:(1)原式()()2=-1-44m m m + ()()2=-1-2m m ;(2)原式()()22-343a b a a b -+= ()()245-3a b a b =-.【点睛】本题考查因式分解的方法,熟练掌握提公因式法和完全平方公式是关键..2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.【解析】【分析】(1)先提公因式,然后了利用完全平方公式进行因式分解,解题得到答案.(2)利用平方差公式进行因式分解,即可得到答案.【详解】解:(1)原式=22(44)y x xy y -+=2(2)y x y -; (2)原式=22(1)(1)x x +-=2(1)(1)(1)x x x ++-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法、公式法进行因式分解. 3.(1)2m (m+2n )(m-2n );()22a +.【解析】【分析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
因式分解练习题(提取公因式) 28、 a b - 5ab 9b29、「x xy「xz310、-24x y-12xy 28y专项训练一:确定下列各多项式的公因式1、ay ax2、3mx -6my 23、4a 10ab3 211、-3ma 6ma - 12ma 3 2 2 2 212、56x yz 14x y z- 21 xy z24、15a 5a5、2 2 6、12xyz -9x y7、mx-y n x-y 28、x m n y m n3 2 2 2 313、15x y 5x y - 20x y4 3 214、-16x -32x 56x9、abc(m-n)3-ab(m-n) 10、12x(a-b)2-9m(b-a)3专项训练二:禾U用乘法分配律的逆运算填空。
1、2兀R+2nr= ____ (R+r)2、2兀只+2兀「=2兀( __ )3、丄口子+丄口挤二(仁2+t22)4、15a2+25ab2 =5a( )2 2专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。
1、x y 二__(x y)2、b-a 二__(a-b)2 23、-z y=_(y-z)4、 y-x ___(x - y)5、(y-x)3 =__(x-y)36、-(x - y)4 =__(y-x)47、(a—b)2n =___(b—a)2n(n为自然数)8、(a —b)2n+ = _ (b —a)2n41(n为自然数9、 1-x(2-y)二___(1-x)(y-2)2 311、(a_b) (b_a) =___(a_b)专项训练四、把下列各式分解因式。
21、nx -ny2、a ab )10、1-x (2-y)二___(x-1)(y-2)12、(a-b)2(b-a)4=___(a-b)63、4X3-6X24、8m2n 2mn专项训练五:把下列各式分解因式I、x(a b)- y(a b)3、6q(p q)-4p(p q)5、a(a-b) (a-b)27、(2a b)(2a-3b)-3a(2a b)9、p(x-y)-q(y-x)II、(a b)(a「b)「(b a)3 313、3(x_d) y-'(1-'X) z2、5x(x- y) 2y(x- y)4、(m n)(P q)-(m n)(p-q)26、x(x_ y) - y(x_ y)28、x(x y)(x「y)「x(x y)10、m(a-3) 2(3-a)12、a(x-a) b(a-x)「c(x-a)2 214、-ab(a - b) a(b - a)22、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除23219、x(x _y)2_2(y _x)3_(y _x)23 220、(x 「a) (x 「b) (a _x) (b 「x)3、证明:32002 - 4 32001 10 32000能被7整除。
专题06因式分解五种考法【考法一提公因式法因式分解】例题:(2022·湖北武汉·八年级期末)已知a +b =4,ab =3,则a 2b +ab 2=_____.【变式训练】1.(2021·江苏·高邮市车逻镇初级中学一模)因式分解:3x 4﹣9x 2=_______.2.(2022·云南昭通·八年级期末)若m -n =4,mn =3,则22m n mn -=_____.3.(2022·四川泸州·八年级期末)分解因式()()3222x x ---=______.4.(2022·黑龙江鸡西·八年级期末)已知x 2-2x -3=0,则2x 2-4x =_______5.(2022·广东中山·一模)已知251m n -=-,则24105m mn n -+的值是_____________.6.(2022·湖南岳阳·七年级期末)已知35y x -=,则代数式4122020x y -+的值是______________.【考法二公式法因式分解】例题:(2021·重庆巫山·八年级期末)因式分解:ab 2-4a =________;3x 2+12xy +12y 2=_________.【变式训练】1.(2022·北京市三帆中学模拟预测)分解因式:269ma ma m +-=______.2.(2021·福建龙岩·一模)分解因式:322242x x y xy -+-=______.3.(2022·山东·曲阜师范大学附属中学九年级阶段练习)分解因式:−a 3+12a 2b −36ab 2=_______.4.(2022·广东·汕头市龙湖实验中学九年级阶段练习)如果x +y =﹣2,x ﹣y =1,那么代数式2x 2﹣2y 2的值是_____.5.(2022·云南昆明·一模)当23m n =-时,代数式2244m mn n -+=______.6.(2022·江苏·景山中学七年级阶段练习)把下列各式分解因式:(1)25(a +b )2﹣16(a ﹣b )2(2)16x 4﹣8x 2y 2+y 4.7.(2021·贵州黔西·八年级期末)分解因式:(1)223612x y xy xy -+-;(2)481m -.8.(2020·四川遂宁·八年级期末)分解因式:(1)a 3b ﹣2a 2b +ab ;(2)x 2﹣4xy +4y 2﹣1.9.(2022·四川眉山·八年级期末)分解因式:(1)5416a ab -(2)()()()235x y x y y x y +---10.(2022·广东·佛山市南海区里水镇里水初级中学八年级阶段练习)已知a +b =12,ab =﹣38,先因式分解,再求值:a 3b +2a 2b 2+ab 3.【类型三十字相乘法法因式分解】例题:(2021·北京市第四十三中学八年级期中)阅读下列材料:根据多项式的乘法,我们知道,()()225710x x x x --=-+.反过来,就得到2710x x -+的因式分解形式,即2710(2)(5)x x x x -+=--.把这个多项式的二次项系数1分解为11⨯,常数项10分解为(2)(5)-⨯-,先将分解的二次项系数1,1分别写在十字交叉线的左上角和左下角;再把2-,5-分别写在十字交叉线的右上角和右下角,我们发现,把它们交叉相乘,再求代数和,此时正好等于一次项系数7-(如图1).像上面这样,先分解二次项系数,把它们分别写在十字交叉线的左上角和左下角;再分解常数项,把它们分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其正好等于一次项系数,我们把这种借助“十字”方式,将一个二次三项式分解因式的方法,叫做十字相乘法.例如,将二次三项式243x x +-分解因式,它的“十字”如图2:所以,()()243143x x x x +-=+-.请你用十字相乘法将下列多项式分解因式:(1)256x x ++=;(2)2273x x -+=;(3)()222x m x m +--=.【变式训练】1.(2021·山东淄博·二模)因式分解a 2-a -6=_____.2.(2021·山东淄博·一模)分解因式:289x x --=__.3.(2022·湖北·公安县教学研究中心八年级期末)分解因式268x x -+=________.4.(2021·全国·八年级专题练习)分解因式:(1)2314x x +-;(2)2344x x --+;(3)2631105x x +-;5.(2021·全国·八年级专题练习)将下列各式分解因式:(1)261915y y ++;(2)214327x x +-6.(2021·全国·八年级专题练习)将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --7.(2021·浙江·七年级期中)我们知道部分二次三项式可以用十字相乘法进行因式分解,如:262730x x -+2x 5361215--⨯--xx x ∴原式(25)(36)x x =--部分二次四项式也可以用十字相乘法进行因式分解,如:1025820ay y a +--2554258+-⨯+-a y y a∴原式(25)(54)=+-a y 用十字相乘法分解下列各式:(1)22512x x +-(2)6923xy x y -+-(3)2(61)(23)1xy x y -++8.(2022·辽宁葫芦岛·八年级期末)阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=⨯,常数项3(1)3-=-⨯,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:223(1)(3)x x x x +-=-+.利用这种方法,将下列多项式分解因式:(1)2710x x ++=__________;(2)223x x --=__________;(3)2712y y -+=__________;(4)2718x x +-=__________.【类型四分组分解法因式分解】例题:(2021·黑龙江·兴凯湖农场学校八年级期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2﹣6x﹣7;(2)分解因式:a2+4ab﹣5b2【变式训练】1.(2022·广东·龙岭初级中学八年级期中)因式分解中拆项法原理:在多项式乘法运算时,经过整理、化简通常将几个同类项合并为一项,或相互抵消为零,在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项(拆项).例:分解因式:x2+4x+3解:把4x分成x和3x,原式就可以分成两组了原式=x2+x+3x+3=x(x+1)+3(x+1)继续提公因式=(x+3)(x+1)请类比上边方法分解因式:x2+5x+6.2.(2022·山东济宁·八年级期末)观察探究性学习小组的甲、乙两名同学进行的因式分解:甲:244x xy x y-+-()()244x xy x y =-+-(分成两组)()()4x x y x y =-+-(直接提公因式)()()4x y x =-+乙:2222a b c bc--+()2222a b c bc =-+-(分成两组)()22a b c =--(直接运用公式)()()a b c a b c =+--+请你在他们解法的启发下,完成下面的因式分解:(1)32236m m m +--(2)229461a b a --+3.(2022·吉林吉林·八年级期末)阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:am +bm +an +bn=(am +bm )+(an +bn )=m (a +b )+n (a +b )=(a +b )(m +n ).(1)利用分组分解法分解因式:①3m ﹣3y +am ﹣ay ;②a 2x +a 2y +b 2x +b 2y .(2)因式分解:a 2+2ab +b 2﹣1=(直接写出结果).4.(2021·吉林吉林·八年级期末)阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:am bm an bn+++=()()am bm an bn +++=()()m a b n a b +++=(a +b )(m +n )(1)利用分组分解法分解因式:①33m y am ay -+-;②2222a x a y b x b y+++(2)因式分解:2221a ab b ++-=_______(直接写出结果).5.(2021·广东清远·八年级期中)观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x 2+2ax ﹣3a 2=x 2+2ax +a 2﹣a 2﹣3a 2=(x +a )2﹣4a 2(分成两组)=(x +a )2﹣(2a )2=(x +3a )(x ﹣a )(平方差公式)乙:a 2﹣b 2﹣c 2+2bc=a 2﹣(b 2+c 2﹣2bc )(分成两组)=a 2﹣(b ﹣c )2(直接运用公式)=(a +b ﹣c )(a ﹣b +c )(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)x 2﹣4x +3;(2)x 2-2xy -9+y 2;(3)x 2+2xy +y 2-6x -6y +9.6.(2021·浙江·七年级期中)阅读理解:如何将326xy x y +++进行因式分解呢?小明同学是这样做的:326xy x y +++(3)(26)xy x y =+++(3)2(3)x y y =+++(2)(3)x y =++我们把这种将多项式先分组,分别变形,再进行分解因式的方法叫分组分解法.【尝试应用】借助上述方法因式分解①5420xy x y +++=__________;②8972ab a b +--=__________;③xy ax by ab +++=___________;【拓展提高】若整数x ,y 满足64970xy x y +--=,求x ,y 的值.7.(2021·全国·八年级专题练习)先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)如“3+1”分法:2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2﹣y2﹣x﹣y;(2)分解因式:45am2﹣20ax2+20axy﹣5ay2;(3)分解因式:4a2+4a﹣4a2b﹣b﹣4ab+1.【类型五因式分解的应用】例题:(2022·湖北黄冈·八年级开学考试)常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式.后两项可提取公因式.前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.【变式训练】1.(2022·山东德州·八年级期末)多项式a2+2ab+b2及a2-2ab+b2通过因式分解写成(a+b)2和(a-b)2的形式之后,可以解决较复杂多项式的因式分解及求最值等问题.我们把多项式a2+2ab+b2和a2-2ab+b2做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式x2+2x-3原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1)(1)用配方法将x2-6x-16分解因式;(2)用配方法将x2+2xy+y2+10x+10y+16分解因式;(3)试说明:x、y取任何实数时,多项式x2+y2+4x-2y+7的值总为正数.2.(2022·山东临沂·八年级期末)第一环节:自主阅读材料常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如22424x y x y -+-,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:22424x y x y -+-()()22424x y x y =-+-……分组()()()2222x y x y x y =-++-……组内分解因式()()222x y x y =-++……整体思想提公因式这种分解因式的方法叫分组分解法.(1)第二环节:利用这种方法解决以下问题:因式分解:22428x y y x --+.(2)第三环节:拓展运用:已知a ,b ,c 为△ABC 的三边,且2222b ab c ac +=+,试判断ABC 的形状并说明理由.3.(2021·福建省福州延安中学八年级期中)(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(a+b)(m+n).①分解因式:ab﹣2a﹣2b+4;②若a,b(a>b)都是正整数且满足ab﹣2a﹣2b﹣4=0,求2a+b的值;(2)若a,b为实数且满足ab﹣a﹣b﹣1=0,整式M=a2+3ab+b2﹣9a-7b,求整式M的最小值.4.(2022·河南洛阳·八年级期末)阅读理解:阅读下列材料:已知二次三项式22x x a ++有一个因式是()2x +,求另一个因式以及a 的值.解:设另一个因式是()2x b +,根据题意,得()()2222x x a x x b ++=++,展开,得()222242x x a x b x b ++=+++,所以412b a b +=⎧⎨=⎩,解得63a b =-⎧⎨=-⎩,所以,另一个因式是()23x -,a 的值是-6.请你仿照以上做法解答下题:已知二次三项式2310x x m ++有一个因式是()4x +,求另一个因式以及m 的值.5.(2022·湖北十堰·八年级期末)阅读理解题:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值.解:设另一个因式为x +n x 2﹣4x +m =(x +3)(x +n ).即x 2﹣4x +m =x 2+(n +3)x +3n ,比较系数得:343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩.∴另一个因式为x ﹣7,m 的值为﹣21仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣1,求另一个因式及k 的值;(2)已知2x 2﹣13x +p 有一个因式x ﹣4,则p =.6.(2021·山东·东营市东营区实验中学八年级阶段练习)阅读并解决问题:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式,但对于二次三项式2223x ax a +-就不能直接运用公式了.此时,我们可以这样来处理:2223x ax a +-()222223x ax a a a =++--22()4x a a =+-(2)(2)x a a x a a =+++-(3)()x a x a =+-像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:2815a a -+;(2)若6a b +=,4ab =,求:①22a b +;②44a b +的值;(3)已知x 是实数,试比较2611x x -+与2610x x -+-的大小,说明理由.7.(2021·河南平顶山·八年级期末)阅读材料:常用的分解因式方法有提公因式、公式法等,但有的多项式只有上述方法就无法分解,如22424x y x y --+,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程为:22424x y x y-+-22(4)(24)x y x y =-+-(2)(2)2(2)x y x y x y =+-+-(2)(22)x y x y =-++这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式:226939x xy y x y-+-+(2)ABC ∆的三边,,a b c 满足220a b ac bc --+=,判断ABC ∆的形状.8.(2021·山东枣庄·八年级期末)阅读下面的材料:常用的分解因式的方法有提取公因式法,公式法等,但有的多项式只用上述方法无法分解,如:22424x y x y --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()()()()()()22224244242222222x y x y x y x y x y x y x y x y x y --+=---=+---=-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)△ABC 的三边a ,b ,c 满足220a b ac bc --+=,判断△ABC 的形状.9.(2021·山东枣庄·八年级期末)整式乘法与多项式因式分解是既有联系又有区别的两种变形.例如,()a b c d ab ac ad ++=++是单项式乘多项式的法则;把这个法则反过来,得到()ab ac ad a b c d ++=++,这是运用提取公因式法把多项式因式分解.又如222()2a b a ab b ±=±+、22()()a b a b a b +-=-是多项式的乘法公式;把这些公式反过来,得到222)2(a ab b a b ±+=±、22()()a b a b a b -=+-,这是运用公式法把多项式因式分解.有时在进行因式分解时,以上方法不能直接运用,观察甲、乙两名同学的进行的因式分解.甲:244x xy x y-+-2()(44)x xy x y =-+-(分成两组)()4()x x y x y =-+-(分别提公因式)()(4)x y x =-+乙:2222a b c bc--+()2222a b c bc =-+-(分成两组)22()a b c =--(运用公式)()()a b c a b c =+--+请你在他们解法的启发下,完成下面的因式分解问题一:因式分解:(1)32248m m m --+;(2)2229x xy y -+-.问题二:探究对x 、y 定义一种新运算F ,规定:(,)()(3)F x y mx ny x y =+-(其中m ,n 均为非零常数).当22x y ≠时,(,)(,)F x y F y x =对任意有理数x 、y 都成立,试探究m ,n 的数量关系.。
中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。
14.3 因式分解专题训练(附答案)1.因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.2.因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.3.分解因式:(1)mn﹣2n;(2)4x2﹣36;(3)(a2+b2)2﹣4a2b2.4.分解因式:(1)8m2n+2mn;(2)2a2﹣4a+2;(3)3m(2x﹣y)2﹣3mn2;(4)x4﹣2x2+1.5.因式分解:(1)9x2﹣81.(2)m3﹣8m2+16m.6.分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.7.计算与因式分解:(1)a3﹣4a2+4a;(2)x4﹣16.8.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.(1)2m2﹣2n2;(2)a3b﹣4a2b+4ab.10.分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).11.分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.12.在实数范围内因式分解:(1)4y2+4y﹣2;(2)3x2﹣5xy﹣y2.13.分解因式:(1)3ab3﹣30a2b2+75a3b;(2)a2(x﹣y)+16(y﹣x).14.因式分解:(1)9abc﹣6a2b2+12abc2.(2)3x2(x﹣y)+6x(y﹣x).15.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)+b2(y﹣x).16.分解因式:(1)(x+3)2﹣25;(2)﹣x3y+6x2y﹣9xy.17.分解因式:(1)8a﹣2a3;(2)(x2+1)2﹣4x2.(1)(x﹣y)m﹣(y﹣x).(2)2x3y﹣4x2y2+2xy3.19.分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).20.把下面各式分解因式(1)x2﹣4xy+4y2;(2)4x2(x﹣y)+(y﹣x).21.因式分解:(1)x3y﹣2x2y2+xy3;(2)2a3﹣18a.22.因式分解:(1)x2﹣4;(2)6ab2﹣9a2b﹣b3.23.因式分解:(1)12m3n﹣3mn;(2)(x+y)2﹣2(x+y)+1.24.把下列各式分解因式:(1)a2b﹣4ab+4b;(2)x4﹣8x2y2+16y4.25.把下列多项式因式分解.(1)m(m﹣2)﹣3(2﹣m);(2)n4﹣2n2+1.26.分解因式:(1)m3(x﹣2)+m(2﹣x);(2)4(a﹣b)2+1+4(a﹣b).27.因式分解:(1)2(x+2)2+8(x+2)+8;(2)﹣2m4+32m².28.因式分解:(1)﹣a2+2a3﹣a4;(2)(m2﹣5)2+8(m2﹣5)+16.29.分解因式:(1)a3﹣2a2+a;(2)(2x+y)2﹣(x+2y)2.30.因式分解:(1)x2y﹣2xy2+y3;(2)(x²+y2)2﹣4x2y2.参考答案1.解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.2.解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.3.解:(1)mn﹣2n=n(m﹣2);(2)4x2﹣36=4(x2﹣9)=4(x+3)(x﹣3);(3)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.4.解:①原式=2mn(4m+1);②原式=2(a2﹣2a+1)=2(a﹣1)2;③原式=3m[(2x﹣y)2﹣n2]=3m(2x﹣y+n)(2x﹣y﹣n);④原式=(x2﹣1)2=(x+1)2(x﹣1)2.5.解:(1)9x2﹣81=9(x2﹣9)=9(x+3)(x﹣3);(2)m3﹣8m2+16m=m(m2﹣8m+16)=m(m﹣4)2.6.解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.7.解:(1)原式=(x+y)2﹣12=x2+2xy+y2﹣1;(2)原式=a(a2﹣4a+4)=a(a﹣2)2;(3)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).8.解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).9.解:(1)2m2﹣2n2=2(m2﹣n2)=2(m+n)(m﹣n);(2)a3b﹣4a2b+4ab=ab(a2﹣4a+4)=ab(a﹣2)2.10.解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).11.解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.12.解:(1)原式=(2y)2+2•2y•1+12﹣3=(2y+1)2﹣()2=(2y+1+)(2y+1﹣);(2)=3(x﹣y)(x﹣y).13.解:(1)3ab3﹣30a2b2+75a3b=3ab(b2﹣10ab+25a2)=3ab(b﹣5a)2;(2)原式=a2(x﹣y)﹣16(x﹣y)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4).14.解:(1)9abc﹣6a2b2+12abc2=3ab(3c﹣2ab+4c2);(2)3x2(x﹣y)+6x(y﹣x)=3x2(x﹣y)﹣6x(x﹣y)=3x(x﹣y)(x﹣2).15.解:(1)原式=(4x﹣y)2;(2)原式=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(a+b)(a﹣b)(x﹣y).16.解:(1)原式=(x+3﹣5)(x+3+5)=(x+8)(x﹣2);(2)原式=﹣xy(x2﹣6x+9)=﹣xy(x﹣3)2.17.解:(1)原式=2a(4﹣a2)=2a(2+a)(2﹣a);(2)原式=(x2+1﹣2x)(x2+1+2x)=(x﹣1)2(x+1)2.18.解:(1)原式=(x﹣y)m+(x﹣y)=(x﹣y)(m+1);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.19.解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).20.解:(1)原式=x2﹣2×x×2y+(2y)2=(x﹣2y)2;(2)原式=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1).21.解:(1)原式=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)原式=2a(a2﹣9)=2a(a+3)(a﹣3).22.解:(1)x2﹣4=(x+2)(x﹣2);(2)6ab2﹣9a2b﹣b3=﹣b(9a2﹣6ab+b2)=﹣b(3a﹣b)2.23.解:(1)12m3n﹣3mn=3mn(4m2﹣1)=3mn(2m﹣1)(2m+1);(2)(x+y)2﹣2(x+y)+1=(x+y﹣1)2.24.解:(1)原式=b(a2﹣4a+4)=b(a﹣2)2;(2)原式=(x2﹣4y2)2=[(x+2y)(x﹣2y)]2=(x+2y)2(x﹣2y)2.25.解:(1)原式=m(m﹣2)+3(m﹣2)=(m﹣2)(m+3);(2)原式=(n2﹣1)2=(n+1)2(n﹣1)2.26.解:(1)m3(x﹣2)+m(2﹣x)=m3(x﹣2)﹣m(x﹣2)=m(x﹣2)(m2﹣1)=m(m+1)(m﹣1)(x﹣2);(2)4(a﹣b)2+1+4(a﹣b)=[2(a﹣b)+1]2=(2a﹣2b+1)2.27.解:(1)2(x+2)2+8(x+2)+8=2[(x+2)2+4(x+2)+4]=2(x+2+2)2=2(x+4)2;(2)﹣2m4+32m2=﹣2m2(m2﹣16)=﹣2m2(m+4)(m﹣4).28.解:(1)原式=﹣a2(1﹣2a+a2)=﹣a2(1﹣a)2;(2)原式=[(m2﹣5)+4]2=(m2﹣1)2=(m+1)2(m﹣1)2.29.(1)原式=a(a2﹣2a+1)=a(a﹣1)2;(2)原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y).30.解:(1)原式=y(x2﹣2xy+y2)=y(x﹣y)2;(2)原式=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.。
中考数学专题复习之因式分解综合题训练1.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC 的形状,并说明理由.2.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金bn元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.3.已知一个各个数位上的数字均不为0的四位正整数M=abcd(a>c),以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s,若s等于M的千位数字与十位数字的平方差,则称这个数M为“平方差数”,将它的百位数字和千位数字组成两位数ba,个位数字和十位数字组成两位数dc,并记T(M)=ba+dc.例如:6237是“平方差数”,因为62﹣32=27,所以6237是“平方差数”;此时T(6237)=26+73=99.又如:5135不是“平方差数”,因为52﹣32=16≠15,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M=abcd是“平方差数”,且T(M)比M的个位数字的9倍大30,求所有满足条件的“平方差数”M.4.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.5.如果一个四位自然数M的各个数位上的数字均不为0,且满足千位数字与十位数字的和为10,百位数字与个位数字的差为1,那么称M为“和差数”.“和差数”M的千位数字的二倍与个位数字的和记为P(M),百位数字与十位数字的和记为F(M),令G(M)=P(M)F(M),当G(M)为整数时,则称M为“整和差数”.例如:∵6342满足6+4=10,3﹣2=1,且P(6342)=14,F(6342)=7,即G(6342)=2为整数,∴6342是“整和差数”.又如∵4261满足4+6=10,2﹣1=1,但P(4261)=9,F(4261)=8,即G(4261)=98不为整数,∴4261不是“整和差数”.(1)判断7736,5352是否是“整和差数”?并说明理由.(2)若M=2000a+1000+100b+10c+d(其中1≤a≤4,2≤b≤9,1≤c≤9,1≤d≤9且a、b、c、d均为整数)是“整和差数”,求满足条件的所有M的值.6.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“博雅数”.定义:对于三位自然数N,各位数字都不为0,且它的百位数字的2倍与十位数字和个位数字之和恰好能被7整除,则称这个自然数N为“博雅数”.例如:415是“博雅数”,因为4,1,5都不为0,且4×2+1+5=14,14能被7整除;412不是“博雅数”,因为4×2+1+2=11,11不能被7整除.(1)判断513,427是否是“博雅数”?并说明理由;(2)求出百位数字比十位数字大6的所有“博雅数”的个数,并说明理由.7.如果一个四位自然数的百位数字大于或等于十位数字,且千位数字等于百位数字与十位数字的和,个位数字等于百位与十位数字的差,则我们称这个四位数为亲密数,例如:自然数4312,其中3>1,4=3+1,2=3﹣1,所以4312是亲密数;(1)最小的亲密数是,最大的亲密数是;(2)若把一个亲密数的千位数字与个位数字交换,得到的新数叫做这个亲密数的友谊数,请证明任意一个亲密数和它的友谊数的差都能被原亲密数的十位数字整除;(3)若一个亲密数的后三位数字所表示的数与千位数字所表示的数的7倍之差能被13整除,请求出这个亲密数.8.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.9.(1)阅读材料:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数“,a,b为x的一个平方差分解.例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解.①请直接写出一个30以内且是两位数的雪松数,并写出它们的一个平方差分解;②试证明10不是雪松数;(2)若a,b正整数,且ab+a+b=68,求ab的值.10.探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:x2+6x+9=;x2﹣4x+4=;4x2﹣20x+25=;(2)探究发现:观察以上三个多项式的系数,我们发现:62=4×1×9;(﹣4)2=4×1×4;(﹣20)2=4×4×25;归纳猜想:若多项式ax2+bx+c(a>0,c>0)是完全平方式,猜想:系数a,b,c之间存在的关系式为;(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论;(4)解决问题:若多项式(n+1)x2﹣(2n+6)x+(n+6)是一个完全平方式,利用你猜想的结论求出n的值.11.第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.12.阅读材料:,上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:x2+2x﹣3;(2)求多项式x2+6x﹣10的最小值;(3)已知a、b、c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.13.把代数式通过配方等手段,得到完全平方式,再运用完全平方式的非负性来增加题目的已知条件,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:①用配方法分解因式:a2+6a+8.原式=a2+6a+9﹣1=(a+3)2﹣1=(a+3+1)(a+3﹣1)=(a+4)(a+2).②利用配方法求最小值:求a2+6a+8最小值.解:a2+6a+8=a2+2a⋅3+32﹣32+8=(a+3)2﹣1.因为不论x取何值,(a+3)2总是非负数,即(a+3)2≥0.所以(a+3)2﹣1≥﹣1,所以当x=﹣3时,a2+6a+8有最小值,最小值是﹣1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+=(x﹣)2;(2)将x2﹣10x+2变形为(x+m)2+n的形式,并求出x2﹣10x+2的最小值;(3)若M=6a2+19a+10,N=5a2+25a,其中a为任意实数,试比较M与N的大小,并说明理由.14.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.15.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.16.如果一个自然数M 能分解成A ×B ,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A ×B 的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数“;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M是“十全九美数“,“全美分解”为A×B,将A的十位数字与个位数字的差,与B的十位数字与个位数字的和求和记为S(M);将A的十位数字与个位数字的和,与B的十位数字与个位数字的差求差记为T(M).当S(M)T(M)能被5整除时,求出所有满足条件的自然数M.17.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.18.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。
因式分解(6种常考题型专项训练)因式分解的意义 公式法因式分解因式分解在有理数简算中的应用 十字相乘法分组分解法 因式分解的应用题型一:因式分解的意义一、单选题1.(23-24七年级上·上海浦东新·期中)下列等式中,从左到右的变形是因式分解的是( )A .253(5)3x x x x -+=-+B .2(2)(5)310x x x x -+=+-C .22(23)4129x x x +=++D .2244(2)-+=-x x x 2.(22-23七年级上·上海青浦·期中)下列各等式中,从左到右的变形是因式分解的有( )(1)()()2224x x x +-=- (2)()2111x x x ++=++(3)12223=´´ (4)()3222323a a a a a a ++=++A .1个B .2个C .3个D .4个3.(22-23七年级上·上海浦东新·期末)下列等式从左到右是因式分解,且结果正确的是( )A .22816(4)a a a ++=+B .22(4)=816a a a +++C .2816(8)16a a a a ++=++D .228(2)816a a a a ++=++4.(22-23七年级上·上海青浦·期中)单项式33ab 与单项式239a b 的公因式是( )A .23a b B .333a b C .2a b D .33a b 二、填空题5.(22-23七年级上·上海青浦·期中)若整式2x x m -+含有一个因式(3)x +,则m 的值是 .6.(2022七年级上·上海·专题练习)28(9)()x x m x x n -+=--,则nm =7.(23-24七年级上·上海长宁·期中)326a bc 和228a b c 的最大公因式是 .题型二:公式法因式分解一、单选题1.(21-22七年级上·上海嘉定·期中)下列各式中,不能用公式法分解因式的是( )A .2249a b -B .222a ab b -+-C .21a --D .2114b -+2.(22-23七年级上·上海青浦·期中)下列多项式中可以用完全平方公式进行因式分解的是( )A .21x x ++B .221x x --C .224x x ++D .214x x -+二、填空题3.(2024·上海嘉定·三模)因式分解:()2224x xy y ---=4.(2024·上海·模拟预测)因式分解:62xy xy -=三、解答题5.(23-24七年级上·上海普陀·期末)因式分解:2221a ab b ++-.6.(23-24七年级上·上海青浦·期中)因式分解:222(4)8(4)16a a a a -+-+7.(23-24七年级上·上海青浦·期中)因式分解:()22222169+--m n mn m n .8.(23-24七年级上·上海·期末)因式分解:22139164525a ab b -+-.9.(23-24七年级上·上海青浦·期中)因式分解:()()2242452x x x x -+-++题型三:因式分解在有理数简算中的应用1.(23-24七年级上·上海青浦·期中)利用平方差公式计算:2220052003-= .2.(22-23七年级上·上海青浦·期末)计算:227.5 1.6 2.5 1.6´-´3.(23-24七年级上·上海闵行·期中)简便计算:2201120072015-´4.(23-24七年级上·上海青浦·期中)用简便方法计算:()()22202020262020403720212017201920222023-+´´´´.题型四:十字相乘法一、填空题1.(23-24七年级上·上海浦东新·期末)因式分解:2812x x -+=.2.(23-24七年级上·上海松江·期末)分解因式:221112x xy y --=.3.(23-24七年级上·上海·期末)因式分解:21336a a -+= .4.(23-24七年级上·上海·单元测试)分解因式:26x x +-= ,3443ax by ay bx --+=.5.(23-24七年级上·上海浦东新·期末)分解因式:22514x xy y --=.二、解答题6.(23-24七年级上·上海松江·期末)分解因式:4234x x --.7.(23-24七年级上·上海宝山·期末)分解因式:()()222412a a a a +++-.8.(23-24七年级上·上海·单元测试)因式分解:()()21556a b b a ---+.9.(22-23七年级上·上海杨浦·期末)分解因式:()()2233820x x x x ----.题型五:分组分解法一、填空题1.(21-22九年级下·上海徐汇·期中)因式分解:am an bm bn +--= .2.(2024·上海·模拟预测)因式分解:221x x --= .二、解答题3.(23-24七年级上·上海宝山·期末)分解因式:842ax by ay bx -+-.4.(23-24七年级上·上海杨浦·期末)因式分解:22643a bc ab ac -+-;5.(22-23七年级上·上海杨浦·期末)分解因式:32248x x y x y +--.6.(23-24七年级上·上海杨浦·期末)因式分解:()22222224mnx m x n x m n -++--;7.(23-24七年级上·上海崇明·期末)分解因式:22424a b a b --+.8.(23-24七年级上·上海杨浦·期末)分解因式:5322x x x +-- .9.(23-24七年级上·上海青浦·期中)因式分解:22168-+-a b b .10.(23-24七年级上·上海杨浦·期末)分解因式:32332a a a +++.11.(2022七年级上·上海·专题练习)因式分解:()()22114x y xy ---题型六:因式分解的应用一、单选题1.(23-24七年级上·上海浦东新·期末)已知甲、乙、丙均为x 的一次整式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为26x x +-,则甲与丙相减的结果是( )A .5-B .5C .1D .1-二、填空题2.(22-23七年级上·上海浦东新·期中)与()27x y -之积等于4249y x -的因式为 .3.(2022七年级上·上海·专题练习)当1996,200x y =-=时,代数式32266x xy x y x --+= 4.(22-23七年级上·上海静安·期中)已知22313x y x y -=+=,,则32238x y x y xy -+的值为 5.(23-24七年级上·上海长宁·期中)由多项式乘以多项式的法则可以得到:()()2232222333a b a ab b a a b ab a b a b b a b +-+=-++-+=+即:()()2233a b a ab b a b +-+=+,我们把这个公式叫做立方和公式,同理:()()2233a b a ab b a b -++=-,我们把这个公式叫做立方差公式,请利用以上公式分解因式:34381a b b -=6.(23-24七年级下·上海静安·期中)定义:如果一个正整数能表示为两个正整数m n ,的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用()()22m n m n m n -=+-进行研究.若将智慧优数从小到大排列,第9个智慧优数是 .三、解答题7.(22-23七年级上·上海青浦·期中)已知a ,b ,c 三个数两两不等,且有222222a b mab b c mbc c a mca ++=++=++,试求m 的值.222222 8.(22-23七年级上·上海青浦·期中)证明:()()()2a b c x y z ax by cz++++³++。
因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6pq (2)2x2+8x+8
2.将下列各式分解因式
(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式
(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2 4.分解因式:
(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2
5.因式分解:
(1)2am2﹣8a (2)4x3+4x2y+xy2
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y2 8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+1
9.分解因式:a2﹣4a+4﹣b2
10.分解因式:a2﹣b2﹣2a+1
11.把下列各式分解因式:
(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1 12.把下列各式分解因式:
(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.
因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6pq;(2)2x2+8x+8
分析:(1)提取公因式3p整理即可;
(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)3p2﹣6pq=3p(p﹣2q),
(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.
2.将下列各式分解因式
(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.
分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;
(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.
解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);
(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.
3.分解因式
(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.
分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;
(2)先利用平方差公式,再利用完全平方公式继续分解.
解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);
(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.
4.分解因式:
(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.
分析:(1)直接提取公因式x即可;
(2)利用平方差公式进行因式分解;
(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;
(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.
解答:解:(1)2x2﹣x=x(2x﹣1);
(2)16x2﹣1=(4x+1)(4x﹣1);
(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;
(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.
5.因式分解:
(1)2am2﹣8a;(2)4x3+4x2y+xy2
分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;
(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);
(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.
分析:(1)先提公因式3x,再利用平方差公式继续分解因式;
(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.
解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);
(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.
7.因式分解:
(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.
分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;
(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.
解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;
(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).
8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.
分析:(1)提取公因式n(m﹣2)即可;
(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);
(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.
9.分解因式:a2﹣4a+4﹣b2.
分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.
解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1
分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.
解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).
11.把下列各式分解因式:
(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1
分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;
(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;
(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;
(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.
解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);
(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x
﹣a)(x2+1﹣x+a);
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1
﹣y)]2=(1+y﹣x2+x2y)2
(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.
12.把下列各式分解因式:
(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;
(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.
分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;
(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;
(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;
(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;
(5)先分组因式分解,再用拆项法把因式分解彻底.
解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);
(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)
(a+b﹣c)(c+a﹣b)(c﹣a+b);
(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);
(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;
(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2
(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。