基于状态观测器的广义投影同步
- 格式:pdf
- 大小:1.72 MB
- 文档页数:11
基于观测器的广义系统有限时间控制器设计
张爱清
【期刊名称】《江汉大学学报(自然科学版)》
【年(卷),期】2006(34)4
【摘要】基于广义观测器,探讨了线性广义系统的有限时间控制问题.利用广义系统状态观测器理论,给出了系统无脉冲模和有限时间状态稳定的充分条件及基于广义观测器的状态反馈控制器的设计方法,所设计的控制器使闭环系统无脉冲模且保持有限时间状态稳定.通过解一组广义Riccati不等式得到观测器增益矩阵和状态反馈矩阵.
【总页数】3页(P53-55)
【作者】张爱清
【作者单位】江汉大学,数学与计算机科学学院,武汉,430056
【正文语种】中文
【中图分类】TP13
【相关文献】
1.T-S模糊广义系统基于观测器的H∞控制器的设计方法 [J], 李丽;张庆灵;何牧
2.Lurie广义系统基于观测器的控制器设计 [J], 周正
3.基于观测器的广义线性系统降阶H∞控制器设计 [J], 陈凌;廖勇;曾建平
4.非方广义系统的未知输入有限时间观测器设计 [J], 孙丽瑛;程兆林;王玉振
5.一类不确定广义系统故障估计的有限时间鲁棒观测器设计 [J], 梁天添;刘鑫;郑祥;李科信;王茂
因版权原因,仅展示原文概要,查看原文内容请购买。
收稿日期:2022-12-04基金项目:国家自然科学基金(61903025);北京科技大学青年教师学科交叉研究项目(FRF IDRY GD22 002)引用格式:卢紫超,李通,孙泽文,等.基于干扰观测器的机械臂广义模型预测轨迹跟踪控制[J].测控技术,2023,42(9):81-87.LUZC,LIT,SUNZW,etal.DisturbanceObserver BasedGeneralizedModelPredictiveTrajectoryTrackingControlforRoboticManipulators[J].Measurement&ControlTechnology,2023,42(9):81-87.基于干扰观测器的机械臂广义模型预测轨迹跟踪控制卢紫超1,李 通1,孙泽文1,田 霖2,孙 亮1,刘冀伟3(1.北京科技大学智能科学与技术学院,北京 100083;2.中华人民共和国民政部一零一研究所,北京 100070;3.北京科技大学自动化学院,北京 100083)摘要:为实现对多自由度机械臂关节运动精确轨迹跟踪,提出一种基于非线性干扰观测器的广义模型预测轨迹跟踪控制方法。
针对机械臂轨迹跟踪运动学子系统,采用广义预测控制(GeneralizedPredictiveControl,GPC)方法设计期望的虚拟关节角速度。
对于机械臂轨迹跟踪动力学子系统,考虑机械臂的参数不确定性和未知外界扰动,利用GPC方法设计关节力矩控制输入,基于非线性干扰观测器方法实时估计和补偿系统模型中的不确定性。
在李雅普诺夫稳定性理论框架下证明了机械臂关节角位置和角速度的跟踪误差最终收敛于零的小邻域。
数值仿真验证了所提出控制方法的有效性和优越性。
关键词:机械臂控制;轨迹跟踪;广义预测控制;干扰观测器;稳定性分析中图分类号:TP391.9 文献标志码:A 文章编号:1000-8829(2023)09-0081-07doi:10.19708/j.ckjs.2023.09.012DisturbanceObserver BasedGeneralizedModelPredictiveTrajectoryTrackingControlforRoboticManipulatorsLUZichao1牞LITong1牞SUNZewen1牞TIANLin2牞SUNLiang1牞LIUJiwei3牗1.SchoolofIntelligenceScienceandTechnology牞UniversityofScienceandTechnologyBeijing牞Beijing100083牞Cina牷2.The101ResearchInstitute牞MinistryofCivilAffairsofthePeople sRepublicofChina牞Beijing100070牞Cina牷3.SchoolofAutomationandElectricalEngineering牞UniversityofScienceandTechnologyBeijing牞Beijing100083牞Cina牘Abstract牶Inordertorealizetheaccuratetrajectorytrackingofthemulti degreesoffreedomroboticmanipula torsinthejointmotionspace牞arobustgeneralizedpredictivecontrolmethodbasedonthenonlineardisturb anceobservermethodisproposed.Forthekinematicsubsystemoftheroboticmanipulatortrajectorytrackingmissions牞thedesiredangularvelocitytrajectoryisdevelopedbythegeneralizedmodelpredictivecontroltheo ry.Then牞consideringtheparametricuncertaintiesandunknownexternaldisturbancesforthedynamicsubsys temoftheroboticmanipulatortrajectorytrackingmissions牞theGPCmethodisadoptedtodesignthetorquecontrolinput牞thenonlineardisturbanceobserverisemployedtocompensatethelumpedunknownperturbationsinthedynamics.UndertheframeworkofLyapunovstabilitytheory牞itisprovedthatthejointangletrajectorytrackingerrorsandangularvelocitytrackingerrorsultimatelyconvergetothesmallneighborhoodsofzero.Theeffectivenessandadvantagesoftheproposedmethodarefinallyverifiedbynumericalsimulations.Keywords牶roboticmanipulatorcontrol牷trajectorytracking牷GPC牷disturbanceobserver牷stabilityanalysis 机械臂是高精度、多输入多输出、高度非线性、强耦合的复杂系统。
自动控制原理状态观测器知识点总结自动控制原理状态观测器是自动控制系统中的重要组成部分,用于实时地获取、估计和观测系统的状态信息。
在控制系统中,状态观测器的设计和性能直接影响系统的响应速度、稳定性和精度。
本文将对自动控制原理中的状态观测器进行知识点总结。
一、状态观测器的基本概念在自动控制系统中,状态观测器的主要作用是通过利用系统的输出信号来估计系统的状态变量,从而实现对系统状态的观测和监测。
状态观测器的设计目标是在系统的输出信号和已知的输入信号的基础上,使用数学模型来估计未知的状态变量。
二、状态观测器的数学模型状态观测器的数学模型通常由状态方程和输出方程组成。
状态方程描述了系统状态的动态变化规律,而输出方程描述了系统输出与状态之间的关系。
通过状态方程和输出方程,可以得到一个关于状态变量的估计值,从而实现对系统状态的观测。
三、状态观测器的设计原则1. 可观测性:系统的状态观测器设计需要满足可观测性的要求,即系统的状态变量可以通过系统的输出信号来观测和估计。
如果系统是可观测的,那么可以设计一个状态观测器来实现对系统状态的观测和估计。
2. 稳定性:状态观测器设计需要保证系统的稳定性,即系统的状态估计值与实际状态之间的差距趋于稳定。
稳定的状态观测器可以确保系统的控制效果和性能。
3. 收敛速度:状态观测器的设计需要考虑观测误差的收敛速度,即状态观测器对系统状态的估计速度。
较快的收敛速度可以更准确地估计系统的状态,提高控制系统的响应速度和精度。
四、常见的状态观测器算法1. 卡尔曼滤波器:卡尔曼滤波器是一种最优的状态观测器算法,适用于线性离散系统和线性连续系统。
卡尔曼滤波器通过递推方式对系统的状态进行估计,具有较好的稳定性和收敛速度。
2. 扩展卡尔曼滤波器:扩展卡尔曼滤波器是对非线性系统进行状态观测的一种方法。
它通过使用线性化的状态方程和输出方程,结合卡尔曼滤波器的思想进行状态估计。
3. 粒子滤波器:粒子滤波器是一种基于蒙特卡罗方法的非线性状态观测器算法。
一类非线性系统的观测器设计方法非线性系统观测器设计一直是控制理论中一个重要的研究课题。
由于非线性系统的复杂性和不确定性,设计一个有效的观测器对系统状态的估计具有重要意义。
本文将介绍一类常见的非线性系统观测器设计方法,并详细讨论其原理和应用。
在非线性系统的控制中,观测器的作用是通过测量系统的输入和输出来估计系统内部的状态变量。
观测器可以帮助控制系统实现闭环控制,提高系统的鲁棒性和性能。
目前常见的非线性系统观测器设计方法主要包括基于扩展状态观测器(ESO)和基于高次观测器的方法。
1.基于扩展状态观测器(ESO)的设计方法扩展状态观测器(ESO)是一种常用的非线性系统观测器设计方法,它是一种一阶滤波器,通过估计系统内部的状态变量来实现系统的状态观测。
ESO的基本结构包括两部分:状态估计器和参数估计器。
状态估计器用于估计系统的状态变量,参数估计器用于估计系统的未知参数。
ESO通过利用系统的输入和输出信息,能够准确地估计系统的状态变量和参数,从而实现对系统的状态观测。
2.基于高次观测器的设计方法除了ESO外,还有一种常见的非线性系统观测器设计方法是基于高次观测器的设计方法。
高次观测器是一种高阶的非线性观测器,在系统状态估计的基础上,还可以估计系统的高阶导数,从而实现对系统状态的更加精确的观测。
高次观测器通过引入更多的状态变量和参数,能够提高系统的观测精度和性能。
二、非线性系统观测器设计的应用非线性系统观测器设计方法在实际工程中有着广泛的应用。
例如,在飞行器控制系统中,非线性系统观测器可以帮助飞行器实现精确的姿态控制和轨迹跟踪。
在机器人控制系统中,非线性系统观测器可以帮助机器人实现精确的位置估计和轨迹规划。
在工业控制系统中,非线性系统观测器可以帮助实现对工业过程的监测和控制。
总的来说,非线性系统观测器设计方法在各个领域都有着重要的作用。
通过选择合适的观测器设计方法,可以提高系统的鲁棒性和稳定性,从而实现对非线性系统的精确观测和控制。
基于同步相量测量技术的广域测量系统的应用现状与发展前景1、本文概述随着现代电力系统的快速发展,对电力系统的监测、保护和控制提出了更高的要求。
广域测量系统(WAMS)作为一种新型的电力系统监测技术,通过相量测量单元(PMU)实现对电力系统状态的实时准确监测。
本文旨在概述基于同步相量测量技术的广域测量系统的应用现状,并探讨其未来的发展前景。
文章首先介绍了同步相量测量技术的基本原理和广域测量系统的结构组成,阐述了PMU在电力系统中的应用优势。
此外,本文还详细分析了广域测量系统在电力系统中的应用现状,包括其在电力系统稳定性控制、故障检测与定位、动态状态估计等领域的应用。
本文还探讨了广域测量系统在实际应用中面临的挑战和问题,如实时数据传输和系统的高可靠性要求。
本文在分析现状的基础上,进一步探讨了广域测量系统的未来发展趋势。
随着智能电网建设的不断推进,广域测量系统将在电力系统的运行、控制和保护中发挥更重要的作用。
未来的研究将集中在提高广域测量系统的数据处理能力,增强其抗干扰能力,并扩大其在电力系统中的应用领域。
同时,随着大数据、云计算和人工智能技术的发展,广域测量系统将朝着更智能化和自动化的方向发展。
本文探讨了基于同步相量测量技术的广域测量系统的应用现状和未来发展前景,旨在为电力系统的稳定运行和智能化发展提供理论支持和技术参考。
2、同步相量测量技术的基本原理和技术特点相量测量单元(PMU)的基本原理和技术特点同步相量测量技术,也称为相量测量单元(PMU)技术,是电力系统动态监测和分析的重要工具。
其基本原理是通过高速、高精度的数据采集和处理技术,实时获取电网中各节点的电压、电流相量信息,从而实现对电网运行状态的实时监测和准确分析。
PMU的基本原理可以概括为:通过使用高精度模数转换器(ADC)对电网的电压和电流信号进行采样,使用傅立叶变换(FFT)或卡尔曼滤波等数字信号处理算法将模拟信号转换为数字信号。
对采样的数字信号进行分析和处理,提取电压和电流的振幅、相位等相量信息。
Generalized projective synchronization of a class of hyperchaoticsystems based on state observerWang Xing-Yuan ⇑,Fan BingSchool of Electronic &Information Engineering,Dalian University of Technology,Dalian 116024,Chinaa r t i c l e i n f o Article history:Received 7May 2010Received in revised form 29May 2011Accepted 12June 2011Available online 21June 2011Keywords:Hyperchaotic systemGeneralized projective synchronizationState observera b s t r a c tIn this paper,the generalized projective synchronization of a class of hyperchaotic systemsis studied.On the basis of the state observer,it is not necessary to calculate the Lyapunovexponents,which makes this scheme simpler.Hyperchaotic Lüsystem and hyperchaoticRössler systems are used as examples to validate the effectiveness of the proposed method.Ó2011Elsevier B.V.All rights reserved.1.IntroductionSince the synchronization of chaotic systems has been proposed by Pecora and Carroll in 1990[1,2],chaos synchroniza-tion has received considerable attention [3,4].In practice,due to the parameter mismatch problem in complete synchroni-zation,many scholars have proposed and implemented a number of different types of chaos synchronization methods [5–9],such as lag synchronization [5],phase and anti-phase synchronization [6],generalized synchronization [7]and generalized projective synchronization [8,9].Projective synchronization means that the driving-response systems can be synchronized up to a scaling factor a (a proportional relation).Complete synchronization and anti-synchronization are the special cases of projective synchronization when a =1and a =À1,respectively [10].The proportionality between the synchronized dynam-ical states is of great use in practice.In the application of secure communication,this feature can be used to extend binary digital to M-nary digital communication for achieving fast communication [10–13].The early studies of projective synchro-nization reported that the projective synchronization was usually observable only in a class of systems with partial-linearity[10,11].But recently some researchers have achieved control of the projective synchronization in a class of general chaotic systems,and named this new synchronization as ‘‘generalized projective synchronization’’(GPS)[9,10].Due to higher confidentiality,higher efficiency and other advantages,hyperchaotic systems have wide applications in the non-linear circuits,security communication,neural network,etc.Therefore,in recent years it has attracted much attention[14,15].However the computation of Lyapunov exponents in hyperchaotic systems is still a difficult issue [16].To avoid the complexity of calculation,state observer was adopted by some researchers.One of the features of this method is that it is not necessary to calculate the Lyapunov exponents [16,17].Based on the above studies,this paper presents a generalized pro-jective synchronization (GPS)scheme for a class of hyperchaotic systems using state observer.The numerical simulations of hyperchaotic Lüsystem and hyperchaotic Rössler system further validate the effectiveness of this method.1007-5704/$-see front matter Ó2011Elsevier B.V.All rights reserved.⇑Corresponding author.Tel.:+86041187090067.E-mail addresses:wangxy@ (X.-Y.Wang),winterfice@ (B.Fan).The rest of this paper is organized as follows.In Section 1,a GPS scheme based on state observer is presented.The two hyperchaotic systems which are used as examples are briefly described in Section 2.Sections 4.1and 4.2give the simulation results of hyperchaotic Lüsystem and hyperchaotic Rössler system,respectively.The last part is the conclusion of the paper.2.GPS scheme designConsider the following chaotic system_x¼Ax þB F ðx ÞþG ;w ¼Dx þF ðx Þ; ð1Þwhere x and w is the state vector and output of the driving system,respectively.B F (x )is the nonlinear part of the system,G is the constant of the system.A and B are known constant matrices,D is an undetermined gain matrix.In order to achieve GPS,we need to construct the corresponding response system of Eq.(1).The state observer is designed as_y¼Ay þB F ðy ÞþB ða w Àv ÞþKG ;v ¼Dy þF ðy Þ; ð2Þwhere y and v is the state vector and output of the observer,respectively.K is the unknown constant matrix,a is the scaling factor.So complete synchronization and anti-synchronization are two special cases of projective synchronization when a =1and a =À1,respectively.Now define the error vector as e =y Àa x ,so the error system is determined as follows,_e¼_y Àa _x ¼Ay þa B F ðx ÞþBD ða x Ày ÞÀa Ax Àa B F ðx ÞþðK Àa I ÞG ¼ðA ÀBD Þðy Àa x ÞþðK Àa I ÞG ¼ðA ÀBD Þe þðK Àa I ÞG :ð3ÞIt can be seen that if Eq.(3)satisfies the following equation ðK Àa I Þ¼0;ð4Þi.e.K =a I ,Eq.(3)can be rewritten as _e¼ðA ÀBD Þe :By using state observer,it is not necessary to calculate the Lyapunov exponents [16,17].As long as all the eigenvalueswith negative real parts,the error system satisfies _e!0and system (1)and system (2)can achieve GPS.It can be seen that if the gain matrix D is selected appropriately to guarantee all the eigenvalues of A ÀBD with negative real parts,the error system will be stable and the GPS between the two systems will be achieved.3.System descriptionThe hyperchaotic Lüsystem [18]can be described as follows,_x 1¼a ðx 2Àx 1Þþx 4;_x 2¼Àx 1x 3þcx 2;_x 3¼x 1x 2Àbx 3;_x 4¼x 1x 3þrx 4;8>>><>>>:ð5Þwhere a ,b ,c and r are real constants.When a =36,b =3,c =20,À1.036r 6À0.46,system (5)has periodic orbit,when a =36,b =3,c =20,À0.46<r 6À0.35,system (5)has chaotic attractor,when a =36,b =3,c =20,À0.35<r 61.3,system (5)has hyperchaotic attractor [18].The hyperchaotic Rössler system [19]can be described as follows,_x 1¼bx 2þcx 1;_x 2¼3þx 2x 3;_x 3¼Àx 2Àx 4;_x 4¼x 1þx 3þax 4;8>>><>>>:ð6Þ954X.-Y.Wang,B.Fan /Commun Nonlinear Sci Numer Simulat 17(2012)953–9634.Numerical simulation4.1.Hyperchaotic LüsystemRewrite Eq.(5)as_x 1_x 2_x 3_x 42666437775¼Àa a 010c 0000Àb 0000r 2666437775x 1x 2x 3x 42666437775þB x 1x 2x 1x 3 ;w ¼D x 1x 2x 3x 42666437775þx 1x 2x 1x 3 :8>>>>>>>>>>>>><>>>>>>>>>>>>>:ð7ÞThen,we have A ¼Àa a 010c 0000Àb 0000r 2666437775;G ¼0;F ðx Þ¼x 1x 2x 1x 3;where D is an undetermined gain matrix.Here,pole placement method is used to construct matrix D to guarantee all the eigenvalues of A ÀBD with negative real parts.LetB ¼000À110012666437775and select the eigenvalues of A ÀBD as (À1,À2,À3,À4),then we can getD ¼001:0000À30:51769:471400:7714 :Substituting A ,B and D for Eq.(2),the response system,i.e.,state observer of the driving system (7)is described by_y 1_y 2_y 3_y 42666437775¼Àa a 010c 0000Àb 0000r 2666437775y 1y 2y 3y 42666437775þ000À110012666437775y 1y 2y 1y 3 þ000À110012666437775ða w Àv Þ;v ¼001:0000À30:51769:471400:7714 y 1y 2y 3y 42666437775þy 1y 2y 1y 3 :8>>>>>>>>>>>>><>>>>>>>>>>>>>:ð8ÞWe select parameters as a =36,b =20,c =3and r =1.3to ensure system (5)is hyperchaotic.The initial values of the dynam-ical system (7)and the response system (8)are:(x 1(0),x 2(0),x 3(0),x 4(0))=(3,4,5,6)and (y 1(0),y 2(0),y 3(0),y 4(0))=(1,2,8,9).Firstly,when a =1,the simulation results of GPS between drive system (7)and response system (8)are shown in Figs.1and 2.From Fig.1(the red 1line stands for the drive system,blue line represents the response system),it can be seen that the state variables of the system (7)and system (8)tend to evolve in the same direction all the time and after a finite period of time,tend to close and get to synchronization.Fig.2shows the trajectories of e 1(t ),e 2(t ),e 3(t )and e 4(t )of the error system quickly approach to zero,respectively,which implies that state vectors tend to be synchronized.Then we set the scaling factor as a =À1.From Fig.3,we can see that the state trajectories of system (7)and system (8)tend to evolve in the opposite direction.The same results are shown in Fig.5with a =À2.It is clear that the state variables of two systems tend to be proportionally synchronized in the opposite direction.Figs.4and 6show the trajectories of e 1(t ),e 2(t ),e 3(t )and e 4(t )in the error system with a =À1and a =À2,respectively.It can be seen that after a finite period of time,the state errors converge to zero and the ratio of the amplitudes of the two systems tends to a constant scaling factor,which X.-Y.Wang,B.Fan /Commun Nonlinear Sci Numer Simulat 17(2012)953–963955Fig.1.State variables of system(7)and system(8)with a=1.Fig.2.The time evolution of errors with a=1.also implies that state vectors tend to be synchronized proportionally.In other words,the GPS between master and slaveFig.3.State variables of system(7)and system(8)with a=À1.Fig.5.State variables of system(7)and system(8)with a=À2.4.2.Hyperchaotic Rössler systemSimilar to the above example,rewrite Eq.(6)as follows_x 1_x 2_x 3_x 42666437775¼c b 0000000À10À1101a 2666437775x 1x 2x 3x 42666437775þB x 2x 3½ þ03002666437775;w ¼D x 1x 2x 3x 42666437775þ½x 2x 3 ;8>>>>>>>>>>>>><>>>>>>>>>>>>>:ð9Þwhere A ¼c b 0000000À10À1101a 2666437775;G ¼03002666437775;F ðx Þ¼½x 2x 3 :D is an undetermined gain matrix.Pole placement method is used to construct matrix D to guarantee all the eigenvalues of A ÀBD with negative real parts.LetB ¼01002666437775and select the eigenvalues of A ÀBD as (À1,À2,À3,À4),then we can getD ¼½À59:471910:3000À7:3416À32:8385 :From Eq.(4)we getK ¼a 0000a 0000a 0000a2666437775:Substituting A ,B ,D ,K and G in Eq.(2),the response system,i.e.,state observer of the driving system (9)can be obtained as _y 1_y 2_y 3_y 426666643777775¼c b 0000000À10À1101a 26666643777775y 1y 2y 3y 426666643777775þ010026666643777775y 2y 3½ þ010026666643777775ða w Àv Þþa 0000a 0000a 0000a 26666643777775030026666643777775;v ¼½À59:471910:3000À7:3416À32:8385 y 1y 2y 3y 426666643777775þ½y 2y 3 :8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:ð10ÞSystem parameters are chosen as a =0.25,b =À0.5,c =0.05to ensure system (6)is hyperchaotic.The initial values of the dynamical system (9)and the response system (10)are:(x 1(0),x 2(0),x 3(0),x 4(0))=(15,À10,À10,10)and (y 1(0),y 2(0),y 3(0),y 4(4))=(À16,À8,À2,9).Similar to the above example,we studied the GPS of drive system (9)and response system (10)with a =1,a =À1and a =À2.Figs.7–12are the corresponding simulation results.Figs.7,9and 11show the state vectors of drive system (9)and re-sponse system (10)tend to be proportionally synchronized and the ratio of the amplitudes of the two systems tends to a constant scaling factor,respectively.From Figs.8,10and 12,it can be seen that the trajectories of e 1(t ),e 2(t ),e 3(t )and e 4(t )of the error system approach to zero after an infinite period of time,respectively,which implies that drive systemX.-Y.Wang,B.Fan /Commun Nonlinear Sci Numer Simulat 17(2012)953–963959Fig.7.State variables of system(9)and system(10)with a=1.Fig.9.State variables of system(9)and system(10)with a=À1.Fig.11.State variables of system(9)and system(10)with a=À2.X.-Y.Wang,B.Fan/Commun Nonlinear Sci Numer Simulat17(2012)953–963963 5.ConclusionIn this paper,a generalized projective synchronization scheme for a class of hyperchaotic systems has been proposed. Based on state observer,there is no need to calculate the Lyapunov exponents.Furthermore,hyperchaotic Lüsystem and hyperchaotic Rössler system are chosen to validate the effectiveness of the proposed scheme.The proposed GPS scheme has good application prospects in the secure communicationfield.AcknowledgementsThe research is supported by the National Natural Science Foundation of China(No.60573172,60973152),the Superior University Doctor Subject Special Scientific Research Foundation of China(No.20070141014)and the Natural Science Foun-dation of Liaoning province(No.20082165).References[1]Pecora LM,Carroll TL.Synchronization of chaotic systems.Phys Rev Lett1990;64(8):821–4.[2]Cheng GR,LüJH.Dynamics analyse,control and synchronization in lorenz systems.Beijing:Science Press;2003.p.185–258.[3]Guan XP,Fan ZP,Chen CL,Hua CC.Chaotic control and its application on secure communication.Beijing:National Defence Industry Press;2002.p.168–225.[4]Wang XY.Chaos in the complex nonlinearity system.Beijing:Electronics Industry Press;2003.p.91–113.[5]Li ChD,Liao XF,Wong g synchronization of hyperchaos with application to secure communications.Chaos Solitons Fract2005;23(1):183–93.[6]Ho MC,Hung YC,Chou CH.Phase and anti-phase synchronization of two chaotic systems by using active control.Phys Lett A2002;296(1):43–8.[7]Vasegh N,Khellat F.Projective synchronization of chaotic time-delayed systems via sliding mode controller.Chaos Solitons Fract2009;42(2):1054–61.[8]Li GH.Generalized projective synchronization between Lorenz system and Chen’s system.Chaos Solitons Fract2007;32(4):1454–8.[9]Fenga CF,Zhang Y,Suna JT,Qia W,Wanga YH.Generalized projective synchronization in time-delayed chaotic systems.Chaos Solitons Fract2008;38(3):743–7.[10]Wen G,Xu D.Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems.Chaos Solitons Fract2005;26(1):71–7.[11]H Li G.Generalized projective synchronization of two chaotic systems by using active control.Chaos Solitons Fract2006;30(1):77–82.[12]Chee CY,Xu D.Secure digital communication using controlled projective synchronisation of chaos.Chaos,Solitons Fract2005;23(3):1063–70.[13]Wang ZL.Projective synchronization of hyperchaotic Lüsystem and Liu system.Nonlinear Dynam2010;59(3):455–62.[14]Tama LM,Chenb JH,Chenc HK,Toua WMS.Generation of hyperchaos from the Chen–Lee system via sinusoidal perturbation.Chaos Solitons Fract2008;38(3):826–39.[15]Grassi GO.Observer-based hyperchaos synchronization in cascaded discrete-time systems.Chaos Solitons Fract2009;40(2):1029–39.[16]Zhang ZW,Li H.The Chen’s synchronization based on state put Simul2005;26(4):198–201.[17]Zhou LJ,Duan YB.The hyperchaotic synchronous secure communication based on state observer.Sci Technol Eng2010;10(23):5648–51.[18]Chen A,Lu JA,LüJH,Yu S.Generating hyperchaotic Lüattractor via state feedback control.Physica A2006;364(15):103–10.[19]Rössler OE.An equation for hyperchaos.Phys Lett A1979;71(2–3):155–7.。