2018年高考数学一轮复习专题06函数的奇偶性与周期性教学案文!
- 格式:doc
- 大小:363.50 KB
- 文档页数:15
2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。
第三节函数的奇偶性与周期性函数的奇偶性与周期性结合具体函数,了解函数奇偶性与周期性的含义.知识点一函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称易误提醒1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0)、f(-x0)=f(x0).3.分段函数奇偶性判定时,利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的.必记结论1.函数奇偶性的几个重要结论:(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.2.有关对称性的结论:(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.(2)若f(x)=f(2a-x),则函数f(x)关于x=a对称.若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.[自测练习]1.函数f(x)=lg(x+1)+lg(x-1)的奇偶性是()A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.(2015·石家庄一模)设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-)=()A.- B.C.2D.-23.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.知识点二函数的周期性1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.必记结论定义式f(x+T)=f(x)对定义域内的x是恒成立的.若f(x+a)=f(x+b),则函数f(x)的周期为T=|a-b|.若在定义域内满足f(x+a)=-f(x),f(x+a)=,f(x+a)=-(a>0).则f(x)为周期函数,且T=2a为它的一个周期.对称性与周期的关系:(1)若函数f(x)的图象关于直线x=a和直线x=b对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(2)若函数f(x)的图象关于点(a,0)和点(b,0)对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(3)若函数f(x)的图象关于点(a,0)和直线x=b对称,则函数f(x)必为周期函数,4|a-b|是它的一个周期.[自测练习]4.函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f(f(5))=________.考点一函数奇偶性的判断|判断下列函数的奇偶性.(1)f(x)=+;(2)f(x)=+;(3)f(x)=3x-3-x;(4)f(x)=;(5)f(x)=函数奇偶性的判定的三种常用方法1.定义法:2.图象法:3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.考点二函数的周期性|设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2017).判断函数周期性的两个方法(1)定义法.(2)图象法.已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-,且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2015)+f(2017)的值为________.考点三函数奇偶性、周期性的应用|高考对于函数性质的考查,一般不会单纯地考查某一个性质,而是对奇偶性、周期性、单调性的综合考查.归纳起来常见的命题探究角度有:1.已知奇偶性求参数.2.利用单调性、奇偶性求解不等式.3.周期性与奇偶性综合.4.单调性、奇偶性与周期性相结合.探究一已知奇偶性求参数1.(2015·高考全国卷Ⅰ)若函数f(x)=x ln(x+)为偶函数,则a=________.探究二利用单调性、奇偶性求解不等式2.(2015·高考全国卷Ⅱ)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A.B.∪(1,+∞)C.D.∪探究三周期性与奇偶性相结合3.(2015·石家庄一模)已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为()A.(-1,4)B.(-2,0)C.(-1,0)D.(-1,2)探究四单调性、奇偶性与周期性相结合4.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则() A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)函数性质综合应用问题的三种常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.2.构造法在函数奇偶性中的应用【典例】设函数f(x)=的最大值为M,最小值为m,则M+m=________.[思路点拨]直接求解函数的最大值和最小值很复杂不可取,所以可考虑对函数整理化简,构造奇函数,根据奇函数的最大值与最小值之和为零求解.[方法点评]在函数没有指明奇偶性或所给函数根本不具备奇偶性的情况下,通过观察函数的结构,发现其局部通过变式可构造出奇偶函数,这样就可以根据奇偶函数特有的性质解决问题.[跟踪练习]已知f(x)=x5+ax3+bx-8,且f(-2)=10,则f(2)等于()A.-26B.-18C.-10D.10A组考点能力演练1.(2015·陕西一检)若f(x)是定义在R上的函数,则“f(0)=0”是“函数f(x)为奇函数”的()A.必要不充分条件B.充要条件C.充分不必要条件D.既不充分也不必要条件2.(2015·唐山一模)已知函数f(x)=-x+log2+1,则f+f的值为()A.2B.-2C.0D.2log23.设f(x)是定义在R上的周期为3的函数,当x∈[-2,1)时,f(x)=,则f=()A.0B.1C.D.-14.在R上的奇函数f(x)满足f(x+3)=f(x),当0<x≤1时,f(x)=2x,则f(2015)=()A.-2B.2C.-D.5.设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x[f(x)-f(-x)]<0的解集为()A.{x|-1<x<0,或x>1}B.{x|x<-1,或0<x<1}C.{x|x<-1,或x>1}D.{x|-1<x<0,或0<x<1}6.已知f(x)是定义在R上的偶函数,f(2)=1,且对任意的x∈R,都有f(x+3)=f(x),则f(2017)=________.7.函数f(x)=为奇函数,则a=______.8.已知函数f(x)在实数集R上具有下列性质:①直线x=1是函数f(x)的一条对称轴;②f(x+2)=-f(x);③当1≤x1<x2≤3时,[f(x2)-f(x1)](x2-x1)<0,则f(2015),f(2016),f(2017)从大到小的顺序为________.9.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.10.函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(1)=0,求不等式f<0的解集.B组高考题型专练1.(2014·高考新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数2.(2014·高考安徽卷)设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f=()A. B.C.0D.-3.(2015·高考广东卷)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+e x4.(2015·高考天津卷)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数.记a =f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<bC.c<a<b D.c<b<a5.(2015·高考湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数答案:1.解析:由知x>1,定义域不关于原点对称,故f(x)为非奇非偶函数.答案:C2.解析:因为函数f(x)是偶函数,所以f(-)=f()=log2=,故选B.答案:B3.解析:∵f(-x)=f(x)对于x∈R恒成立,∴|-x+a|=|x+a|对于x∈R恒成立,两边平方整理得ax=0对于x∈R恒成立,故a=0.答案:04.解:f(x+2)=,∴f(x+4)==f(x),∴f(5)=f(1)=-5,∴f(f(5))=f(-5)=f(3)==-.答案:-考点一解:(1)由得x=±1,∴f(x)的定义域为{-1,1}.又f(1)+f(-1)=0,f(1)-f(-1)=0,即f(x)=±f(-x).∴f(x)既是奇函数又是偶函数.(2)∵函数f(x)=+的定义域为,不关于坐标原点对称,∴函数f(x)既不是奇函数,也不是偶函数.(3)∵f(x)的定义域为R,∴f(-x)=3-x-3x=-(3x-3-x)=-f(x),所以f(x)为奇函数.(4)∵由得-2≤x≤2且x≠0.∴f(x)的定义域为[-2,0)∪(0,2],∴f(x)===,∴f(-x)=-f(x),∴f(x)是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[解](1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2,∴f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.从而求得x∈[2,4]时,f(x)=x2-6x+8.(3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2008)+f(2009)+f(2010)+f(2011)=f(2012)+f(2013)+f(2014)+f(2015)=0,∴f(0)+f(1)+f(2)+…+f(2017)=f(0)+f(1)=0+1=1.解析:当x≥0时,f(x+2)=-,∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(2017)=f(1)=log22=1,f(-2015)=f(2015)=f(3)=-=-1,∴f(-2015)+f(2017)=0.答案:01.解析:由题意得f(x)=x ln(x+)=f(-x)=-x ln(-x),所以+x=,解得a=1.答案:12.解析:函数f(x)=ln(1+|x|)-,∴f(-x)=f(x),故f(x)为偶函数,又当x∈(0,+∞)时,f(x)=ln(1+x)-,f(x)是单调递增的,故f(x)>f(2x-1)?f(|x|)>f(|2x-1|),∴|x|>|2x-1|,解得<x<1,故选A.答案:A3.解析:∵f(x)是定义在R上的周期为3的偶函数,∴f(5)=f(5-6)=f(-1)=f(1),∵f(1)<1,f(5)=,∴<1,即<0,解得-1<a<4,故选A.答案:A4.解析:∵f(x)满足f(x-4)=-f(x),∴f(x-8)=f(x),∴函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,∴f(x)在区间[-2,2]上是增函数,∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).答案:D【典例】[解析]易知f(x)=1+.设g(x)=f(x)-1=,则g(x)是奇函数.∵f(x)的最大值为M,最小值为m,∴g(x)的最大值为M-1,最小值为m-1,∴M-1+m-1=0,∴M+m=2.[答案]2解析:由f(x)=x5+ax3+bx-8知f(x)+8=x5+ax3+bx,令F(x)=f(x)+8可知F(x)为奇函数,∴F(-x)+F(x)=0.∴F(-2)+F(2)=0,故f(-2)+8+f(2)+8=0.∴f(2)=-26.答案:A1.解析:f(x)在R上为奇函数?f(0)=0;f(0)=0f(x)在R上为奇函数,如f(x)=x2,故选A.答案:A2.解析:由题意知,f(x)-1=-x+log2,f(-x)-1=x+log2=x-log2=-(f(x)-1),所以f(x)-1为奇函数,则f-1+f-1=0,所以f+f=2.答案:A3.解析:因为f(x)是周期为3的周期函数,所以f=f=f=4×2-2=-1,故选D.答案:D4.解析:由f(x+3)=f(x)得函数的周期为3,所以f(2015)=f(672×3-1)=f(-1)=-f(1)=-2,故选A.答案:A5.解析:∵奇函数f(x)在(0,+∞)上是增函数,f(-x)=-f(x),x[f(x)-f(-x)]<0,∴xf(x)<0,又f(1)=0,∴f(-1)=0,从而有函数f(x)的图象如图所示:则有不等式x[f(x)-f(-x)]<0的解集为{x|-1<x<0或0<x<1},选D.答案:D6.解析:由f(x+3)=f(x)得函数f(x)的周期T=3,则f(2017)=f(1)=f(-2),又f(x)是定义在R上的偶函数,所以f(2017)=f(2)=1.答案:17.解析:由题意知,g(x)=(x+1)(x+a)为偶函数,∴a=-1.答案:-18.解析:由f(x+2)=-f(x)得f(x+4)=f(x),即函数f(x)是周期为4的函数,由③知f(x)在[1,3]上是减函数.所以f(2015)=f(3),f(2016)=f(0)=f(2),f(2017)=f(1),所以f(1)>f(2)>f(3),即f(2017)>f(2016)>f(2015).答案:f(2017)>f(2016)>f(2015)9.解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].10.解:∵y=f(x)是奇函数,∴f(-1)=-f(1)=0.又∵y=f(x)在(0,+∞)上是增函数,∴y=f(x)在(-∞,0)上是增函数,若f<0=f(1),∴即0<x<1,解得<x<或<x<0.f<0=f(-1),∴∴x<-1,解得x∈?.∴原不等式的解集是.1.解析:由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.答案:C2.解析:∵f(x+2π)=f(x+π)+sin(x+π)=f(x)+sin x-sin x=f(x),∴f(x)的周期T=2π,又∵当0≤x<π时,f(x)=0,∴f=0,即f=f+sin=0,∴f=,∴f=f=f=.故选A.答案:A3.解析:选项A中的函数是偶函数;选项B中的函数是奇函数;选项C为偶函数,只有选项D中的函数既不是奇函数也不是偶函数.答案:D4.解析:由f(x)=2|x-m|-1是偶函数得m=0,则f(x)=2|x|-1,当x∈[0,+∞)时,f(x)=2x-1递增,又a=f(log0.53)=f(|log0.53|)=f(log23),c=f(0),且0<log23<log25,则f(0)<f(log23)<f(log25),即c<a<b.答案:C5.解析:由题意可得,函数f(x)的定义域为(-1,1),且f(x)=ln=ln,易知y=-1在(0,1)上为增函数,故f(x)在(0,1)上为增函数,又f(-x)=ln(1-x)-ln(1+x)=-f(x),故f(x)为奇函数,选A.答案:A。
函数的奇偶性与周期性一、考纲要求函数的奇偶性与周期性B二、复习目标1.理解函数奇偶性的定义; 2、会判断函数的奇偶性 ;3、能证明函数的奇偶性;4、理解函数周期性的定义;5、会求周期函数的周期。
三、重点难点函数奇偶性的判断及证明;函数周期性判断及周期求法。
四、要点梳理1.奇、偶函数的定义:对于函数()f x 定义域内的任意一个x ,都有_______________,称()f x 为偶函数,对于函数()f x 定义域内的任意一个x ,都有________________,称()f x 为奇函数.2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于_________对称;(2)奇函数的图像关于____对称,偶函数的图像关于_________对称;(3)若奇函数的定义域包含0,则_____________;(4)在偶函数中,()()f x f x =.(5)在公共定义域内,①两个奇函数的和是___函数,两个奇函数的积是____函数;②两个偶函数的和、积是___函数;③一个奇函数,一个偶函数的积是____函数. (填“奇”,“偶”)3.对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有 ,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.4.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小正数,那么这个 就叫做f (x )的最小正周期.5.周期性三个常用结论对f (x )定义域内任一自变量的值x : (1) 若f (x +a )=-f (x ),则T =2a ;(2)若f (x +a )=1f x ,则T =2a ; (3) 若f (x +a )=-1f x,则T =2a .(a > 0 ) 五、基础自测1.对于定义在R 上的函数()f x ,下列命题正确的序号是___________.(1)若(2)(2)f f -=,则函数()f x 是偶函数;(2)若(2)(2)f f -≠,则函数()f x 不是偶函数;(3)若(2)(2)f f -=,则函数()f x 不是奇函数;(4)若()f x 是偶函数,则(2)(2)f f -=.2.给出4个函数:①241()3x f x x +=-;②()25f x x =-+;③1()lg 1x f x x -=+;④1()1x f x x -=+. 其中 是奇函数; 是偶函数; 既不是奇函数也不是偶函数.3.已知函数2()43f x x bx a b =+++是偶函数,其定义域是[6,2]a a -,则点(),a b 的坐标为__________.4.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+ ⎪⎝⎭,且(1)2f =,则f (2 014)=________. 5.若函数2()1x a f x x bx +=++在[1,1]-上是奇函数,则()f x = . 六、典例精讲:例1 判断下列函数的奇偶性,并说明理由:(1)2(12)()2x xf x +=; (2)()lg(f x x =; (3)()(1f x x =-(4)2()|1|1f x x x =+-+; (5)()f x (6) 22(0),()(0).x x x f x x x x ⎧-+⎪=⎨+<⎪⎩≥ 例2:设()f x 是定义在R 上的奇函数,且对任意实数x ,恒有()(2)f x f x +=-.当x ∈[0,2]时,2()2f x x x =-。
1.判断函数的奇偶性;2.利用函数的奇偶性求参数;3.考查函数的奇偶性、周期性和单调性的综合应用.一、函数的奇偶性二、周期性 1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.高频考点一 判断函数的奇偶性 例1、判断下列函数的奇偶性: (1)f (x )=3-x 2+x 2-3; (2)f (x )=lg (1-x 2)|x -2|-2;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ),则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知:对于定义域内的任意x ,总有f (-x )=-f (x )成立,∴函数f (x )为奇函数. 【方法规律】判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.【变式探究】 (1)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +sin 2xB .y =x 2-cos xC.y=2x+12x D.y=x2+sin x(2)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数【解析】(1)对于A,定义域为R,f(-x)=-x+sin 2(-x)=-(x+sin 2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;y=x2+sin x既不是偶函数也不是奇函数,故选D.(2)依题意得对任意x∈R,都有f(-x)=-f(x),g(-x)=g(x),因此,f(-x)g(-x)=-f(x)g(x)=-[f(x)·g(x)],f(x)g(x)是奇函数,A错;|f(-x)|·g(-x)=|-f(x)|·g(x)=|f(x)|g(x),|f(x)|g(x)是偶函数,B错;f(-x)|g(-x)|=-f(x)|g(x)|=-[f(x)|g(x)|],f(x)|g(x)|是奇函数,C正确;|f(-x)·g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错.【答案】(1)D(2)C高频考点二函数的周期性例2、(1)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2017)等于________.(2)已知f(x)是定义在R上的偶函数,并且f(x+2)=-1f x,当2≤x≤3时,f(x)=x,则f(105.5)=______.【答案】(1)337(2)2.5=1×20166=336. 又f(2017)=f(1)=1.∴f(1)+f(2)+f(3)+…+f(2017)=337. (2)由已知,可得f(x +4)=f[(x +2)+2] =-1fx +2=-1-1f x=f(x). 故函数的周期为4.∴f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5). ∵2≤2.5≤3,由题意,得f(2.5)=2.5. ∴f(105.5)=2.5.【感悟提升】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f(x +a)=-f(x),则T =2a , ②若f(x +a)=1fx,则T =2a , ③若f(x +a)=-1fx,则T =2a (a>0). 【变式探究】 设函数f(x)(x ∈R)满足f(x +π)=f(x)+sinx .当0≤x<π时,f(x)=0,则f ⎝⎛⎭⎫23π6=__________________________________________. 【答案】 12高频考点三 函数性质的综合应用例3、(1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( ) A .-3B .-1C .1D .3(2)(若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.【解析】 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 则ln(a +x 2-x 2)=0,∴a =1. 【答案】 (1)C (2)1【方法规律】(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据f (x )±f (x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值. (2)已知函数的奇偶性求函数值或【解析】式,首先抓住在已知区间上的【解析】式,将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的【解析】式或函数值.【变式探究】(1)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________. 【解析】 (1)易知f (-x )=2-x +12x -a =2x +11-a 2x,由f (-x )=-f (x ),得2x +11-a 2x =-2x +12x -a,∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.【答案】 (1)C (2)⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0考点四 函数的周期性及其应用例4、 (2016·四川卷)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (2)=________.【解析】 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0,又f (x )在R 上的周期为2, ∴f (2)=f (0)=0.又f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-412=-2,∴f ⎝⎛⎭⎫-52+f (2)=-2. 【答案】 -2【方法规律】(1)根据函数的周期性和奇偶性求给定区间上的函数值或【解析】式时,应根据周期性或奇偶性,由待求区间转化到已知区间.(2)若f (x +a )=-f (x )(a 是常数,且a ≠0),则2a 为函数f (x )的一个周期.【变式探究】 已知f (x )是定义在R 上的偶函数,且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.【解析】 f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. 【答案】 2.51.【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+错误!未找到引用源。
专题06 函数的奇偶性与周期性1.判断函数的奇偶性;2.利用函数的奇偶性求参数;3.考查函数的奇偶性、周期性和单调性的综合应用.一、函数的奇偶性二、周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.高频考点一 判断函数的奇偶性 例1、判断下列函数的奇偶性: (1)f (x )=3-x 2+x 2-3; (2)f (x )=lg (1-x 2)|x -2|-2;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ),则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知:对于定义域内的任意x ,总有f (-x )=-f (x )成立,∴函数f (x )为奇函数. 【方法规律】判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.【变式探究】 (1)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +sin 2xB .y =x 2-cos xC .y =2x+12xD .y =x 2+sin x(2)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数【解析】(1)对于A,定义域为R,f(-x)=-x+sin 2(-x)=-(x+sin 2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;y=x2+sin x既不是偶函数也不是奇函数,故选D.(2)依题意得对任意x∈R,都有f(-x)=-f(x),g(-x)=g(x),因此,f(-x)g(-x)=-f(x)g(x)=-[f(x)·g(x)],f(x)g(x)是奇函数,A错;|f(-x)|·g(-x)=|-f(x)|·g(x)=|f(x)|g(x),|f(x)|g(x)是偶函数,B错;f(-x)|g(-x)|=-f(x)|g(x)|=-[f(x)|g(x)|],f(x)|g(x)|是奇函数,C正确;|f(-x)·g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错.【答案】(1)D (2)C高频考点二函数的周期性例2、(1)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2017)等于________.(2)已知f(x)是定义在R上的偶函数,并且f(x+2)=-1f x,当2≤x≤3时,f(x)=x,则f(105.5)=______.【答案】(1)337 (2)2.5=1×20166=336.又f(2017)=f(1)=1.∴f(1)+f(2)+f(3)+…+f(2017)=337. (2)由已知,可得f(x +4)=f[(x +2)+2] =-1f x+2 =-1-1f x =f(x).故函数的周期为4.∴f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5). ∵2≤2.5≤3,由题意,得f(2.5)=2.5. ∴f(105.5)=2.5.【感悟提升】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f(x +a)=-f(x),则T =2a , ②若f(x +a)=1f x ,则T =2a ,③若f(x +a)=-1f x,则T =2a (a>0).【变式探究】 设函数f(x)(x ∈R)满足f(x +π)=f(x)+sinx .当0≤x<π时,f(x)=0,则f ⎝⎛⎭⎪⎫23π6=__________________________________________.【答案】 12高频考点三 函数性质的综合应用例3、(1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( ) A .-3B .-1C .1D .3(2)(若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.【解析】 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 则ln(a +x 2-x 2)=0,∴a =1. 【答案】 (1)C (2)1【方法规律】(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据f (x )±f (x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值. (2)已知函数的奇偶性求函数值或【解析】式,首先抓住在已知区间上的【解析】式,将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的【解析】式或函数值.【变式探究】(1)若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________. 【解析】 (1)易知f (-x )=2-x+12-a =2x+11-a 2,由f (-x )=-f (x ),得2x+11-a 2x =-2x+12x-a,∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.【答案】 (1)C (2)⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0考点四 函数的周期性及其应用例4、 (2016·四川卷)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.【解析】 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0,又f (x )在R 上的周期为2, ∴f (2)=f (0)=0.又f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2, ∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2.【答案】 -2【方法规律】(1)根据函数的周期性和奇偶性求给定区间上的函数值或【解析】式时,应根据周期性或奇偶性,由待求区间转化到已知区间.(2)若f (x +a )=-f (x )(a 是常数,且a ≠0),则2a 为函数f (x )的一个周期. 【变式探究】 已知f (x )是定义在R 上的偶函数,且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.【解析】 f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. 【答案】 2.51.【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= .【答案】-22.【2016高考山东理数】已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤时,()()f x f x -=-;当12x > 时,11()()22f x f x +=- .则f (6)= ( ) (A )−2 (B )−1(C )0(D )2【答案】D 【解析】当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为的周期函数,所以(6)(1)f f =,又函数()f x 是奇函数,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.【2015高考福建,理2】下列函数为奇函数的是( )A .y =B .sin y x =C .cos y x =D .x x y e e -=-【答案】D【解析】函数y =是非奇非偶函数;sin y x =和cos y x =是偶函数;x x y e e -=-是奇函数,故选D .【2015高考广东,理3】下列函数中,既不是奇函数,也不是偶函数的是( )A .xe x y += B .x x y 1+= C .x xy 212+= D .21x y += 【答案】A .【解析】记()x f x x e =+,则()11f e =+,()111f e --=-+,那么()()11f f -≠,()()11f f -≠-,所以x y x e =+既不是奇函数也不是偶函数,依题可知B 、C 、D 依次是奇函数、偶函数、偶函数,故选A .【2015高考安徽,理2】下列函数中,既是偶函数又存在零点的是( )(A )y cos x = (B )y sin x = (C )y ln x = (D )21y x =+ 【答案】A【2015高考新课标1,理13】若函数f (x )=ln(x x 为偶函数,则a = 【答案】1【解析】由题知ln(y x =是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得=1. (2014·福建卷) 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D【解析】由函数f (x )的【解析】式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).(2014·湖南卷)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1 D .3 【答案】C(2014·新课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数 【答案】C【解析】由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.(2014·新课标全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________. 【答案】(-1,3)【解析】根据偶函数的性质,易知f (x )>0的解集为(-2,2),若f (x -1)>0,则-2<x -1<2,解得-1<x <3.(2013·广东卷)定义域为R 的四个函数y =x 3,y =2x,y =x 2+1,y =2 sin x 中,奇函数的个数是( )A .4B .3C .2D .1 【答案】C【解析】函数y =x 3,y =2sin x 是奇函数.(2013·江苏卷)已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________. 【答案】(-5,0)∪(5,+∞)【解析】设x<0,则-x>0.因为f(x)是奇函数,所以f(x)=-f(-x)=-(x 2+4x). 又f(0)=0,于是不等式f(x)>x 等价于⎩⎪⎨⎪⎧x≥0,x 2-4x>x 或⎩⎪⎨⎪⎧x<0,-(x 2+4x )>x. 解得x>5或-5<x<0,故不等式的解集为(-5,0)∪(5,+∞).(2013·山东卷)已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=( )A .-2B .0C .1D .2【答案】A【解析】∵f ()x 为奇函数,∴f ()-1=-f(1)=-⎝⎛⎭⎪⎫12+11=-2.(2013·四川卷) 已知f(x)是定义域为R 的偶函数,当x≥0时,f(x)=x 2-4x ,那么,不等式f(x +2)<5的解集是________. 【答案】(-7,3)1.在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是( ) A .3 B .2 C .1 D .0【解析】 y =x cos x 为奇函数,y =e x +x 2为非奇非偶函数,y =lg x 2-2与y =x sin x 为偶函数. 【答案】 B2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)内是增函数 B .奇函数,且在(0,1)内是减函数 C .偶函数,且在(0,1)内是增函数 D .偶函数,且在(0,1)内是减函数【解析】 易知f (x )的定义域为(-1,1),且f (-x )=ln(1-x )-ln(1+x )=-f (x ),则y =f (x )为奇函数,又y =ln(1+x )与y =-ln(1-x )在(0,1)上是增函数, 所以f (x )=ln(1+x )-ln(1-x )在(0,1)上是增函数. 【答案】 A3.已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为( ) A .5 B .1 C .-1D .-3【解析】 ∵y =f (x )是奇函数,且f (3)=6.∴f (-3)=-6,则9-3a =-6,解得a =5. 【答案】 A4.已知函数f (x )=x ⎝⎛⎭⎪⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0 C .x 1<x 2 D .x 21<x 22 【解析】 ∵f (-x )=-x ⎝ ⎛⎭⎪⎫1e x -e x =f (x ). ∴f (x )在R 上为偶函数,f ′(x )=e x -1e x +x ⎝ ⎛⎭⎪⎫e x +1e x , ∴x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数,由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,∴x 21<x 22.【答案】 D5.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2【答案】 A6.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)【解析】 ∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4.【答案】 A7.对任意的实数x 都有f (x +2)-f (x )=2f (1),若y =f (x -1)的图象关于x =1对称,且f (0)=2,则f (2 015)+f (2 016)=( )A .0B .2C .3D .4【答案】 B8.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.【解析】 由于f (-x )=f (x ),∴ln(e -3x +1)-ax =ln(e 3x+1)+ax , 化简得2ax +3x =0(x ∈R ),则2a +3=0,∴a =-32. 【答案】 -329.若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的【解析】式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2, 则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________. 【解析】 由于函数f (x )是周期为4的奇函数,所以f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516. 【答案】 51610.定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )>0的x 的集合为________.【解析】 由奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,得函数y =f (x )在(-∞,0)上递增,且f ⎝ ⎛⎭⎪⎫-12=0, ∴f (x )>0时,x >12或-12<x <0. 【答案】 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <0或x >12 11.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式.12.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].13.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为________.【解析】 因为当0≤x <2时,f (x )=x 3-x .又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,则f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,∴f (3)=f (5)=f (1)=0,故函数y =f (x )的图象在区间[0,6]上与x 轴的交点有7个.【答案】 714.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如下图所示.当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.。