普陀高中培训机构:恒高个性化辅导讲义——高二期末模拟试卷
- 格式:doc
- 大小:562.80 KB
- 文档页数:4
上海市普陀区教育学院附属中学高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 直线x+6y+2=0在x轴和y轴上的截距分别是()A、B、C、D、-2,-3参考答案:C2. 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有()A. 30种B. 90种C. 180种D. 270种参考答案:B3. 给出命题:p:3>5,q:4∈{2,4},则在下列三个复合命题:“p q”,“p q”,“p”中,真命题的个数为()A. 0B. 3C. 2D. 1参考答案:C略4. 异面直线是指()A.空间中两条不相交的直线B.平面内的一条直线与平面外的一条直线C.分别位于两个不同平面内的两条直线D.不同在任何一个平面内的两条直线参考答案:D【考点】异面直线的判定.【分析】依据异面直线的定义,逐一分析研究各个选项的正确性,可以通过举反例的方法进行排除.【解答】解:A 不正确,因为空间中两条不相交的直线可能平行.B 不正确,因为平面内的一条直线与平面外的一条直线可能平行,也可能相交.C不正确,因为分别位于两个不同平面内的两条直线可能平行,也可能相交.D 正确,这就是异面直线的定义.故选 D.5. 在△ABC中,A:B:C=1:2:3,则a:b:c等于()A.1:2:3 B.3:2:1 C.1::2 D.2::1参考答案:C6. 若,其中,是虚数单位,复数()A B C D参考答案:B略7. 函数则()A.1 B.2 C.6D.10参考答案:B略8. 函数的图象可能是()A. B.C. D.参考答案:B【分析】根据可得正确的选项.【详解】设,,A,C,D均是错误,选B .【点睛】本题考查函数图像的识别,注意从函数的奇偶性、单调性、特殊点函数值的正负等方面刻画函数的图像.9. 若函数在上单增,则的取值范围为()A. B. C. D.参考答案:A10. 设F1、F2分别为双曲线的左、右焦点,双曲线上存在一点P使得,,则该双曲线的离心率为()A. B. C. D. 3参考答案:B【分析】由,结合,可得的关系式,再由可求离心率. 【详解】由双曲线的定义得.由,结合已知条件可得,则,所以.所以双曲线的离心率.故选B.【点睛】本题考查双曲线的定义和离心率的求解.在椭圆和双曲线的问题中,经常应用(为曲线上的点到两焦点的距离)进行变换,有时还可以与根与系数的关系、余弦定理等结合.由于关系式(双曲线)和(椭圆)的存在,求离心率时,往往只需求得中任意两个字母之间的关系即可.二、填空题:本大题共7小题,每小题4分,共28分11. F1,F2是椭圆+ y2 = 1的两个焦点,P是椭圆上任意一点,则| PF1 | ? | PF2 |的最小值是。
“The Heart of the Matter”问题的核心;事情的实质the newly-released新发布的report by the American Academy of Arts and Sciences(AAAS)美国文理科学院, deserves praise应该得到赞扬for attaching the importance of the humanities and social sciences人文与社会科学to the prosperity繁荣and security of liberal democracy自由民主in America. Regrettably遗憾的是, however, the report’s failure to address提出the true nature本质of the crisis facing liberal education文科教育may cause more harm than good.In 2010, leading领导的;主要的congressional国会的Democrats民主党and Republicans共和党sent letters to the AAAS asking that it identify确定actions that could be taken by federal states联邦州and local governments, universities, foundations基金会, educators, individual benefactors(捐助者) and others to maintain national excellence in某方面卓越humanities and social scientific scholarship奖学金and education. In response作为回应, the AAAS formed the Committee委员会on the Humanities and Social Sciences. Among the Committee’s 51 members are top-university presidents, scholars, lawyers, judges法官, and business executives企业主管, as well as distinguished著名的figures人物from diplomacy外交, filmmaking, music and journalism新闻业.The goals identified确定的in the report are generally admirable值得赞扬的. Because the government supports full literacy (识字) of citizens, the report stresses强调the study of history and government, particularly尤其是American history and American government; and encourages the use of new digital technologies数码技术. To encourage innovation创新and competition, the report calls for呼吁increased investment in research, the introduction of a series of curricula课程that improve students’ ability to solve problems and communicate effectively in the 21st century, increased funding资助for teachers and the encouragement of scholars to bring their learning into practice on the great challenges of the day. The report also advocates提倡grater study of foreign languages, international affairs国际事务and the expansion 扩展of study abroad programs.Unfortunately, despite 2 years in the making在酝酿中, "The Heart of the Matter" never gets to the heart of the matter: the illiberal狭隘的liberal education at our leading主要的colleges and universities. The committee ignores that for several decades America's colleges and universities have produced graduates毕业生who don’t know the content and character内涵和特点of liberal education and are thus deprived of被剥夺its benefits. Sadly, the spirit of inquiry探究once at home在国内on campus has been replaced取代by the use of the humanities and social sciences as vehicles工具,传播媒介for publicizing宣扬“progressive进步人士”.Today, professors routinely例行公事地;老一套地treat the progressive interpretation解释of history and progressive进步的,先进的public policy as theproper subject合适的科目of study while portraying描绘conservative保守的or classical传统的liberal ideas自由的思想—such as free markets and self-reliance自力更生—as falling outside the boundaries边界of routine日常工作, and sometimes legal intellectual理智的;智力的investigation调查研究.The AAAS displays显示,展示great enthusiasm for liberal education. Yet its report may well hold back抑制reform改革by obscuring(遮蔽) the depth and breadth深度和广度of the challenge that Congress国会asked it to clarify阐明.74. Influential figures in the Congress required that the AAAS report on how to ___________.A. maintain people’s interest in liberal educationB. define the government’s role in educationC. keep a leading position领导地位in liberal educationD. safeguard保卫,保护individuals’ rights to education75. Which one of the following statements about what the AAAS plan suggests is true?A. An exclusive排外的,专一的study of American history.B. A greater emphasis on theoretical subjects理论学科.C. The application应用of emerging technologies新兴技术.D. Funding for the study of foreign languages.76. It can be inferred from the passage that ___________.A. professors are routinely例行公事地,常规地supportive支持的of free marketsB. intellectual investigation are put great value on in collegeC. progressive public policy is out of boundaries of proper studyD. professors have prejudice against对…有偏见classical liberal ideas77. Which of the following would be the best title for the text?A. The AAAS’s Contribution to Liberal EducationB. Illiberal Education and “The Heart of the Matter”C. Ways to Grasp抓住,理解“The Heart of the Matter”D. Progressive Policy vs. Liberal Education。
普陀区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++=2. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .43. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个 4. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .65. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1B .3C .5D .96. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65BCD 7. 在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .28. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-29. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .10.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 11.设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .212.已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣213.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .15B .C .15D .15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.14.过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.15.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .二、填空题16.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .17.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .18.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= .19.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .三、解答题20.19.已知函数f (x )=ln .21.设a >0,是R 上的偶函数.(Ⅰ)求a 的值;(Ⅱ)证明:f (x )在(0,+∞)上是增函数.22.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.23.已知函数f (x )=.(1)求函数f (x )的最小正周期及单调递减区间; (2)当时,求f (x )的最大值,并求此时对应的x 的值.24.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2133(21-+=,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.25.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,,E ,F 分别是A 1C 1,AB 的中点.(I )求证:平面BCE ⊥平面A 1ABB 1; (II )求证:EF ∥平面B 1BCC 1; (III )求四棱锥B ﹣A 1ACC 1的体积.普陀区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 2. 【答案】 C【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c , 由椭圆和双曲线的定义可知, 设|MF 1|=r 1,|MF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2 ∵∠F 1MF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2,即=﹣1,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2,即=1﹣,③ 联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤, 当且仅当e 1=,e 2=时取等号.即取得最大值且为.故选C .【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.3.【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A⊆B,A⊆C;∴A⊆B∩C={0,2}∴集合A可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B.4.【答案】B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B.【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.5.【答案】C【解析】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.6.【答案】B考点:双曲线的性质.7.【答案】C【解析】解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,∴解得:a=或2.故选:C.8.【答案】B【解析】考点:向量共线定理.【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B.【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.10.【答案】C【解析】考点:茎叶图,频率分布直方图.11.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.12.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面ABCD ,如图所示,所以此四棱锥表面积为1S =262创?1123+22622创创?15=,故选C .4646101011326E VD CBA14.【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 15.【答案】C【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:所以m 可以取:0,1,2. 故答案为:C二、填空题16.【答案】0 【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与GF 所成的角的余弦值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,∴A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A1E⊥GF,∴异面直线A1E与GF所成的角的余弦值为0.故答案为:0.17.【答案】.【解析】解:∵sinα+cosα=,<α<,∴sin2α+2sinαcosα+cos2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.18.【答案】.【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,=,=,…,=,∴++…+=+…+=1﹣=,故答案为:.【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.19.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.三、解答题20.【答案】【解析】解:(1)∵f (x )是奇函数, ∴设x >0,则﹣x <0, ∴f (﹣x )=(﹣x )2﹣mx=﹣f (x )=﹣(﹣x 2+2x )从而m=2.(2)由f (x )的图象知,若函数f (x )在区间[﹣1,a ﹣2]上单调递增,则﹣1≤a ﹣2≤1 ∴1≤a ≤3【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.21.【答案】【解析】解:(1)∵a >0,是R 上的偶函数.∴f (﹣x )=f (x ),即+=,∴+a •2x =+,2x (a ﹣)﹣(a ﹣)=0,∴(a ﹣)(2x+)=0,∵2x+>0,a >0,∴a ﹣=0,解得a=1,或a=﹣1(舍去), ∴a=1;(2)证明:由(1)可知,∴∵x >0, ∴22x >1, ∴f'(x )>0,∴f (x )在(0,+∞)上单调递增;【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.22.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以())()1222221x m x x x x=--+==′ ………12分当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m所以()()min 140m x m ==-<, ……………………………………14分 3241-e)(1+e+2e )(=0e m e -<() ,8424812(21))0e e e m e e -++-=>(4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 23.【答案】【解析】解:(1)f(x)=﹣=sin2x+sinxcosx﹣=+sin2x﹣=sin(2x﹣)…3分周期T=π,因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,所以函数f(x)的单调递减区间为,,k∈Z…7分(2)当,2x﹣∈,…9分sin(2x﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f(x)取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.24.【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线C 是椭圆,将直线2l :m kx y +=代入 椭圆C 的方程124322=+y x 中,得01248)34(222=-+++m kmx x k由直线2l 与椭圆C 有且仅有一个公共点知, 0)124)(34(4642222=-+-=∆m k m k ,整理得3422+=k m …………7分且211||k k m d +-=,221||kk m d ++=1当0≠k 时,设直线2l 的倾斜角为θ,则|||tan |213d d d -=⋅θ,即||213kd d d -= ∴2222121213211||4||||)()(km k d d k d d d d d d d +=-=-+=+||||16143||42m m m m +=+-=…………10分∵3422+=k m ∴当0≠k 时,3||>m ∴334313||1||=+>+m m ,∴34)(321<+d d d ……11分 2当0=k 时,四边形PQ F F 21为矩形,此时321==d d ,23=d∴34232)(321=⨯=+d d d …………12分综上1、2可知,321)(d d d ⋅+存在最大值,最大值为34 ……13分25.【答案】【解析】(I )证明:在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥底面ABC ,所以,BB 1⊥BC .又因为AB ⊥BC 且AB ∩BB 1=B , 所以,BC ⊥平面A 1ABB 1. 因为BC ⊂平面BCE ,所以,平面BCE ⊥平面A 1ABB 1. (II )证明:取BC 的中点D ,连接C 1D ,FD .因为E ,F 分别是A 1C 1,AB 的中点, 所以,FD ∥AC且.因为AC ∥A 1C 1且AC=A 1C 1, 所以,FD ∥EC 1且 FD=EC 1. 所以,四边形FDC 1E 是平行四边形. 所以,EF ∥C 1D .又因为C 1D ⊂平面B 1BCC 1,EF ⊄平面B 1BCC 1, 所以,EF ∥平面B 1BCC 1.(III)解:因为,AB ⊥BC所以,.过点B 作BG ⊥AC 于点G,则.因为,在三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥底面ABC ,AA 1⊂平面A 1ACC 1所以,平面A 1ACC 1⊥底面ABC . 所以,BG ⊥平面A 1ACC 1.所以,四棱锥B ﹣A 1ACC 1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.。
普陀区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥3},图中阴影部分所表示的集合为()A.{1} B.{1,2} C.{1,2,3} D.{0,1,2}2.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232 B.252 C.472 D.4843.不等式≤0的解集是()A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2] C.(﹣∞,﹣1)∪[2,+∞) D.(﹣1,2]4.若偶函数y=f(x),x∈R,满足f(x+2)=﹣f(x),且x∈[0,2]时,f(x)=1﹣x,则方程f(x)=log8|x|在[﹣10,10]内的根的个数为()A.12 B.10 C.9 D.85.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A .B .C .D .6. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③7. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .8. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°9. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A .B .C .D .10.已知函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.若数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),则{a n}的前28项之和S28=()A.7 B.14 C.28 D.5611.正方体的内切球与外接球的半径之比为()A.B.C.D.10101化为十进制数的结果为()12.二进制数)(2A.15B.21C.33D.41二、填空题13.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.14.若函数f(x)=log a x(其中a为常数,且a>0,a≠1)满足f(2)>f(3),则f(2x﹣1)<f(2﹣x)的解集是.15.已知函数f(x)是定义在R上的单调函数,且满足对任意的实数x都有f[f(x)﹣2x]=6,则f(x)+f(﹣x)的最小值等于.16.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米.(太阳光线可看作为平行光线)17.下列四个命题申是真命题的是(填所有真命题的序号)①“p∧q为真”是“p∨q为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.18.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.三、解答题19.已知不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},(1)求a ,b ;(2)解不等式ax 2﹣(ac+b )x+bc <0.20.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.21.已知函数f (x )=,求不等式f (x )<4的解集.22.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点. (1)若x 0=﹣4,y 0=1,求圆M 的方程;(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.23.2()sin 22f x x x =+. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12A f =,ABC ∆的面积为.24.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)普陀区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.2.【答案】C【解析】【专题】排列组合.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C.【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.3.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.4.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D.5.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.6.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.7.【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE与AC所成角为θ,则cosθ===.故选:B.8.【答案】B【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.9.【答案】D【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.10.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.11.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为: a ,所以,正方体的内切球与外接球的半径之比为:故选C12.【答案】B 【解析】试题分析:()21212121101010242=⨯+⨯+⨯=,故选B. 考点:进位制二、填空题13.【答案】 9 .【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22, 所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18, 所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:914.【答案】 (1,2) .【解析】解:∵f (x )=log a x (其中a 为常数且a >0,a ≠1)满足f (2)>f (3), ∴0<a <1,x >0,若f (2x ﹣1)<f (2﹣x ),则,解得:1<x <2,故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.15.【答案】6.【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,∴f(x)﹣2x=a,即f(x)=a+2x,∴当x=a时,又∵a+2a=6,∴a=2,∴f(x)=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.16.【答案】 3.3【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.17.【答案】①③④【解析】解:①“p∧q为真”,则p,q同时为真命题,则“p∨q为真”,当p真q假时,满足p∨q为真,但p∧q为假,则“p∧q为真”是“p∨q为真”的充分不必要条件正确,故①正确;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC中,tan∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故④正确,故答案为:①③④18.【答案】10【解析】3m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,32为连续两项和,33为接下来三项和,故3m 的首个数为12+-m m .∵)(3+∈N m m 的分解中最小的数为91,∴9112=+-m m ,解得10=m .三、解答题19.【答案】【解析】解:(1)因为不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},所以x 1=1与x 2=b 是方程ax 2﹣3x+2=0的两个实数根,且b >1.由根与系的关系得,解得,所以得. (2)由于a=1且 b=2,所以不等式ax 2﹣(ac+b )x+bc <0,即x 2﹣(2+c )x+2c <0,即(x ﹣2)(x ﹣c )<0.①当c >2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|2<x <c}; ②当c <2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|c <x <2}; ③当c=2时,不等式(x ﹣2)(x ﹣c )<0的解集为∅.综上所述:当c >2时,不等式ax 2﹣(ac+b )x+bc <0的解集为{x|2<x <c};当c <2时,不等式ax 2﹣(ac+b )x+bc <0的解集为{x|c <x <2}; 当c=2时,不等式ax 2﹣(ac+b )x+bc <0的解集为∅.【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.20.【答案】(1)(][),06,-∞+∞;(2)[]1,0-. 【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤.试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;考点:不等式选讲. 21.【答案】【解析】解:函数f (x )=,不等式f (x )<4,当x ≥﹣1时,2x+4<4,解得﹣1≤x <0; 当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1. 综上x ∈(﹣3,0).不等式的解集为:(﹣3,0).22.【答案】【解析】解:(1)设圆的方程为x 2+y 2+Dx+Ey+F=0圆的方程为x 2+y 2﹣8y ﹣9=0…(2)直线CD 与圆M 相切O 、D 分别是AB 、BR 的中点 则OD ∥AR ,∴∠CAB=∠DOB ,∠ACO=∠COD , 又∠CAO=∠ACO ,∴∠DOB=∠COD 又OC=OB ,所以△BOD ≌△COD ∴∠OCD=∠OBD=90°即OC ⊥CD ,则直线CD 与圆M 相切. … (其他方法亦可)23.【答案】(1)5,36k k ππππ⎡⎤++⎢⎥⎣⎦(k ∈Z );(2)【解析】试题分析:(1)根据3222262k x k πππππ+≤-≤+可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫= ⎪⎝⎭可得3A π=,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1)111()cos 22sin(2)2262f x x x x π=-=-+, 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+,k Z ∈,∴()f x 的单调递减区间为5[,]36k k ππππ++(k Z ∈).考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用.24.【答案】【解析】【专题】综合题;概率与统计.【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉则随机变量ξ的分布列为ξ0 1 2P数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉(Ⅲ)2×2列联表为甲班乙班合计优秀 3 10 13不优秀17 10 27合计20 20 40┉┉┉┉┉K2=≈5.584>5.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.。
普陀区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D .2. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )3. 经过点且在两轴上截距相等的直线是( )()1,1M A . B .20x y +-=10x y +-=C .或 D .或1x =1y =20x y +-=0x y -=4. 在△ABC 中,已知a=2,b=6,A=30°,则B=()A .60°B .120°C .120°或60°D .45°5. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( )A .C .D .时,函数f (x )的最大值与最小值的和为()A .a+3B .6C .2D .3﹣a6. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A .i ≥7?B .i >15?C .i ≥15?D .i >31?7. 已知函数,则( )1)1(')(2++=x x f x f =⎰dx x f 1)(A . B .C .D .67-676565-【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.8. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=9. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .132010.以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤- B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++< C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+ D .已知,表示两条不同的直线,,表示不同的平面,并且,,则“”是m n αβm α⊥n β⊂αβ⊥ “”的必要不充分条件//m n 【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.11.已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a 的值为( )A .或﹣B .或3C .或5D .3或512.若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .13.设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( )A .M=PB .P ⊊MC .M ⊊PD .M ∪P=R 14.已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为()A .B .﹣C .﹣1D .15.设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到F 22221(0,0)x y a b a b-=>>OF 另一条渐近线的距离为,则双曲线的离心率为( )1||2OFA .BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.二、填空题16.设变量满足约束条件,则的最小值是,则实数y x ,22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩22(1)3(1)z a x a y =+-+20-a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.17.定义在上的函数满足:,,则不等式(其R )(x f 1)(')(>+x f x f 4)0(=f 3)(+>xxe xf e 中为自然对数的底数)的解集为 .18.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .19.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .三、解答题20.(本小题满分12分)已知向量满足:,,.,a b ||1a = ||6b = ()2a b a ∙-=(1)求向量与的夹角;(2)求.|2|a b -21.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.22.某运动员射击一次所得环数X 的分布如下:X 0~678910P0.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.(I )求该运动员两次都命中7环的概率;(Ⅱ)求ξ的数学期望E ξ. 23.设f (x )=ax 2﹣(a+1)x+1(1)解关于x 的不等式f (x )>0;(2)若对任意的a ∈[﹣1,1],不等式f (x )>0恒成立,求x 的取值范围.24.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数.()1ln 1f x a x x=+-(1)当时,求函数在点处的切线方程;2a =()f x ()()11f ,(2)讨论函数的单调性;()f x (3)当时,求证:对任意,都有.102a <<1+2x ⎛⎫∈∞ ⎪⎝⎭,1e x aa x +⎛⎫+< ⎪⎝⎭25.已知二次函数的最小值为1,且.()f x (0)(2)3f f ==(1)求的解析式;()f x (2)若在区间上不单调,求实数的取值范围;()f x []2,1a a +(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.[]1,1-()y f x =221y x m =++m普陀区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.2.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.3.【答案】D【解析】考点:直线的方程.4.【答案】C【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B∈(0°,180°),∴B=120°或60°.故选:C.5.【答案】A【解析】A.C.D.恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12,故选:A.6.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.7.【答案】B8.【答案】D【解析】解:抛物线x=﹣4y2即为y2=﹣x,可得准线方程为x=.故选:D.9.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.10.【答案】D11.【答案】C【解析】解:圆x2+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.∵•=4,∴2•2cos∠ACB=4∴cos∠ACB=,∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C.12.【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.13.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.14.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.15.【答案】B【解析】二、填空题16.【答案】2±【解析】,0(+∞17.【答案】)【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即()()01>-'+x f x f xe ,因此构造函数,求导利用函数的单调性解不等式.另外本题也可()()0>-'+x x x e x f e x f e ()()x x e x f e x g -=以构造满足前提的特殊函数,比如令也可以求解.1()4=x f 18.【答案】 (1,2) .【解析】解:∵f (x )=log a x (其中a 为常数且a >0,a ≠1)满足f (2)>f (3),∴0<a <1,x >0,若f (2x ﹣1)<f (2﹣x ),则,解得:1<x <2,故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题. 19.【答案】 4 .【解析】解:由题意可得点B 和点C 关于原点对称,∴|+|=2||,再根据A 为抛物线x 2=﹣8y 的焦点,可得A (0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.三、解答题20.【答案】(1);(2).3π【解析】试题分析:(1)要求向量的夹角,只要求得这两向量的数量积,而由已知,结合数量,a ba b ⋅ ()2a b a ∙-= 积的运算法则可得,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式,把a b ⋅22a a =考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式求得这两个cos ,a ba b a b⋅<>=向量夹角的余弦值;第四步,根据向量夹角的范围在内及余弦值求出两向量的夹角.[0,]π21.【答案】【解析】解:(1)由m+>0,(x ﹣1)(mx ﹣1)>0,∵m >0,∴(x ﹣1)(x ﹣)>0,若>1,即0<m <1时,x ∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x ∈(﹣∞,1)∪(1,+∞);若<1,即m >1时,x ∈(﹣∞,)∪(1,+∞).(2)若函数f (x )在(4,+∞)上单调递增,则函数g (x )=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档. 22.【答案】【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.2×0.2=0.04.(2)依题意ξ在可能取值为:7、8、9、10且P(ξ=7)=0.04,P(ξ=8)=2×0.2×0.3+0.32=0.21,P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,∴ξ的分布列为:ξ78910P0.040.210.390.36ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.23.【答案】【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,即有(ax﹣1)(x﹣1)>0,当a=0时,即有1﹣x>0,解得x<1;当a<0时,即有(x﹣1)(x﹣)<0,由1>可得<x<1;当a=1时,(x﹣1)2>0,即有x∈R,x≠1;当a>1时,1>,可得x>1或x<;当0<a<1时,1<,可得x<1或x>.综上可得,a=0时,解集为{x|x<1};a<0时,解集为{x|<x<1};a=1时,解集为{x|x∈R,x≠1};a>1时,解集为{x|x>1或x<};0<a<1时,解集为{x|x<1或x>}.(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,即为ax2﹣(a+1)x+1>0,即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].则g (﹣1)>0,且g (1)>0,即﹣(x 2﹣1)﹣x+1>0,且(x 2﹣1)﹣x+1>0,即(x ﹣1)(x+2)<0,且x (x ﹣1)>0,解得﹣2<x <1,且x >1或x <0.可得﹣2<x <0.故x 的取值范围是(﹣2,0). 24.【答案】(1);(2)见解析;(3)见解析.10x y --=【解析】试题分析:(1)当时,求出导数易得,即,利用点斜式可得其切线方程;(2)2a =()'11f =1k =求得可得,分为和两种情形判断其单调性;(3)当时,根据(2)可()21'ax f x x -=0a ≤0a >102a <<得函数在上单调递减,故,即,化简可得所证结论.()f x ()12,()11a f f x ⎛⎫+< ⎪⎝⎭ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭试题解析:(1)当时,2a =,,,,所以函数在点()12ln 1f x x x =+-()112ln1101f =+-=()221'f x x x =-()221'1111f =-=()f x 处的切线方程为,即.()10,()011y x -=⨯-10x y --=(2),定义域为,.()1ln 1f x a x x =+-()0+∞,()2211'a ax f x x x x-=-=①当时,,故函数在上单调递减;0a ≤()'0f x <()f x ()0+∞,②当时,令,得0a >()'0f x =1x a=x10a ⎛⎫ ⎪⎝⎭,1a1a ⎛⎫+∞ ⎪⎝⎭,()'f x -+()f x ↘极小值↗综上所述,当时,在上单调递减;当时,函数在上单调递减,在0a ≤()f x ()0+∞,0a >()f x 10a ⎛⎫ ⎪⎝⎭,上单调递增.1a ⎛⎫+∞ ⎪⎝⎭,(3)当时,由(2)可知,函数在上单调递减,显然,,故,102a <<()f x 10a ⎛⎫ ⎪⎝⎭,12a >()1120a ⎛⎫⊆ ⎪⎝⎭,,所以函数在上单调递减,对任意,都有,所以.所以()f x ()12,1+2x ⎛⎫∈∞ ⎪⎝⎭,01a x <<112a x <+<,即,所以,即,所以()11a f f x ⎛⎫+< ⎪⎝⎭1ln 1101a a a x x⎛⎫++-< ⎪⎝⎭+ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,即,所以.()ln 11a x a x ⎛⎫++< ⎪⎝⎭ln 11x aa x +⎛⎫+< ⎪⎝⎭1e x aa x +⎛⎫+< ⎪⎝⎭25.【答案】(1);(2);(3).2()243f x x x =-+102a <<1m <-试题解析:(1)由已知,设,2()(1)1f x a x =-+由,得,故.(0)3f =2a =2()243f x x x =-+(2)要使函数不单调,则,则.211a a <<+102a <<(3)由已知,即,化简得,2243221x x x m -+>++2310x x m -+->设,则只要,2()31g x x x m =-+-min ()0g x >而,得.min ()(1)1g x g m ==--1m <-考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:;(2)顶点式:若二次函数的顶点坐标为,则其解析式为()()20f x ax bx c a =++≠(),h k ;(3)两根式:若相应一元二次方程的两根为,则其解析式为()()()20f x a x h k a =-+≠()12,x x .()()()()120f x a x x x x a =--≠。
恒高个性化辅导讲义——普陀区一模p II.Grammar and VocabularySection ADirections:After reading the passages below, fill in the blanks to make the passages coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word, for the other blanks, use one word that best fits each blank.(A)Left HandednessWhat do Leonardo da Vinci, Marie Curie, and Albert Einstein have in common? They wereall left-handed, along with other famous people including Barack Obama. In fact, an estimated 13percent of the world's population (25)be left-handed.Most people are right-handed. This fact also seems to have held true (26)history. In 1977, scientists studied works of art made at various times starting with cave drawings from 15,000 B.C. and ending with paintings from the 1950s. Most of the people (27) (show) inthese works of art are right-handed.Many researchers claim (28)(find) relationships between left-handedness and variousphysical and mental characteristics. However, (29)of these connections are very weak, andothers have not been proven. What makes a person become right-handed rather than left-handed? As yet, no one really knows for sure.(30) reasons may be behind it, people’s attitudes toward left-handedness have changed a lot over the years. There are even anumber of shops (31) (specialize) in selling products for left-handed people, such as left-handed scissors, can openers, guitars, and even a left-handed camera. In 1976,Left-Handers International, a group of left-handed people in Topeka, Kansas, in the United States, decided to start(32)annual event in order to clear up misunderstandings about left-handedness.(B)Motivating Students(33) a young child might be nervous about starting school, he or she is often excited on the first day of school. Perhaps that excitement lasts through the first few years of school. But over time, many children are much (34) (excited) about going to school because school becomes a place of “all work and no play.”As the years go by, students(35)(pressure) to do more work and to do it better, make better test scores, and have ahigher class rank. It is therefore not surprising that by middle school many students lose interest inschool and learning.Teachers face, a big challenge in such a situation. When they enter a classroom (36) most of the students do not want to be there and do not want to study, howcan they teach? Some teachers may be tempted to focus their energy on the handful of students in the classroom who show an interest in (37) (learn). Other teachers have to reward “good”students and punishing “bad” students in the hope (38)this may somehow motivate all,students to try harder.Through his own teaching experience, Dr. Richard Lavoie became interested in the problemof motivating students. He (39) (wonder) what motivates some students to want to learn. Instudying this question, Dr. Lavoie discovered that other people have done a lot of research into this question already. However, those people do not work in schools. The people who seemed toknow the most about (40)motivates kids were researchers who work for companies thatwere advertising products such as toys and music for children.Section BDirections: Complete the following passage by using the words in the box. Each word can only be usedsafe,”Stephen Hawking says. Stephen Hawking, one of the world’s most important scientists, believes that to __41__, humans must move into space.Today, the United States, India, China, and Japan are all planning to send astronauts back toEarth’s closest __42__: the moon. Each country wants to create space stations there between 2020 and 2030. These stations will __43__ prepare humans to visit and later live on Mars or other Earth-like planets.Robert Zubrin, a rocket scientist, thinks humans should __44__ space. He wants to start with Mars. Why? There are several advantages: for one, sending people to the moon and Mars will allow us to learn a lot—for example, whether living on other planets is possible. Then, we can eventually __45__ new human societies on other planets. In addition, the __46__ we make for space travel in the fields of science, technology, medicine, and health can also benefit us here on Earth.But not everyone thinks sending humans into space is a(n) __47__ idea. Many say it’s too expensive to send people, evenon a short __48__. And most space trips are not short. A one-way trip to Mars, for example, would take about, six months. People travelling this land of distance face a number of health problems. Also, for many early space __49__, life would be extremely difficult. On the moon’s surface, for example, the air and the sun’s rays are very dangerous. People would have to stay indoors most of the time.Despite these __50__, sending people into space seems certain. In the future, we might see lunar (月球上的) cities and maybe even new human cultures on other planets.III. Reading ComprehensionSection ADirections: For each blank in the following passage there,are four words or phrases marked A,B,C and D. Fill in each blank with the word or phrase that best fits the context.When you say that someone has a good memory, what exactly do you mean? Are you saying that the person has fast recall or that he or she __51__ information quickly? Or: maybe you just mean that the person remembers a lot about her or his childhood. The truth is that it is __52__ to say exactly what memory is. Even scientists who have been studying memory for decades say they are still trying to __53__ exactly what it is. We do know that a particular memory is not just one thing stored somewhere in the brain. __54__, a memory is made up of bits and pieces of information stored all over the train. Perhaps the best way to __55__ memory is to say that it is a process —a process of recording, storing, and getting back information. Practice and repetition can help to __56__ the pieces that make up our memory of that information.Memory can be __57__ affected by a number of things. __58__ nutrition can affect a person’s ability to store information. Excessive alcohol use can also weaken memory and cause permanent __59__ to the brain over the long term. A vision or hearing problem may affect a person's ability to notice certain things, thus making it __60__ to register information in the brain.When people talk about memory, they often __61__ short-term memory and long-term memory, you want to call a store or an office that you don’t call often, you look in the telephone book for the number.You dial the number, and then you forget it! You use your short-term memory to remember the number. Your short-term memory lasts about 30 seconds, or half a minute. __62__,y ou don’t need to look in the telephone book for your best friend's number, because you already know it. This number is in your long-term memory, which __63__ information about things you have learned and experienced through the years.Why do you forget things sometimes? The major reason for forgetting something is that youdid not learn it well enough __64__. For example, if you meet some new people and right away forget their names, it is because you did not __65__ the names at the first few seconds when youheard them.51. A. collects B. processes C. publishes D. absorbs52. A. necessary B. important C. difficult D. convenient,53. A. figure out B. stake out C. put out D. give out54. A. After all B. Instead C. By contrast D. Besides55. A. recall B. refresh C. describe D. decrease56. A. lose B. organize C. identify D. strengthen57. A. positively B. negatively C. actively D. directly58. A. Poor B. Adequate C. Special D. Various59. A. benefit B. offence C. effect D. damage60. A. easier B. mare impressive C. harder D. more convenient61.A. refer to B. apply for C. come across D. break down62.A. Furthermore B. However C. Consequently D. Otherwise63. A. leaks B. transmits C. checks D. stores64. A. in the middle B. at the end C. in the beginning D. ahead of time65. A. restore B.record C. replace D. respondSection BDirections: Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(A)In 1991, high in the mountains of Europe, hikers made a discovery: a dead man partly frozen in the ice. However, the police investigation soon became a scientific one. Carbon dating indicated that the man died over 5,300 years ago. Today he is known as the Iceman and has been nick named “O tzi” for the Otztal Alps whereshe was found. Kept in perfect condition by the ice,he is the oldest complete human body on the earth.Scientists think he was an important person in his society. An examination of his teeth and skull tells us that he was not a young man. His arms were not the arms of a laborer. His dagger (匕首)was made of stone, but he carried a copper axe. This implies wealth, and he was probably from the upper classes. We know he could make fire, as a fire-starting kit was discovered with him. Even the food he had eaten enabled scientists to reason exactly where in Italy he lived.But why did the Iceman die in such a high and-icy place? There have been many theories. Some said he was a lost shepherd. Others thought he was killed in a religious ceremony. Over the years since he was found, tiny scientific discoveries have led to great changes in ourunderstanding of the story of the Iceman. The newest scientific Information indicates that he was cruell y murdered. “Even five years ago, the story was that he fled up there and walked around in the snow and probably died of exposure,said Klaus Oeggl, a scientist at the University Of Innsbruck in Austria. “Now it's all changed. Ft5s more like a crime scene."In June 2001, an X-ray examination of the body showed a small dark shape beneath the Iceman’s left shoulder. It was the stone head of an arrow. It had caused a deadly injury that probably killed him very quickly. In 2003, an Australian scientist discovered the blood of four different people on the clothes of the Iceman. Did a bloody fight take place before his murder? Injuries on his hand and head indicate that this may be true. One theory, put forward by archeologist (考古学家)Walter Leitner, says that the Iceman’s murder was the end of a fight for power among his people. However, this idea is certainly debatable.66.What does “O tzi” refer to?A.The oldest perfectly preserved human bodyB.The most famous tourist attraction Otztal AlpsC. An important discovery by the police of EuropeD.The person living in Otztal Alps for a long time67.After the examination of the Iceman, scientists believe that.A.he died at an early ageB. he made a fire-starting kitC.he had a higher social statusD.he was born at a village in Italy68. According to Klaus Oeggl, the Iceman died from.A. a serious diseaseB. a snow disasterC.a religious faithD. a terrible murder69. What is the passage mainly talking about?A. The life of ancient people in the Alps Mountains.B. The cruel religious life of the Europeans in the past.C. The discovery and possible cause of death of tile Iceman.D.The application of carbon dating technology to the iceman.(B)CAMBRIDGEInternational ExaminationExcellence in educationCambridge Schools Conference 2015 - book your place todayInspiring teachers, inspiring learners: How we prepare learners for a lifetime of learning.Dear Colleague,The Cambridge Schools Conference is taking place in Colombo, Sri. Lanka from 3-5 Jan 2015. Booking for the conference closes on 24 December 2014, book now to sec lire your place.Feedback from schools that attended our recent conference in Cambridge includes: “Outstanding keynote presentation by Guy Claxton”Roland Ebiye-Koripamo, Cita International School “A Cambridge, Conference shoots up the expectation level of the representatives and. when it not just reaches that level but surpasses, it with excellence, you define it as the Cambridge Schools Conference, 2015!”Seema Anis, A1 Waha International School, Jeddah “I have met so many interesting people. Having the opportunity to meet educators from all over the world is a unique experience.”Luciana Fernandez, ESSARP, Argentina The conference brings together a community of teachers representing schools from many different countries and contexts, to consider approaches to common challenges. Ourprogramme is designed to support professional learning by offering a range of perspectives on the conference theme. Discuss and debate these in our panel sessions(小组会议)and explore their implications in group discussions and workshops.We look forward to welcoming you to Colombo.Follow @GIE Education for news and information about the conference. Use the hashtag #csconf15 to join the conversation.Forward to a friend Unsubscribe© 2014 Cambridge international Examinations70.The theme of the Cambridge Schools Conference 2015 is about.A.lifelong learningB. teaching approachesmon challengesD. inspiring teachers71.The letter is most probably for those who.A.are the members of CIEB. work in education institutesC.give feedback to the conferenceD. can offer a range of perspectives72.Which of the following is true according to the passage?A.The conference closes on 24 December 2014.B.The conference is held in University of Cambridge.C.The conference encourages various views on lifelong learning.D.The conference provides the most effective approaches on lifelong learning.(C)Big trees are incredibly important ecologically. For a start, they provide food for countlessother species and shelter for many animals. With their tall branches in the sun, they capture vastamounts of energy. This allows them to produce massive crops of fruit and flowers that sustainmuch of the animal life in the forest.Only a small number of tree species have the genetic ability to grow really big. The biggest are native to North America, but big trees grow Ml over the globe, from the tropics to the forests of the high latitudes (纬度). To achieve giant size, a tree needs three things: the right place to establish its seedling, good growing conditions and lots of time with low adult death rate. Loseany of these, and you will lose your biggest trees.In some parts of the world, populations of big trees are dwindling because their seedlings cannot survive. In southern India, for instance, an aggressive non-native bush, Lantana camara, isinvading the floor of many forests. Lantana grows So thickly that young trees often fail to take root.With no young trees to replace them, it is only a matter of time before most of the big treesdisappear.Without the right growing conditions, trees cannot get really big and there is some evidenceto suggest tree growth could slow in a warmer world, particularly in environments that are already warm. Having worked for decades at La Selva Biological Station in Puerto Viejo de Sarapiqui, Costa Rica, David and Deborah Clark and colleagues have shown that tree growth there declines markedly in warmer years. “During the day, their growth shuts down when it gets too warm, and at night they consume more energy because their metabolic (新陈代谢的) rate increases,” explains David Clark. With less energy produced in warmer years and more being consumed just to survive, there is even less energy available for growth.The Clarks’ theory, if correct, means tropical forests would shrink over time. The largest, oldest trees would progressively die off and tend not to be replaced. According to the Clarks, this might cause a destabilization of the climate, as older trees die, forests would release some of their stored carbon into the atmosphere, causing a cycle of further warming, forest shrinkage and carbon emissions.Besides, big trees face threats from elsewhere.73.According to the passage, big trees make great contributions to the ecosystem because.A.they can capture large amounts of energyB.they determine the change of global climateC.they provide the essentials for many creaturesD.they can avoid a new cycle of further warming74.All the following factors are a must for making big trees EXCEPT.A. no deadly damageB. genetic contributionC.ideal environment for growthD. high-latitude location75.The word “dwindling” (paragraph 3) is closest in meaning to “”.A. explodingB. growingC.changingD. declining76.What is the best title of the passage?A.Big trees in trouble.B.Advantages of big trees.C. Results of big trees’ disappearing.D.Importance of big trees to humans.77.What will the author most probably discuss after the last paragraph?A.More threats to the existence of big tress.B.The effect of human activities on big trees.C.Benefits of big trees to the whole atmosphere.parison between common trees and big ones.Section CDirections: Read the passage carefully. Then answer the questions or complete the statements in the fewest possible words.Different people may find that different learning methods work best for them. While some would turn to tutoring in order, to get better grades, others choose to join study groups. In fact, many universities encourage their students to form study groups and make good use of them.“Two heads are better than one.” That’s the simple idea behind study groups. By participating in a study group, students can benefit from some of their best academic, resources: other students. They get to pick each other’s brains and improve their own und erstanding of different problems. Moreover, study groups, can create the slightly tense atmosphere in which it’s good to study. For example, some students tend to procrastinate (拖延)when they are studying by themselves, however, by joining a study group, they get to observe their peers who are working diligently and are likely to thus have motivation for working harder.Study groups work best when they are small, but not too small—four to five participants is -about right. And it’s necessary to make sure everyone has the same goal, to prepare for a particular test, to discuss class readings or to review the week’s lecture notes. Besides, socializing in the group would make studying more fun as long as: it took up only a small portion of group study time.In addition, to maximize the efficiency, some study groups like to assign members certain roles, andthus efficiency will be promoted. Besides an organizer, who gets group members to agree to a common purpose and a convenient time and place, there often is a group member playing the role of a source-seeker, whose duty is to remind group members to identify their sources. For instance, when a group member says “I read somewhere that…,” the source-seeker should ask for specifics. This person reminds the group that if s important to know who said what and where it was said. And a gatekeeper, who tries to make sure that all group members are participating, may ask a direct question to help a shy person participate, or find a way to get a dominating member to listen.(Note: Answer the questions or complete the statements in NO MORE THAN EIGHT WORDS.)78.Many universities encourage students to take advantage offor better grades ratherthan learning alone.79.Peers are not only the best academic resources but also motivate each other towhen learning in groups.80. According to paragraph 3, besides the small size, what are the other two factors that could help a study group work best?81.All the members in the study group will be assigned different roles because people believe that it will result in.第II卷(共47分)I. TranslationDirections: Translate the following sentences into English, using the words given in the brackets.1、孩子们总是对圣诞节的礼物充满好奇。
普陀区二中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i2. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )3. 在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0B .C .D .4. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是()A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}5. 函数f (x ﹣)=x 2+,则f (3)=( )A .8B .9C .11D .106. 已知a 为常数,则使得成立的一个充分而不必要条件是( )A .a >0B .a <0C .a >eD .a <e7. 已知{}n a 是等比数列,25124a a ==,,则公比q =( )A .12- B .-2 C .2D .128. 集合的真子集共有( ){}1,2,3A .个 B .个 C .个D .个9. 已知全集,,,则有( )U R ={|239}x A x =<≤{|02}B y y =<≤A . B . C . D .A ØB A B B = ()R A B ≠∅ ð()R A B R= ð10.某几何体的三视图如图所示,则该几何体的表面积为( )A .12π+15B .13π+12C .18π+12D .21π+1511.四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3B .C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.12.已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是()A .(1,5)B .(1,4)C .(0,4)D .(4,0)二、填空题13.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= .14.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .15.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .16.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .17.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .18.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .三、解答题19.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p (0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X ,求X 的数学期望,并求该通讯器械正常工作的概率P ′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率. 20.已知定义在的一次函数为单调增函数,且值域为.[]3,2-()f x []2,7(1)求的解析式;()f x (2)求函数的解析式并确定其定义域.[()]f f x 21.(本小题满分12分)已知两点及,点在以、为焦点的椭圆上,且、、)0,1(1-F )0,1(2F P 1F 2F C 1PF 21F F 构成等差数列.2PF (I )求椭圆的方程;C (II )设经过的直线与曲线C 交于两点,若,求直线的方程.2F m P Q 、22211PQ F P F Q =+m22.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.23.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.24.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5的学生颁发荣誉证书,现从A和B两班中各随机抽5名学生进行抽查,其成绩记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x,y看不清,统计人员只记得x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.普陀区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:复数===1+2i的虚部为2.故选;C.【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.2.【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,∴对应的集合表示为A∩∁U B.故选:A.3.【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y2<1表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是=;故选C.【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.4.【答案】B【解析】解:由Venn 图可知,阴影部分的元素为属于A 当不属于B 的元素构成,所以用集合表示为A ∩(∁U B ).A={x|x 2﹣x ﹣2<0}={x|﹣1<x <2},B={x|y=ln (1﹣x )}={x|1﹣x >0}={x|x <1},则∁U B={x|x ≥1},则A ∩(∁U B )={x|1≤x <2}.故选:B .【点评】本题主要考查Venn 图表达 集合的关系和运算,比较基础.5. 【答案】C【解析】解:∵函数=,∴f (3)=32+2=11.故选C .6. 【答案】C【解析】解:由积分运算法则,得=lnx=lne ﹣ln1=1因此,不等式即即a >1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a >e故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.7. 【答案】D【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a .考点:等比数列的性质.8. 【答案】C【解析】考点:真子集的概念.9. 【答案】A【解析】解析:本题考查集合的关系与运算,,,∵,∴,选A .3(log 2,2]A =(0,2]B =3log 20>A ØB 10.【答案】C【解析】解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为2,∴圆锥的母线长为5,∴几何体的表面积S=×π×42+×π×4×5+×8×3=18π+12.故选:C .11.【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OEPA A OE ⊥ABCD O到四棱锥的所有顶点的距离相等,即球心,均为O 12PC ==可得,解得,故选B .34243316ππ=72PA =12.【答案】A【解析】解:令x ﹣1=0,解得x=1,代入f (x )=4+a x ﹣1得,f (1)=5,则函数f (x )过定点(1,5).故选A .二、填空题13.【答案】 1 .【解析】解:f (x )的图象关于直线x=3对称,且f (5)=1,则f (1)=f (5)=1,f(x)是偶函数,所以f(﹣1)=f(1)=1.故答案为:1.14.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C8r x8﹣2r令8﹣2r=0得r=4则其常数项为C84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.15.【答案】 ②③ .【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx是偶函数,故②正确,③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.16.【答案】 ﹣2 .【解析】解:∵曲线y=x n+1(n∈N*),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),该切线与x轴的交点的横坐标为x n=,∵a n=lgx n,∴a n=lgn﹣lg(n+1),∴a1+a2+…+a99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)=lg1﹣lg100=﹣2.故答案为:﹣2.17.【答案】 (﹣3,21) .【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.18.【答案】 8 .【解析】解:∵抛物线y2=8x=2px,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10,∴x=8,故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.三、解答题19.【答案】【解析】解:(Ⅰ)由题意可知:X ~B (9,p ),故EX=9p .在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.通讯器械正常工作的概率P ′=;(Ⅱ)当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.①若前9个元素有4个正常工作,则它的概率为:.此时后两个元件都必须正常工作,它的概率为: p 2;②若前9个元素有5个正常工作,则它的概率为:.此时后两个元件至少有一个正常工作,它的概率为:;③若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P ″=p 2++,可得P ″﹣P ′=p 2+﹣,==.故当p=时,P ″=P ′,即增加2个元件,不改变通讯器械的有效率;当0<p 时,P ″<P ′,即增加2个元件,通讯器械的有效率降低;当p时,P ″>P ′,即增加2个元件,通讯器械的有效率提高.【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目. 20.【答案】(1),;(2),.()5f x x =+[]3,2x ∈-[]()10f f x x =+{}3x ∈-【解析】试题解析:(1)设,111]()(0)f x kx b k =+>由题意有:解得32,27,k b k b -+=⎧⎨+=⎩1,5,k b =⎧⎨=⎩∴,.()5f x x =+[]3,2x ∈-(2),.(())(5)10f f x f x x =+=+{}3x ∈-考点:待定系数法.21.【答案】【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.(II )①若为直线,代入得,即,m 1=x 13422=+y x 23±=y )23,1(P )23,1(-Q直接计算知,,,不符合题意 ;29PQ =225||||2121=+Q F P F 22211PQ F P F Q ¹+1=x ②若直线的斜率为,直线的方程为m k m (1)y k x =-由得 ⎪⎩⎪⎨⎧-==+)1(13422x k y y x 0)124(8)43(2222=-+-+k x k x k 设,,则, 11(,)P x y 22(,)Q x y 2221438k k x x +=+222143124k k x x +-=⋅由得,22211PQ F P F Q =+110F P FQ ×=即,0)1)(1(2121=+++y y x x 0)1()1()1)(1(2121=-⋅-+++x k x k x x0)1())(1()1(2212212=+++-++k x x k x x k 代入得,即 0438)1()143124)(1(222222=+⋅-+++-+k k k k k k 0972=-k 解得,直线的方程为773±=k m )1(773-±=x y 22.【答案】【解析】解:(1)f'(x )=3ax 2+2bx ﹣3,依题意,f'(1)=f'(﹣1)=0,即,解得a=1,b=0.∴f (x )=x 3﹣3x .【点评】本题考查了导数和函数极值的问题,属于基础题.23.【答案】 【解析】解:∵方程表示焦点在x 轴上的双曲线,∴⇒m >2若p 为真时:m >2,∵曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点,则△=(2m ﹣3)2﹣4>0⇒m >或m ,若q 真得:或,由复合命题真值表得:若p ∧q 为假命题,p ∨q 为真命题,p ,q 命题一真一假 若p 真q 假:;若p假q真:∴实数m的取值范围为:或.【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件. 24.【答案】【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y),∵,∴x+y=17,①∵,=,∵,得(x﹣8)2+(y﹣8)2=1,②由①②解得或,∵x<y,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,∴P(C)=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X所有可能的取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.。
上海市普陀区2023-2024学年物理高三上期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是A.改用强度更大的紫外线照射B.延长原紫外线的照射时间C.改用X射线照射D.改用红外线照射2、2019年10月8日,瑞典皇家科学院在斯德哥尔摩宣布,将2019年诺贝尔物理学奖,一半授予美国普林斯顿大学吉姆·皮布尔斯,以表彰他“关于物理宇宙学的理论发现”,另外一半授予瑞士日内瓦大学的米歇尔·麦耶和瑞士日内瓦大学教授兼英国剑桥大学教授迪迪埃·奎洛兹,以表彰他们“发现一颗环绕类日恒星运行的系外行星”。
若某一系外行星的半径为R,公转半径为r,公转周期为T,宇宙飞船在以系外行星中心为圆心,半径为r1的轨道上绕其做圆周运动的周期为T1,不考虑其他星球的影响。
(己知地球的公转半径为R0,公转周期为T0)则有A.3312210RrT T=B.3322RrT T=C.该系外行星表面重力加速度为21214rTπD.该系外行星的第一宇宙速度为3、如图所示,战斗机离舰执行任务,若战斗机离开甲板时的水平分速度为40m/s,竖直分速度为20m/s,已知飞机在水平方向做加速度大小等于22m/s的匀加速直线运动,在竖直方向做加速度大小等于21m/s的匀加速直线运动。
则离舰后()A.飞机的运动轨迹为曲线B.10s内飞机水平方向的分位移是竖直方向的分位移大小的2倍C.10s末飞机的速度方向与水平方向夹角为30D.飞机在20s内水平方向的平均速度为50m/s/4、2020年3月9日19时55分,我国在西昌卫基发射中心,成功发射北斗系统第五十四颗导航卫星,北斗三号CEO-2是一颗地球同步轨道卫星,以下关于这颗卫星判断正确的是()A.地球同步轨道卫星的运行周期为定值B.地球同步轨道卫星所受引力保持不变C.地球同步轨道卫星绕地运行中处干平衡状态D.地球同步轨道卫星的在轨运行速度等于第一宇宙速度5、如图甲所示,在粗糙的水平面上,质量分别为m A和m B的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数相同,它们的质量之比m A:m B=2:1.当用水平力F作用于B上且两物块以相同的加速度向右加速运动时(如图甲所示),弹簧的伸长量x A;当用同样大小的力F竖直向上拉B且两物块以相同的加速度竖直向上运动时(如图乙所示),弹簧的伸长量为x B,则x A:x B等于()A.1:1 B.1:2 C.2:1 D.3:26、如图所示,水平地面上有一个由四块完全相同石块所组成拱形建筑,其截面为半圆环,石块的质量均为m。
高二年级第二学期期末模拟试卷(满分150分,考试时间120分钟)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若复数3a ii+-(R a ∈)是纯虚数,则a = . 2.在二项式8)1(xx -的展开式中,含5x 的项的系数是 (用数字作答).3.双曲线m y x =-222的一个焦点是)3,0(,则m 的值是__________.4.顶点在原点,以x 轴为对称轴且经过点)3,2(-M 的抛物线的标准方程为____________.5.如图,一个直三棱柱形的密闭容器111C B A ABC -中盛有水 ,41=AA ,若以B B AA 11为底面水平放置时,液面恰好过AC 、BC 、11C A 、11C B 的中点,则以面ABC 为底面水平放置时液面的高度为________________.6.某展室有9个展台,现有3件不同的展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;7. 把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),则无空盒的概率为________.8.若z C ∈且221z i +-=,则12z i --的最大值是_______.9.△ABC 的三个顶点A 、B 、C 到平面α的距离分别为2 cm 、3 cm 、4 cm ,且A,B,C 在平面α的同侧,则△ABC 的重心到平面α的距离为___________。
10.课题组进行城市农空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8.若用分层抽样抽取6个城市,则丙组中应抽取的城市数为 .11.四面体A —BCD 的四个顶点都在半径为2的球面上,且AB 、AC 、AD 两两垂直,则的最大值是ACD ABD ABC S S S ∆∆∆++________12.命题p :实系数一元二次方程022=++ax x 的两根都是虚数;命题q :存在复数z 同时满足12=+=a z z 且.则p 是q 的_________条件.13.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).14.如图从双曲线12222=-by a x 的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT ,交双曲线右支于P ,若M为线段FP 的中点,O 为原点,则MT MO -的值为(用a 、b 表示)_________________二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.实系数方程)0(02≠=++a c bx ax 在复数集内有两根βα,,则 ( ) (A )042<-=∆ac b . (B )αββαβα4)(2-+=-. (C )α与β互为共轭复数(D )aca b =-=+αββα, 16.某学校有青年教师160人,中年教师人数是老年教师人数的2倍,老、中、青教师共有430人.为了解教师身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年教师32人,则该样本中的老年教师人数为 ( )(A)16. (B)18. (C)27. (D)36.17.从装有1+n 个球的口袋中取出m 个球(N n m n m ∈≤<,,0),共有m n C 1+种取法。
在这mn C 1+种取法中,可以分成一个指定的球被取到和未被取到两类:一类是该指定的球未被取到,共有mn C C ⋅01种取法;另一类是该指定的球被取到,共有111-⋅m n C C 种取法。
显然m n m n m n C C C C C 111101+-=⋅+⋅,即有等式:m n m n m n C C C 11+-=+成立。
试根据上述思想,则有:k m n k k m n k m n k m n C C C C C C C ---⋅++⋅+⋅+ 2211(其中N n m k n m k ∈≤<≤,,,1)为( ) A.m k n C +B.mk n C 1++C.1++m k n CD. km n C +18.设1A ,2A ,3A ,4A 是平面上给定的4个不同的点,则使12340MA MA MA MA +++=成立的点M 的个数为( )A .0;B .1;C .2;D . 4.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.已知正方体1111D C B A ABCD -,21=AA ,E 为棱1CC 的中点.(1)求异面直线AE 与1DD 所成角的大小(结果用反三角表示);(2)求C 点到平面ABE 的距离,并求出三棱锥C ADE -的体积.20.(本题满分14分)第一题满分4分,第二题满分4分,第三题满分6分.甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将4张扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。
(1)设(,)i j 分别表示甲、乙抽到的牌的数字(方片4用4’表示,红桃2,红桃3,红桃4分别用2,3,4表示),写出甲乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;若甲抽到的牌的牌面数字不比乙大,则乙胜。
你认为此游戏是否公平,说明你的理由。
21.(本题满分14分)本题共有3个小题,第1小题满分4分,第2小题满分5分. 第3小题满分5分 已知方程320(,,,ax bx cx d a b c d +++=为复数). (1)若1,0,8a b c d ====-,解方程;(2)若1,2(1),9,5(1),a b k c d k k R ==-==-∈的虚根,求实数k 的值,并解此方程。
(3)若0,1,,(,,a b c z d zi z u vi u v R i =====+∈,为虚数单位)恒有一个根α(α为实数),求复数z “在复平面上”对应的点Z 的轨迹方程.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆222:1x C y m+=(常数1m >),点P 是C 上的动点,M 是C 的右顶点,定点A 的坐标为(2,0).(1)若M 与A 重合,求C 的焦点坐标;(2)若3m =,求||PA 的最大值与最小值; (3)若||PA 的最小值为||MA ,求m 的取值范围.23.(本题满分18分)第一题满分5分,第二题满分5分,第三题满分8分. 如图,有一公共边但不共面的两个三角形ABC 和A 1BC 被一平面DEE 1D 1所截,若平面DEE 1D 1分别交AB,AC,A 1B,A 1C 于点D,E,D 1,E 1。
(1)讨论这三条交线ED,CB, E 1 D 1的关系。
(2)当BC//平面DEE 1D 1时,求EACEC E E A AD BD DB AD ⋅⋅⋅111111的值。
(3)当BC 不平行平面DEE 1D 1时,EACEC E E A AD BD DB AD ⋅⋅⋅111111的值变化吗?为什么?参考答案一、填空题(本题满分56分,本大题共有14题,每题4分)11.31;2. 28;3. -2;4. x y 292-=;5. 3;6. 60;7.323;8. 4;9. 3;10.2;11. 8;12. 既非充分也非必要;13.0.985;14. |MO|-|MT|=b-a . 二. 选择题(本题满分20分,本大题共有4题,每题5分)三. 解答题:(本题满分74分)19.解:(1)AEC ∠是异面直线AE 与1DD 所成角 ----------1分求解AEC ∆得1cos 3AEC ∠=----------3分所以异面直线AE 与1DD 所成角是31arccos----------4分(2)利用等体积E ABC C ABEV V --=----------5分1133ABC ABE S EC S h ∆∆⋅=⋅----------6分 求解得5h =分 利用C ADE A CDE V V --=-------9分111(21)2332DCE S AD ∆=⋅=⨯⨯⨯-------11分 =23----------12分 20.解:(1)甲乙二人抽到的牌的所有情况(方片4用4’表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:(2,3)、(2,4)、(2,4’)、(3,2)、(3,4)、(3,4’)、 (4,2)、(4,3)、(4,4’)、(4’, 2)、(4’,3)(4’,4) 共12种不同情况(没有写全面时:只写出1个不给分,2—4个给1分,5—8个给2分,9—11个给3分) (2)甲抽到3,乙抽到的牌只能是2,4,4’因此乙抽到的牌的数字大于3的概率为23(3)由甲抽到的牌比乙大的有 (3,2)、(4,2)、(4,3)、(4’,2)、(4’,3)5种,甲胜的概率1512p =,乙获胜的概率为2757,121212p =< ∴此游戏不公平。
21.解:(1)1232,1,1x x x ==-=-………4分(2)设方程的根分别为,,(a bi a bi c a +-∈、b 、c R)则225a b +=,原方程可化为[][]()()()0x a bi x a bi x c -+---=,………6分 得32(2)(25)50x a c x ac x c -+++-=………7分得(2)2(1)(25)5955(1)a c k ac c k -+=-⎧⎪++=⎨⎪-=-⎩求得1,3k k =-=; 3k =时,根为-2,12,12i i -+--1k =-时,根为2,12,12i i +-………9分(3)因为20z zi αα++=,由(,)z u vi u v R =+∈,则z 对应的点Z 的坐标为(,)u v ,将z u vi =+带入方程得2()0u v v u i ααα+-++=,………11分所以()()20102u v v u ααα⎧+-=⎪⎨+=⎪⎩ ……12分 当0v =时,得0u =,即轨迹过原点;……13分当0v ≠时,得u v α=-,代入(1)消去参数α,有20u u u v v v ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭,即321v u v =-,此方程的曲线过原点,即所求轨迹方程为:321v u v=-………14分22.解:(1)∵M 与A 重合, ∴2m =. (2分)∴椭圆方程为2214x y +=. ∴半焦距c ==(和. (4分)(2)∵3m =,∴椭圆方程为2219x y +=, 设动点(,)P x y ,则222222891||(2)(2)1()(33)9942x PA x y x x x =-+=-+-=-+-≤≤.(6分) 当94x =时,||PA ; 当3x =-时,||PA 取得最小值5. (10分)(3)设动点(,)P x y ,则222222222222124||(2)(2)1()5()11x m m m PA x y x x m x m m m m m -=-+=-+-=--+-≤≤--. (12分)∵ ||PA 的最小值在x m =时取到,且2210m m->, ∴ 2221m m m ≥-. (14分) ∴2210m m --≤且1m >,解得11m <≤∴m的取值范围为(1,1+. (16分)23. (1)互相平行或三线共点。