模块四 时钟问题
- 格式:doc
- 大小:150.00 KB
- 文档页数:4
奥数七大模块重要知识点-模块体系梳理脑图导语:历年小升初考试中数学成绩占有重要地位,择校考试过程中为了更进一步的拉开分数的距离,除了基础的数学知识必须熟练掌握熟练之外,数学的拓展内容也成为考核的重点部分。
数学思维拓展,也就是大家常说的奥数。
所有的奥数知识,总的来分可以分为七大模块,各类试题都由这七大模块而来。
那么,奥数都有哪些模块呢?每个模块都有哪些重要知识呢?一起看看这些模块你掌握住了多少?奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题同学们,看到这七大模块你都熟悉吗?模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满意法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变更与一半模子4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、屡次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数使用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、列举法之分类列举、标数法、树形图法2、分类列举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手。
时钟问题1.知识点1.时针一昼夜转2圈,每分钟走0.5度,2.分针一昼夜转24圈,每分钟走6度3.时分针一昼夜重合22次,每隔65分重合一次4.追击时间=差度÷5.5,相遇时间=和度÷6.55.时间快慢问题用比去做:先写出快慢两表时间比,题中又会告诉一个表走的时间,再根据这个比求另一个表走的时间。
6.表盘分成12大格,每格30度7.镜面时间+实际时间=12小时1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题。
时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走十二分之一小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65又11分之5 分。
总结基本思路:1、按照行程问题中的思维方法解题;2、不同的表当成速度不同的运动物体;3、路程的单位是分格(表一周为60分格);4、时间是标准表所经过的时间;合理利用行程问题中的比例关系;解题技巧/思路:数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。
时钟问题模块一、时针与分针的速度与度数问题分钟(长针)每分钟走360606÷÷=o÷=o,时针(短针)每分钟走36060120.51、时针指在4:30时,分针与时针之间的夹角是()度。
2、从时针指向4点开始,再经过()分钟,时针正好与分针重合。
3.、钟面上4时10分,时针与分针的夹角是()度。
4、钟面上5时45分,时针在分针后面()度。
A、97B、97.5C、98D、98.55、钟面上的指针在7点的哪一时刻,时针与分钟的夹角为60度?6、求在6点与7点之间,分针与时针成直角的时间。
7、现在是10点整,再过()分钟,时针与分针第一次垂直。
8、钟面上得指针指在9点的哪一时刻,时针和分针的位置与6的距离相等。
模块二、时针与分针的追及与相遇问题1、有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【巩固】钟表的时针与分针在4点多少分第一次重合?【巩固】现在是3点,什么时候时针与分针第一次重合?2、钟表的时针与分针在8点多少分第一次垂直?3、2点钟以后,什么时刻分针与时针第一次成直角?4、8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?5、现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?6、晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。
做完作业再看钟,还不到9点,而且分针与时针恰好重合。
小华做作业用了多长时间?7、某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?8、上午9点多钟,当钟表的时针和分针重合时,钟表表示的时间是9点几分?9、小红上午8点多钟开始做作业时,时针与分针正好重合在一起。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人〞分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度〞或者“每分钟走多少小格〞。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟〞,或者是“坏了的钟〞,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走〔3600-30〕/3600个小时,手表又比闹钟快那么它一小时走〔3600+30〕/3600个小时,那么标准时间走1小时手表那么走〔3600-30〕/3600*〔3600+30〕/3600个小时,那么手表每小时比标准时间慢1—【〔3600-30〕/3600*〔3600+30〕/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学奥数七大模块详解(超详细结构图)本文介绍了小学奥数的七大模块,包括计算、数论、几何、行程、应用题、计数和杂题。
模块一:计算模块这个模块包括速算与巧算、分数小数四则混合运算及繁分数运算、循环小数化分数与混合运算、等差及等比数列、计算公式综合、分数计算技巧之裂项、换元、通项归纳、比较与估算、定义新运算和解方程。
模块二:数论模块这个模块包括质数与合数、因数与倍数、数的整除特征及整除性质、位值原理、余数的性质、同余问题、中国剩余定理(逐级满足法)、完全平方数、奇偶分析、不定方程、进制问题和最值问题。
模块三:几何模块这个模块包括直线型和曲线型两部分。
直线型包括长度与角度、格点与割补、三角形等积变换与一半模型、勾股定理与弦图和五大模型。
曲线型包括圆与扇形的周长与面积和图形旋转扫过的面积问题。
此外,还包括立体几何,包括立体图形的面积与体积、平面图形旋转成的立体图形问题、平面展开图和液体浸物问题。
模块四:行程模块这个模块包括简单相遇与追及问题、环形跑道问题、流水行船问题、火车过桥问题、电梯问题、发车间隔问题、接送问题、时钟问题、多人相遇与追及问题、多次相遇追及问题和方程与比例法解行程问题。
模块五:应用题模块这个模块包括列方程解应用题、分数、百分数应用题、比例应用题、工程问题、浓度问题、经济问题和牛吃草问题。
模块六:计数模块这个模块包括枚举法之分类枚举、标数法、树形图法、分类枚举之整体法、对应法、排除法、加乘原理、排列组合和容斥原理。
小学奥数七大模块详解模块一:从简单情况入手在解决问题时,我们可以从简单情况入手,逐步深入,找到规律,从而解决更复杂的问题。
模块二:对应与转化思想对应与转化思想是一种常用的解决问题的方法,通过将问题转化为另一种形式,或者与另一个问题进行对应,从而得出答案。
模块三:从反面与从特殊情况入手思想有时候,我们可以通过考虑问题的反面或特殊情况来解决问题。
这种思想可以帮助我们发现问题的本质,从而找到解决问题的方法。
电路设计中的时序与时钟问题一、简介电路设计中的时序与时钟问题(100字)电路设计中的时序与时钟问题是指在数字电路设计中,为了保证各个电路模块之间的数据传输和操作的正确顺序,需要合理地设计时序逻辑电路和时钟电路。
时序与时钟问题是数字电路设计中的核心内容之一,对于提高电路的可靠性和性能至关重要。
二、时序与时钟问题的基本概念(200字)1. 时序:时序指的是在电路设计中,模块之间的操作和数据传输的时间顺序。
在时序电路设计中,需要确定输入信号的到达时间和输出信号的产生时间,以确保数据从一个模块传递到另一个模块时的正确顺序。
2. 时钟:时钟是指用来同步整个电路操作的信号。
时钟信号的频率和占空比对于电路的正确操作至关重要。
时钟信号的产生需要考虑时钟源的稳定性和可靠性。
三、时序与时钟问题的解决方法(400字)1. 时序约束分析:在电路设计过程中,需要进行时序约束分析。
时序约束分析是指根据电路设计的需求,分析各个模块之间的数据传输和操作的时间要求。
通过时序约束分析,可以确定各个模块之间的最大延迟和最小延迟,为后续的电路设计提供参考。
2. 时序逻辑电路设计:时序逻辑电路的设计是保证电路操作顺序正确的关键。
时序逻辑电路的设计需要根据时序约束分析的结果来确定输入和输出的时序关系。
在时序逻辑电路设计中,常用的方法包括状态机设计、寄存器和锁存器的设计等。
3. 时钟树设计:时钟树是指将时钟信号传输到整个电路的网络结构。
时钟树设计需要考虑时钟信号的传输延迟、时钟偏移和时钟功耗等因素。
合理的时钟树设计可以减小时钟偏移和时钟抖动,提高电路的可靠性和性能。
4. 时钟源的选择:选择合适的时钟源对于电路设计至关重要。
时钟源的选择需要考虑时钟信号的频率、占空比和稳定性等因素。
常见的时钟源包括晶体振荡器和时钟信号发生器等。
四、时序与时钟问题的重要性(200字)时序与时钟问题在数字电路设计中起着至关重要的作用。
合理地解决时序与时钟问题可以保证电路的正确操作和数据传输的顺序。
时钟问题本章知识1、简单的钟面角度问题2、钟表中的相遇与追及问题3、坏钟问题前铺知识1、相遇问题2、追及问题课前加油站1、请默写出直线相遇与追及问题的两个公式。
2、甲、乙两人同时同地同向在400米长的环形跑道上跑步,甲的速度为6米/秒,乙的速度为4米/秒。
(1)开始后多长时间,甲乙第一次处于跑道的某直径的两端?(2)开始后多长时间,甲第一次超过乙?(3)开始后多长时间,甲乙第一次处于起点所在的直径对称的位置?要研究时钟某个时刻时针与分针成什么角度,我们首先要知道时针与分针行走的速度。
它们的速度有两种表达形式:以小格/分钟为单位或以角度/分钟为单位。
格 度 时钟一圈 60格360度时针速度 121格/分钟 21度/分钟 分针速度 1格/分钟6度/分钟时针速度:分针速度=1:12。
牢记它有助于我们记忆时针和分针的速度。
1、已知:钟表上60小格,一圈是360度,则分针1小时转多少度?时针1小时转多少度?分针速度是时针速度的多少倍?【演练】分针1分转多少度?时针1分转多少度?时针速度是分针速度的几分之几?2、3:00时,分针落后时针 度,15分钟内,分针走 度,时针走 度,因此3:15时,时针与分针的夹角是 度。
模块1简单的钟面角度问题【演练】在下表中仿照第二行的例子填入适当的算式。
X :Y (X 点Y 分) X 点时两针的角度 Y 分时时针走的度数 Y 分时分针走的度数 X 点Y 分时两针的度数 4:16 4×30=120 16×6=96 16×0.5=8 120-96+8=32 8:12 3:40 9:10【演练】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【演练】在16点16分这个时刻,钟表盘面上时针和分针的夹角是多少度?3、小明家的时钟正对着衣柜上的镜子,某天早上起床时,小明看到镜子中的时钟两针指向5点20分的位置,那么现在真正的时钟显示的时间是?题型一 重合问题公式:分针到时针相差的格数÷(1-121)=重合分钟数分针到时针相差的度数÷(6-0.5)=重合分钟数1、现在是2点,从现在开始,分针与时针什么时刻第一次重合在一起?第二次呢?模块2钟表中的相遇与追及问题【演练】现在是7点40分,从现在开始过多长时间时针与分针第一次重合?【演练】有一座时钟现在显示10时整。
奥数的七大模块分别为:计算、数论、几何、行程、应用题、计数和杂题。
模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。
分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。
11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。
时钟问题时钟问题知识点说明:时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度。
时针速度:每分钟走112小格,每分钟走0.5度。
注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒,而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢,那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快,那么它一小时走(3600+30)/3600个小时,则标准时间走1小时,手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒。
模块四 时钟问题
【例 1】 现在是10点,再过多长时间,时针与分针将第一次在一条直线上?
【解析】 时针的速度是 360÷12÷60=0.5(度/分),分针的速度是 360÷60=6(度/分)
即 分针与时针的速度差是 6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度,
第一次在一条直线时,分针与时针的夹角是180度,
即 分针与时针从60度到180度经过的时间为所求。
所以 答案为 12(分)
【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再
经过多少分钟,分针与时针第二次重合?
【解析】
在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l ”,有时针速度为“
112”,于是需要时间:1650(1)541211
÷-=. 所以,再过65411
分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过 65(1210)6054
651111-⨯-=分钟,时针与分针第二次重合. 标准的时钟,每隔56511
分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.
所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112
.如果设分针的速度为单位“l ”,那么时针的速度为“54”. 【例 3】 某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。
当这只钟显示5点时,实际上是中午12点;当这只钟显示6点75分时,实
际上是什么时间?
【解析】标准钟一昼夜是24×60=1440(分),怪钟一昼夜是100×10=1000(分)怪钟从5点到6点75分,经过175分,根据十字交叉法,1440×175÷1000=252(分)即4点12分。
【例4】手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒。
8点整将手表对准,12点整手表显示的时间是几点几分几秒?
【解析】按题意,闹钟走3600秒手表走3660秒,而在标准时间的一小时中,闹钟走了3540秒。
所以在标准时间的一小时中手表走3660÷3600×3599 = 3599(秒),即手表
每小时慢1秒,所以12点时手表显示的时间是11点59分56秒。
【巩固】某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒。
问:这块
手表一昼夜比标准时间差多少秒?
【解析】根据题意可知,标准时间经过60分,闹钟走了60.5分,
根据十字交叉法,可求闹钟走60分,标准时间走了60×60÷60.5分,而手表走了
59.5分,
再根据十字交叉法,可求一昼夜手表走了59.5×24×60÷(60×60÷60.5)分,
所以答案为24×60-59.5×24×60÷(60×60÷60.5)=0.1(分),0.1分=6秒
【例5】一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢3分。
将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整。
此
时的标准时间是多少?
【解析】根据题意可知,标准时间过60分钟,快钟走了61分钟,慢钟走了57分钟,即标准时间每60分钟,快钟比慢钟多走4分钟,60÷4=15(小时)经过15
小时快钟比标准时间快15分钟,所以现在的标准时间是8点45分。
课后练习:
练习1.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑
车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟
发一辆公共汽车?
【解析】紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10
分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人
的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的
步行速度.即:10×4×步行速度÷(5×步行速度)=8(分)
练习2.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔6分钟遇到迎面开来的一
辆电车;小张每隔8分钟遇到迎面开来的一辆电车;小王每隔9分钟遇到迎面开
来的一辆电车.已知电车行驶全程是45分钟,那么小张与小王在途中相遇时他们
已行走了分钟.
【解析】由题意可知,两辆电车之间的距离
10电车行12分钟的路程
48电车行8分钟的路程56小张行8分钟的路程
=小王行9分钟的路程
54电车行9分钟的路程15
由此可得,小张速度是电车速度的72,小王速度是电车速度的20
=,小张与小王的速度和是电车速度的1,所以他们合走完全程所用的时间为电车行驶全程所用时
间的24,即84
=分钟,所以小张与小王在途中相遇时他们已行走了54分钟.
练习3.慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒22,慢车在前面行驶,快车从后面追上到完全超过慢车需要多少时间?
【解析】根据题目的条件可知,本题属于两列火车的追及情况,(142+173)÷(22-17)=63(秒)
练习4.高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走的不正常,每个白天快30秒,每个夜晚慢20秒。
如果在10月一日清晨将挂钟对准,那
么挂钟最早在什么时间恰好快3分?
【解析】根据题意可知,一昼夜快10秒,(3×60-30)÷10=15(天),所以挂钟最早在第15+1=16(天)傍晚恰好快3分钟,即10月16日傍晚。
练习5.某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水
漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇。
【解析】物体漂流的速度与水流速度相同,所以甲船与物体的速度差即为甲船本身的船速(水速作用抵消),甲的船速为1÷1/15=15千米/小时;乙船与物体是个相遇问题,
速度和正好为乙本身的船速,所以相遇时间为:45÷15=3小时
月测备选:
【备选1】小明骑自行车到朋友家聚会,一路上他注意到每隔12分钟就有一辆公交车从后边追上小乐,小明
骑着骑着突然车胎爆了,小明只好以原来骑车三分之一的速度推着车往回走,这
时他发现公交车以每隔4分钟一辆的频率迎面开过来,公交车站发车的间隔时间
到底为多少?
【解析】设公交车之间的间距为一个单位距离,设自行车的速度为x,汽车的速度为y,根据汽车空间和时间间距与车辆速度的关系得到关系式:12×(y-x)=4×(y+1x/3),
化简为3y=5x.即y/x=5/3,而公交车与自行车的速度差为1/12,由此可得到公交
车的速度为5/24,自行车的速度为1/8,因此公交车站发车的时间间隔为24/5=4.8
分钟.
【备选2】2点钟以后,什么时刻分针与时针第一次成直角?
【解析】根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),
10(分)
【备选3】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看
见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【解析】8s,可以把车上的人给抽象出来看成一点,那么就类同题1。
得出快车和慢车的速度和是35,反之,由车长和速度得到280/35=8
【备选4】甲、乙两艘小游艇,静水中甲艇每小时行72千米,乙艇每小时行10千米.现甲、乙两艘小游艇于
同一时刻相向出发,甲艇从下游上行,乙艇从相距18千米的上游下行,两艇于
途中相遇后,又经过4小时,甲艇到达乙艇的出发地.问水流速度为每小时多少
千米?
【解析】两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为12小时.相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆
水行驶18千米需要10小时,那么甲艇的逆水速度为12(千米/小时),那么水流速
度为53(千米/小时)。