比例电磁铁输出特性
- 格式:docx
- 大小:156.49 KB
- 文档页数:10
第4期2011年4月工矿自动化Industry and M ine A ut omatio nNo.4 Apr.2011文章编号:1671-251X(2011)04-0074-03一种比例电磁铁控制电路的设计赵江辉, 王淑红(太原理工大学电气与动力工程学院,山西太原 030024)摘要:采用AT89S51单片机设计了一种比例电磁铁控制电路。
该电路首先由AD 转换电路将采集到的模拟量信号转换为数字量后输入AT89S51进行处理,AT 89S51输出的PWM 信号经功率转换电路处理后作用于比例电磁铁,从而控制比例电磁铁动作。
调试运行结果验证了该电路的有效性。
关键词:比例阀;比例电磁铁;单片机控制;压力传感器 中图分类号:TD679 文献标识码:BDesign of a Cont rol Circuit of Proport ional SolenoidZH AO Jiang hui, WA NG Shu hong(College of E lectr ical and Pow er Engineering of T aiyuan University of T echnolo gy,Taiyuan 030024,China)Abstract :T he paper introduced a design o f co ntro l circuit o f pr opo rtio nal so lenoid based on AT89S52sing le chip micr ocom puter.T he circuit uses ADC circuit to conv er t collected analog signals into dig ital sig nals for further pr ocession by AT89S51,and PWM sig nal output by AT 89S51to make propo rtio nal solenoid act after processio n of po w er conversio n circuit.The debug ging and running results show ed validity of the circuit.Key words :proportional valve,proportional so lenoid,co ntrol by single chip microcomputer,pressur e senso r 收稿日期:2010-12-20基金项目:山西省自然科学基金资助项目(2008012005-1)作者简介:赵江辉(1986-),男,山西吕梁人,硕士研究生,研究方向为电机与电器。
衔铁结构对比例电磁铁行程-力特性的影响赵继国;冀宏;苏玛亮;陈乾鹏;李瑞锋【摘要】建立了比例电磁铁有限元仿真模型,利用 Ansoft Maxwell2D 电磁场有限元仿真软件对衔铁长度、衔铁上推杆孔的深度和孔径、衔铁前端和尾部倒角及圆角对比例电磁铁行程-力特性的影响进行了仿真计算。
结果表明:衔铁长度对比例电磁铁工作行程内电磁力大小和水平程度有比较明显的影响;推杆孔的深度和孔径越大,靠近吸合面的电磁力越小;衔铁前端倒角对比例电磁铁行程-力特性影响比较明显;衔铁前端圆角、尾部倒角和圆角对比例电磁铁行程-力特性的影响很小;衔铁前端加工圆角可以增大比例电磁铁工作行程,但这是以减小工作行程内电磁力为代价的。
%It establishes a ratio electromagnet finite element simulated model,and use the Ansoft Max-well2D electromagnetic field finite element simulation software to make stimulation calculation on the in-fluence of armature length,pushrod's depth and aperture of armature,the armature front and rear's chamfer and circular bead on ratio electromagnet stroke - force characteristics.The results show that:the length of the armature have significant effect on the electromagnetism size and level degree in the working process of the ratio electromagnet.The larger of the depth and aperture of pushrod hole,the smaller of the electro-magnetism that nears the actuation surface.The front chamfer of armature has significant effect on ratio e-lectromagnet stroke - force characteristics.The front circular bead and rear chamfer and circular bead has little influence on ratio electromagnet stroke - force characteristics.Armature front processingcircular bead can increase ratio electromagnet stroke - force,but it is at the cost of reducing electromagnetism within the working operation.【期刊名称】《甘肃科学学报》【年(卷),期】2016(028)005【总页数】6页(P89-93,129)【关键词】比例电磁铁;衔铁;行程-力特性;Ansoft【作者】赵继国;冀宏;苏玛亮;陈乾鹏;李瑞锋【作者单位】兰州理工大学能源与动力工程学院,甘肃兰州 730050; 甘肃省液压气动工程技术研究中心,甘肃兰州 730050;兰州理工大学能源与动力工程学院,甘肃兰州 730050; 甘肃省液压气动工程技术研究中心,甘肃兰州 730050;兰州理工大学能源与动力工程学院,甘肃兰州 730050; 甘肃省液压气动工程技术研究中心,甘肃兰州 730050;兰州理工大学能源与动力工程学院,甘肃兰州 730050; 甘肃省液压气动工程技术研究中心,甘肃兰州 730050;兰州理工大学能源与动力工程学院,甘肃兰州 730050; 甘肃省液压气动工程技术研究中心,甘肃兰州730050【正文语种】中文【中图分类】TH137比例电磁铁作为电液比例阀最常用的关键电气-机械转换元件,具有推力大、结构简单、对油质要求不高、成本低廉和维修方便等优点[1]。
比例电磁铁概述比例电磁铁作为电液比例控制元件的电一机械转换器件,其功能是将比例控制放大器输给的电流信号转换成力或位移。
比例电磁铁推力大、结构简单,对油质要求不高,维护方便,成本低廉,衔铁腔可做成耐高压结构,是电液比例控制技术中应用最广泛的电一机械转换器。
比例电磁铁的特性及工作可靠性,对电液比例控制系统和元件具有十分重要的影响,是电液比例控制技术关键部件之一。
电液比例控制技术对比例电磁铁提出了一定的要求,主要有:1)水平的位移一力特性,即在比例电磁铁有效工作行程内,当线圈电流一定时,其输出力保持恒定。
2)稳态电流一力特性具有良好的线性度,较小的死区及滞回。
3)阶跃响应快,频响高。
比例电磁铁的结构和工作原理虽然目前国内外市场中比例电磁铁的品种繁多,但其基本的结构和原理大体相同。
图1所示即为一典型的耐高压比例电磁铁的基本结构。
图1 比例电磁铁结构图图2比例电磁铁力-位移特性图由图1可知,典型的耐高压比例电磁铁主要由导套、衔铁、外壳、极靴、线圈、推杆等组成。
导套前后两段为导磁材料,中间则用一段非导磁材料(隔磁环)焊接。
导套具有足够的耐压强度(约可承受35MPa的静压力)。
导套前段和极靴组合,形成带锥型端部的盆型极靴,其相对尺寸决定了比例电磁铁稳态特性曲线的形状。
导套和壳体之间配置同心螺线管式控制线圈。
衔铁的前端装有推杆,用以输出力或位移;后端装有弹簧和调节螺钉组成的调零机构,可以在一定范围内对比例电磁铁特性曲线进行调整。
比例电磁铁一般为湿式直流控制,与普通直流电磁铁相比,由于结构上的特殊设计,使之形成特殊的磁路,从而使它获得基本的吸力特性,即水平的位移一力特性,与普通直流电磁铁的吸力特性有着本质区别。
比例电磁铁的磁路,在工作气隙附近被分成两部分Φ1和Φ2,如图3(a)所示。
其中,一条磁路中Φ1由前端盖盆型极靴底部,沿轴向工作气隙,进入衔铁,穿过导套后段和导磁外壳回到前端盖极靴,产生轴向推力(端面力)F1;而另一磁路Φ2经盆型极靴锥形周边(导套前段),径向穿过工作气隙进入衔铁,而后与Φ1汇合,产生轴向附加力F2。
单向比例电磁铁典型的耐高压单向比例电磁铁结构原理图如图1所示,它主要由推杆1、衔铁7、导向套10、壳体11、轭铁13等部分组成。
导向套10前后两段为导磁材料(工业纯铁),导向套前段有特殊设计的锥形盆口。
两段之间用非导磁材料(隔磁环9)焊接成整体。
筒状结构的导向套具有足够的耐压强度,可承受35MPa的液压力。
壳体11与导向套10之间配置同心螺线管式控制线圈3。
衔铁7前端所装的推杆1用以输出力或位移,后端所装的调节螺钉5和弹簧6组成调零机构。
衔铁支撑在轴承上,以减小粘滞摩擦力。
比例电磁铁通常为湿式直流控制(内腔要充入液压油),使其成为衔铁移动的一个阻尼器,以保证比例组件具有足够的动态稳定性。
工作时,线圈通电后形成的磁路经壳体、导向套、衔铁后分为两路,一路由导向套前端到轭铁而产生斜面吸力,另一路直接由衔铁断面到轭铁而产生表面吸力,二者的合成力即为比例电磁铁的输出力(见图2)。
由图2可以看到,比例电磁铁在整个行程区内,可以分为吸合区I、有效行程区II和空行程区III三个区段:在吸合区I,工作气隙接近于零,输出力急剧上升,由于这一区段不能正常工作,因此结构上用加不导磁的限位片(图1中的12)的方法将其排除,使衔铁不能移动到该区段内;在空行程区III工作气隙较大,电磁铁输出力明显下降,这一区段虽然也不能正常工作,但有时是需要的,例如用于直接控制式比例方向阀的两个比例电磁铁中,当通电的比例电磁铁工作在工作行程区时,另一端不通电的比例电磁铁则处于空行程区III;在有效行程区(工作行程区)II,比例电磁铁具有基本水平的位移动特性,工作区的长度与电磁铁的类型等有关。
比例电磁铁具有与位移无关的水平的位移-力特性,一定的控制电流对应一定的输出力,即输出力与输入电流成比例(见图3),改变电流即可成比例改变输出力。
由图3可看到,当电磁铁输入电流往复变化时,相同电流对应的吸力不同,一般将相同电流对应的往复输入电流差的最大值与额定电流的百分比称为滞环。
绪论单元测试1.电液比例控制工作原理包含开环比例控制和闭环比例控制两种。
()A:错B:对答案:B2.闭环控制系统,在受到干扰时仍能消除偏差或能把偏差控制在允许范围之内。
()A:对B:错答案:A3.液压伺服控制系统又称随动系统或跟踪系统,是一种()系统。
A:自动控制B:半自动答案:A4.液压执行器通常是指()。
A:液压缸或马达B:控制阀C:液压泵答案:A5.由电液伺服阀将电信号按比例转换为液压功率输出的电液控制技术称为()技术。
A:电液伺服控制B:电液比例控制答案:A第一章测试1.比例电磁铁与普通电磁铁不同的是,比例电磁铁的电磁力大小取决于()。
A:线圈匝数B:电流大小C:衔铁长度D:外壳尺寸答案:B2.耐高压直流比例电磁铁的优点是()。
A:使用普通材料B:工艺性好C:简单可靠D:输出的力和位移较大答案:ABCD3.比例式电磁铁,其电磁吸力与负载反力()。
A:相差很大B:相等C:不能确定D:方向相同答案:B4.比例电磁铁是否带有内置的位移传感器而区分为力控制型和行程控制型两种。
()A:对B:错答案:A5.带有线性位置传感器的比例电磁铁被称为行程控制型比例电磁铁。
()A:对B:错答案:A第二章测试1.溢流阀常态下阀口处于关闭状态,减压阀在常态下处于开启状态。
()A:对B:错答案:A2.下列比例阀中,能够控制多个参数的是()。
A:比例节流阀B:比例减压阀C:比例溢流阀D:比例方向阀答案:D3.比例阀溢流阀的不同压力等级要靠改变()。
A:阀芯长度B:调压弹簧C:阀座的孔径D:调节螺钉答案:C4.比例调速阀对压差进行压力补偿的方式是采用()。
A:方向阀B:电磁铁C:减压阀D:弹簧答案:C5.比例方向阀是一种比例复合阀,复合了方向与流量控制两种功能。
()A:对B:错答案:A第三章测试1.当某个支路所需的工作压力低于溢流阀的设定值时,或要求支路有可调的稳定的低压力时,就要采用()。
A:减压回路B:增压回路C:调压回路D:添加液压泵答案:A2.电液比例速度调节,有三种常用的方式是()。
比例电磁阀工作原理
比例电磁阀是一种通过改变电磁铁的输入电流来控制阀门的开度的装置。
它通过电磁铁的磁场作用于阀门,使阀门的开度与电磁铁的输入电流成正比。
具体工作原理如下:
1. 电磁铁:比例电磁阀的核心部件是电磁铁,它由线圈和铁芯组成。
当通过线圈通入电流时,电流在线圈中产生磁场,磁场作用于铁芯上,使铁芯受到吸引力或排斥力。
2. 阀门结构:比例电磁阀通常具有一个阀芯和阀座,阀芯可以根据磁场的变化来调整与阀座之间的间隙,从而控制流体的流量。
3. 控制电路:比例电磁阀的控制电路通过改变输入电流的大小来调整电磁铁的磁场强度。
根据电流的变化,电磁铁的磁场强度也随之变化,进而改变阀门的开度。
4. 反馈信号:为了保证阀门开度与输入电流之间的精确关系,比例电磁阀通常还配备有反馈传感器。
该传感器可以实时监测阀门的开度,并将阀门开度的反馈信号发送给控制电路,以进行调整。
总体上,比例电磁阀通过电磁铁的磁场作用于阀门,通过控制电路调整电磁铁的输入电流来改变阀门的开度,从而实现对流体流量的精确控制。
通过反馈传感器,可以实时监测和调整阀门的开度,以满足不同工况下的需求。
《电液比例阀用电磁铁输出特性的理论分析及试验研究》篇一一、引言电液比例阀是一种用于液压传动系统中的重要元件,其工作性能的优劣直接影响着整个系统的控制精度和动态响应特性。
而电磁铁作为电液比例阀的核心部分,其输出特性直接关系到比例阀的工作状态。
因此,本文将对电液比例阀用电磁铁的输出特性进行理论分析和试验研究,旨在提高比例阀的工作性能和控制精度。
二、电磁铁输出特性的理论分析1. 电磁铁的基本原理电磁铁是一种利用电流产生磁场的装置,其基本原理是安培环路定律和法拉第电磁感应定律。
当电流通过电磁铁的线圈时,会产生磁场,这个磁场会与电磁铁内部的铁芯相互作用,从而产生力。
这个力的大小与电流的大小、线圈匝数、铁芯的材质和形状等因素有关。
2. 电磁铁输出特性的影响因素电磁铁的输出特性主要受到电流、电压、频率、温度等因素的影响。
其中,电流和电压是影响电磁铁输出特性的主要因素。
当电流增大时,电磁铁产生的磁场强度也会增大,从而使得电磁铁的输出力增大。
而电压则影响着电流的大小和稳定性,从而影响电磁铁的输出特性。
此外,频率和温度也会对电磁铁的输出特性产生影响,但相对于电流和电压来说,其影响较小。
3. 电磁铁输出特性的理论模型根据电磁铁的基本原理和影响因素,可以建立电磁铁输出特性的理论模型。
该模型可以考虑电流、电压、频率、温度等因素对电磁铁输出特性的影响,从而预测电磁铁的输出力、响应速度等性能指标。
通过该模型,可以对电磁铁的设计和优化提供理论依据。
三、电磁铁输出特性的试验研究1. 试验设备和方案为了研究电磁铁的输出特性,需要进行一系列的试验。
试验设备包括电磁铁、电源、传感器、数据采集器等。
试验方案包括不同电流、电压、频率、温度下的电磁铁输出特性测试,以及不同工况下的响应速度测试等。
2. 试验结果和分析通过试验,可以得到不同条件下电磁铁的输出力和响应速度等性能指标。
通过对试验结果的分析,可以得出以下结论:(1)电流和电压对电磁铁的输出特性影响较大,增大电流和电压可以增大电磁铁的输出力;(2)频率和温度对电磁铁的输出特性也有一定影响,但相对于电流和电压来说,其影响较小;(3)电磁铁的响应速度与其设计和工况有关,可以通过优化设计和控制工况来提高响应速度。
电液比例阀详细资料区前言现代工业的不断发展对液压阀在自动化、精度、响应速度方面提出了愈来愈高的要求,传统的开关型或定值控制型液压阀已不能满足要求,电液伺服阀因此而发展起来,其具有控制灵活、精度高、快速性好等优点。
而电液比例阀是在电液伺服技术的基础上,对伺服阀进行简化而发展起来的。
电液比例阀与伺服阀相比虽在性能方面还有一定差距, 但其抗污染能力强,结构简单,形式多样,制造和维护成本都比伺服阀低,因此在液压设备的液压控制系统应用越来越广泛。
今天,一个国家的电液比例技术发展程度将从一个侧面反映该国的液压工业技术水平,因此各发达国家都非常重视发展电液比例技术。
我国在电液比例技术方面,目前已有几十种品种、规格的产品,年生产规模不断扩大,但总的看,我国电液比例技术与国际水平比有较大差距,主要表现在:缺乏主导系列产品,现有产品型号规格杂乱,品种规格不全,并缺乏足够的工业性试验研究,性能水平较低,质量不稳定,可靠性较差,以及存在二次配套件的问题等,都有碍于该项技术进一步地扩大应用,急待尽快提高。
电液比例阀概述电液比例阀是以传统的工业用液压控制阀为基础,采用模拟式电气-机械转换装置将电信号转换为位移信号,连续地控制液压系统中工作介质的压力、方向或流量的一种液压元件。
此种阀工作时,阀内电气-机械转换装置根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出。
阀芯位移可以以机械、液压或电的形式进行反馈。
当前,电液比例阀在工业生产中获得了广泛的应用。
电液比例阀的特点与分类比例阀把电的快速性、灵活性等优点与液压传动力量大的优点结合起来,能连续地、按比例地控制液压系统中执行元件运动的力、速度和方向,简化了系统,减少了元件的使用量,并能防止压力或速度变换时的冲击现象。
比例阀主要用在没有反馈的回路中,对有些场合,如进行位置控制或需要提高系统的性能时,电液比例阀也可作为信号转换与放大元件组成闭环控制系统。