比例电磁铁与普通电磁铁的区别
- 格式:doc
- 大小:55.00 KB
- 文档页数:2
比例电磁铁概述比例电磁铁作为电液比例控制元件的电一机械转换器件,其功能是将比例控制放大器输给的电流信号转换成力或位移。
比例电磁铁推力大、结构简单,对油质要求不高,维护方便,成本低廉,衔铁腔可做成耐高压结构,是电液比例控制技术中应用最广泛的电一机械转换器。
比例电磁铁的特性及工作可靠性,对电液比例控制系统和元件具有十分重要的影响,是电液比例控制技术关键部件之一。
电液比例控制技术对比例电磁铁提出了一定的要求,主要有:1)水平的位移一力特性,即在比例电磁铁有效工作行程内,当线圈电流一定时,其输出力保持恒定。
2)稳态电流一力特性具有良好的线性度,较小的死区及滞回。
3)阶跃响应快,频响高。
比例电磁铁的结构和工作原理虽然目前国内外市场中比例电磁铁的品种繁多,但其基本的结构和原理大体相同。
图1所示即为一典型的耐高压比例电磁铁的基本结构。
图1 比例电磁铁结构图图2比例电磁铁力-位移特性图由图1可知,典型的耐高压比例电磁铁主要由导套、衔铁、外壳、极靴、线圈、推杆等组成。
导套前后两段为导磁材料,中间则用一段非导磁材料(隔磁环)焊接。
导套具有足够的耐压强度(约可承受35MPa的静压力)。
导套前段和极靴组合,形成带锥型端部的盆型极靴,其相对尺寸决定了比例电磁铁稳态特性曲线的形状。
导套和壳体之间配置同心螺线管式控制线圈。
衔铁的前端装有推杆,用以输出力或位移;后端装有弹簧和调节螺钉组成的调零机构,可以在一定范围内对比例电磁铁特性曲线进行调整。
比例电磁铁一般为湿式直流控制,与普通直流电磁铁相比,由于结构上的特殊设计,使之形成特殊的磁路,从而使它获得基本的吸力特性,即水平的位移一力特性,与普通直流电磁铁的吸力特性有着本质区别。
比例电磁铁的磁路,在工作气隙附近被分成两部分Φ1和Φ2,如图3(a)所示。
其中,一条磁路中Φ1由前端盖盆型极靴底部,沿轴向工作气隙,进入衔铁,穿过导套后段和导磁外壳回到前端盖极靴,产生轴向推力(端面力)F1;而另一磁路Φ2经盆型极靴锥形周边(导套前段),径向穿过工作气隙进入衔铁,而后与Φ1汇合,产生轴向附加力F2。
比例电磁铁
比例电磁铁是一种能够按照一定的比例来产生电磁力的装置。
这种类型的电磁铁通常由绕组、铁芯和电源组成。
绕组是一个由导线制成的线圈,通常绕在一个铁芯上。
当电流通过绕组时,会产生一个磁场。
磁场的强度与电流的大小成正比。
铁芯的作用是增强磁场的强度。
铁芯通常由铁制成,因为铁具有较高的磁导率,能够有效地集中和增强磁场。
电源提供了电流给绕组,从而产生磁场。
电源可以是直流电源或交流电源,具体取决于应用需求。
比例电磁铁的原理是根据安培定律,电流通过绕组时会产生一个磁场,磁场与电流的关系为磁场强度等于电流乘以绕组的匝数。
因此,通过控制电流的大小和绕组的匝数,可以实现按照一定比例来产生电磁力。
比例电磁铁在工业和科学研究领域有广泛的应用。
例如,它可以用于控制和调节机械系统的运动,如电磁阀、电磁刹车等。
此外,比例电磁铁还可以用于制造精密仪器和设备,如电流表、磁力计等。
一、比例电磁铁产生一个与输入变量成比例的力或位移输出液压阀以这些输出变量力或位移作为输入信号就可成比例地输出流量或压力这些成比例输出的流量或压力输出对于液压执行机构或机器动作单元而言意味着不仅可进行方向控制而且可进行速度和压力的无级调控─同时执行机构运行的加速或减速也实现了无级可调如流量在某一时间段内的连续性变化等。
二、比例电磁铁必须具有水平吸力特性,即在工作区内,其输出力的大小只与电流有关,与衔铁位移关,若电磁铁的吸力不显水平特性,弹簧曲线与电磁力曲线族只有有限的几个交点,这意味着不能进行有效的位移控制.在工作范围内,不与弹簧曲线相交的各电磁力曲线中,对应的电流在弹簧曲线以下,不会引起衔铁位移;在弹簧曲线以上时,若输出这样的电流,电磁力将超过弹簧力,将衔铁一直拉到极限位置为止。
相反,若电磁铁具有水平特性,那么在同样的弹簧曲线下,将与电磁力曲线族产生许多交点。
在这些交点上,弹簧力与电磁力相等,就是说,逐渐加大输入电流时,衔铁能连续地停留在各个位置上。
三、比例阀,又称电液比例阀,是一种介于通断控制与伺服控制之间的新型电液控制元件。
是根据电信号连续的、按比例地控制液压系统中的压力、流量、方向,并可以防止液压冲击。
由于其结构设计、工艺性能、使用价格都介于通断控制元件和伺服控制之间,近年来得到广泛应用。
控制原理:当电信号输入其电磁系统中,便会产生与电流成比例的电磁推力,该推力控制相应元件和阀芯,导致阀芯平衡系统调定的压力,使系统压力与电信号成比例。
如输入电信号按比例或一定程序变化,则系统各参数也随着变化.比例阀一般采用两端承压面积不等的差径活塞结构。
工作原理如图12-9所示,比例阀不工作时,差径活塞2在弹簧3的作用下处于上极限位置。
此时阀门1保持开启,因而在输入控制压力P1与输出压力P2从零同步增长的初始阶段,总是P1=P2.但是压力P1的作用面积为A1=π(D2-d2)/4,压力阀的作用面积为A2=πd2/4,因而A2〉A1,故活塞上方液压作用力大于活塞下方液压作用力.在P1、P2同步增长过程中当活塞上、下两端液压作用之差超过弹簧3的预紧力时,活塞便开始下移。
什么是电磁铁
安阳市华阳电磁铁制造有限公司
电磁铁顾名思义就是通电能产生电磁的一种装置,内部带有铁芯的通电螺线管叫电磁铁。
当在通电螺线管内部插入铁芯后,铁芯被通电螺线管的磁场磁化。
磁化后的铁芯也变成了一个磁体,这样由于两个磁场互相叠加,从而使螺线管的磁性大大增强。
为了使电磁铁的磁性更强,通常将铁芯制成蹄形。
但要注意蹄形铁芯上线圈的绕向相反,一边顺时针,另一边必须逆时针。
如果绕向相同,两线圈对铁芯的磁化作用将相互抵消,使铁芯不显磁性。
另外,为了使电磁铁断电立即消磁,我们往往采用消磁较快的的软铁或硅钢材料来制做。
这样的电磁铁在通电时有磁性,断电后磁就随之消失。
电磁铁的铁芯不能用钢制做。
否则钢一旦被磁化后,将长期保
持磁性而不能退磁,则其磁性的强弱就不能用电流的大小来控制,而失去电磁铁应有的优点。
1、比例电磁铁电液比例控制技术对比例电磁铁提出了一定的要求,主要有:a)水平的位移力特性,即在比例电磁铁有效工作行程内,当线圈电流一定时,其输出力保持恒定。
b)稳态电流——力特性具有良好的线性度,较小的死区及滞回。
c)阶跃响应快.频响高。
1.1 结构与水平吸力特性图1.1 耐高压直流比例电磁铁的结构和特性a)传统电磁铁的吸力特性;b)比例电磁铁的特性的形成——2种吸力特性的叠加;c)形成2种吸力特性的结构因素——隔磁环;d)分3个区段——用小隔磁环来消除第1区段,第2区段为水平吸力区,第3区段为辅助工作区;e)调零弹簧对输入输出特性的影响;f)电磁铁工作状态:湿式,耐高压,动铁前后通油孔改善动态特性。
1.2 稳态控制特性图1.2 不带位移反馈比例电磁铁位移——力特性图1.3 不带位移反馈比例电磁铁电流——力特性图1.4 带位移闭环的比例电磁铁的稳态特性1.3 力控制型与位置控制型:结构与特性的对比力控制型——与输入信号成比例的是输出力;位置控制型——与输入信号(电压)成比例的不是输出力!而是动铁位移(具体力的大小由负载需要定——在最大吸力之内)行程调节型——力控制性的变种(由弹簧转化为位移) 比较关系如下表:结构输入输出特性使用 力控制型 电流--- 输出力 输出力只与输入电流成正比工作区内与衔铁位移无关行程较短,用于先导级行程控制型 力控制型+负载弹簧,结构完全相同,只是使用上的区别电流--力----位移输出位移与输入电流成正比 输出行程较大,多用于直控阀 位置调节型力控制型+位移传感器,增加了动铁位置小闭环电流--- 衔铁位置衔铁位置与输入电流成正比与所受反力无关*有动铁位置反馈闭环 *用于控制精度要求较高的直控阀1.4 结构对性能的影响a) 动铁的阻尼通道; b) 反比例;c) 双向激励线圈,湿式,双向输出,无零位死区; d) 排气。
举例某电磁铁的规格如下表:电磁铁规格 035 045 060 新发展输出力 N 55 75 135 行程 mm 2+2 3+3 4+4额定电流 mA 680 810 11102500--3700常态电阻 Ω 24.6 2116.7电压V24。
液压比例阀比例电磁铁的工作原理简介比例电磁铁前面多次提到过在比例阀中占很重要地位的驱动控制部分――将电信号转换为位移信号的电- 机械转换器。
那么此节将对它作一个详细的介绍。
液压控制系统中最主要的被控参数是压力与流量,而控制上述两个参数的最基本手段是对流阻进行控制。
一种控制流阻的技术途径是直接的电液转换。
它是利用一种对电信号有粘性敏感的流体介质一电粘性液压油,实现电液粘度转换,从而达到控制流阻、实现对系统的压力和流量控制的目的。
显然,这种流阻控制方式更为简便,它无需电-机转换元件。
但是目前这种技术还未达到实用阶段和要求。
目前生产技术上能实现的可控流阻结构形式是通过电-机械转换器实现间接的电-液转换。
将输入的电信号转换成机械量。
这种电-机械转换器是电液比例阀的关键组件之一,它的作用是把经过放大后的输入信号电流成比例的转换成机械量。
根据控制的对象或液压参数的不同,这个力或者传给压力阀的一根弹簧,对它进行预压缩,或者输出的力、力矩与弹簧力相比较,产生一个与电流成比例的小位移或转角,操纵阀芯动作,从而改变可控流阻的液阻。
可见,电一机转换器是电液比例阀的驱动装置。
它的静态,动态特性对整个比例阀的设计和性能起着重要的作用。
电- 机械转换器分类a. 按其作用原理和磁系统的特征分,主要有:电磁式、感应式、电动力式、电磁铁式、永磁式、极化式;动圈式、动铁式;直流、交流。
b. 按其结构形式和性能分,主要有:开关型电磁铁、比例电磁铁、动圈式马达、力矩马达、步进电动机等。
比例电磁铁本设计属于电液比例阀一大类,顾名思义其应用的电- 机械转换器应是比例电磁铁。
比例电磁铁的功能是将比例控制放大器输出的电信号转换成力或位移。
比例电磁铁推力大,结构简单,对油液清洁度要求不高,维护方便,成本低,衔铁腔可做成耐高压结构,是电液比例控制元件中广泛应用的电- 机械转换器件。
比例电磁铁的特性及工作可靠性,对电液比例控制系统和元件的性能具有十分重要的影响,是电液比例控制系统的关键部件之一。
液压系统原理一、概述由电机、进口叶片泵、单向阀、溢流阀、耐震压力表,精滤器、冷却器、空气滤清器等元件组成。
油箱额定容积125L,电机功率2.2KW(或3KW),其流量Q=14升/分,P=7MPa,调压范围4~6MPa。
二、液压系统工作原理参见《液压系统原理图》,油液由油泵从油箱内吸入,经单向阀后分为二路,一路经电磁阀(用于自动手动转换)向电液伺服阀供油,另一路流向手动电磁阀,当伺服阀被脏物所堵时即可用手动方法对油缸进行操控,油缸速度由双单向节流阀调定。
油泵的出油同时经压力表和溢流阀,系统的压力由溢流阀调定,压力表上可反映所调定的工作压力。
溢流阀、伺服阀的回油经冷却器、精滤器后回油箱。
精滤器由滤油器和电接点压差表组成,过滤精度为20μ。
电接点压差表是防止纸质滤芯被堵后背压升高而造成其破裂的保护装置。
当滤油器进出油口压差达到0.35MPa时其表针指示会进入红色报警区域,并会接通触点。
用户可通过触点自接报警装置,触点容量为24V1A。
油液温度由温度计显示。
当油温达到50℃时应接通冷却水,使其进入冷却器进行循环冷却。
系统正常运行时,油温应控制在50℃以下。
常闭式盘式制动器液压站液压回路分析盘式制动器具有结构紧凑、可调性好、动作灵敏、重量轻、惯性小、安全程度高、通用性好等优点,而且盘式制动器成对使用,制动时主轴不承受轴向附加力。
在正常制动时,可以将制动器分成两组,先投入一组工作,间隔一定时间后,投入第二组,即实现了二级制动,二级制动使制动时产生的制动减速度不致过大。
只有在安全制动时才考虑二组同时投入制动,产生最大的制动力矩。
如果有一组产生故障时,也仍然还有一组制动器在工作,不致使制动器的作用完全失效。
由于盘式制动器的上述优点,它被广泛地应用于矿井提升设备的制动系统中。
例如,多绳摩擦式提升机和单绳缠绕式提升机采用的都是这种常闭式的盘式制动器。
图1为用于2JK型提升机的盘式制动器液压站液压回路。
泵5排出的压力油经滤油器8手动换向阀9、二级安全制动阀11(正常工作时带电),通过A、B管进入制动缸15,使盘闸16松开,提升机在运行过程中,为保持盘闸处于松开状态,液压系统处于开泵保压状态。
比例电磁铁材料比例电磁铁材料是一种常用的电磁铁材料,其特点是具有高导磁性和高电导性。
在电磁铁应用中,比例电磁铁材料能够提供稳定的磁场和较低的电阻,因此被广泛应用于电磁铁的制造中。
比例电磁铁材料主要由铁、镍、铜等金属元素组成。
其中,铁是比例电磁铁材料的主要成分,具有良好的导磁性能。
镍是一种具有高导磁性和高电导性的金属,能够增强比例电磁铁材料的导磁性能和电导性能。
而铜是一种具有良好导电性能的金属,能够提高比例电磁铁材料的电导性能。
在比例电磁铁材料的制备过程中,需要控制各种金属元素的比例,以达到最佳的导磁性和电导性。
通常采用合金化的方法,将各种金属元素混合后进行熔炼和冷却,得到比例电磁铁材料。
比例电磁铁材料具有多种优良性能。
首先,它具有高导磁性,能够提供稳定的磁场。
在电磁铁应用中,比例电磁铁材料能够将电能转化为磁能,产生强磁场,从而实现各种功能,如吸附、悬浮等。
其次,比例电磁铁材料具有高电导性,能够降低电阻,减少能量损耗。
在电磁铁应用中,比例电磁铁材料能够提供较高的电导率,减少电能转换过程中的能量损耗,提高效率。
此外,比例电磁铁材料还具有较高的热稳定性和机械强度,能够在高温和高压下保持良好的性能。
比例电磁铁材料的应用范围非常广泛。
在电磁铁领域中,比例电磁铁材料被广泛应用于电磁吸盘、电磁悬浮、电磁制动等领域。
比例电磁铁材料能够产生强大的磁场,实现各种功能。
在工业领域中,比例电磁铁材料被应用于电磁铁制造、电磁感应加热等领域。
比例电磁铁材料能够提供稳定的磁场和较低的电阻,使得电磁铁具有较高的效率和性能。
总的来说,比例电磁铁材料是一种具有高导磁性和高电导性的材料,能够提供稳定的磁场和较低的电阻。
在电磁铁应用中,比例电磁铁材料能够实现各种功能,广泛应用于电磁铁的制造中。
比例电磁铁材料具有多种优良性能,能够提高电磁铁的效率和性能。
随着科技的发展,比例电磁铁材料将会得到更广泛的应用和研究。
REXROTH力士乐比例方向阀参数分析REXROTH力士乐比例方向阀参数分析REXROTH力士乐比例方向阀能够根据输人信号的极性和幅值大小,同时对液流的方向和流量进行控制。
液流的流动方向取决于相应比例电磁铁是否受到激励,在压力差恒定的条件下,通过电液比例方向控制阀的流量与输人电信号的幅值成正比。
REXROTH力士乐比例方向阀与普通电磁换向阀的区别是直动式电液比例方向控制阀采用比例电磁铁代替普通电磁换向阀中的普通电磁铁。
随着液压传动和液压伺服系统的发展,生产实践中出现- -些即要求能够连续的控制压力、流量和方向,又不需要其控制精度很高的液压系统。
由于普通的液压元件不能满足具有一定的伺服性要求,而使用电液伺服阀又由于控制精度要求不高而过于浪费,因此近几年产生了介于普通液压元件(开关控制)和伺服阀(连续控制) 之间的比例控制阀。
电液比例控制阀(简称比例阀)实质上是一种性价比高、抗污染性能较好的电液控制阀。
比例阀的发展经历两条途径,一是用比例电磁铁取代传统液压阀的手动调节输入机构,在传统液压阀的基础下:发展起来的各种比例方向、压力和流量阀;二是一些原电液伺服阀生产厂家在电液伺服阀的基础上,降低设计制造精度后发展起来的。
力士乐REXROTH比例阀特点:比例控制阀是一种按输入的电信号连续、按比例地控制液压系统的流量、压力和方向的控制阀,其输出的流量和压力可以不受负载变化的影响。
比例阀与普通液压元件相比,有如下特点:(1)电信号便于传递,能简单地实现远距离控制。
(2)能连续、按比例地控制液压系统的压力和流量,实现对执行机构的位置、速度、力量的控制,并能减少压力变换时的冲击。
(3)减少了元件数量,简化了油路。
REXROTH力士乐比例方向阀图片:REXROTH力士乐比例方向阀参数分析REXROTH力士乐比例方向阀Qn= 350 l/min; 压缩空气接口出口: G 1/8; 电子连接: 插头, EN 175301-803, 形式 C; 信号连接: 输入端和输出端, 插头, EN 175301-803, 形式 C; 伺服阀(导阀)安装方式提动阀移向…处控制相似的zui小/zui大环境温度+5°C / +50°Czui小/zui大介质温度+5°C / +50°C介质压缩空气颗粒大小 max. 50 ?m压缩空气中的含油量 0 mg/m? - 0,1 mg/m?Qn 350 l/min安装位置垂直滞环 0,1 bar工作运行电压 24 V电压偏差DC -10% / +10%允许的脉动 5%功率消耗 max. 0,2 A保护等符合 EN 60 529: 2001带有接线盒 / 插头 IP 54压缩空气接口人口 G 1/8压缩空气接口出口 G 1/8压缩空气连接排气 G 1/8重量 0,6 kg材料:外壳铝材-压铸件; 压铸锌密封丙烯树胶额定流量Qn,当工作压力为7 bar、二次压力为6 bar及Δp = 0.2 bar时德国技术性备注■ 压力露点必须少低于环境和介质温度15 °C,并且允许的zui高温度为3 °C。
一、比例电磁铁产生一个与输入变量成比例的力或位移输出
液压阀以这些输出变量力或位移作为输入信号就可成比例地输出流量或压力
这些成比例输出的流量或压力输出对于液压执行机构或机器动作单元而言意味着不仅可进行方向控制而且可进行速度和压力的无级调控
─同时执行机构运行的加速或减速也实现了无级可调如流量在某一时间段内的连续性变化等.
二、比例电磁铁必须具有水平吸力特性,即在工作区内,其输出力的大小只与电流有关,与衔铁位移关,若电磁铁的吸力不显水平特性,弹簧曲线与电磁力曲线族只有有限的几个交点,这意味着不能进行有效的位移控制。
在工作范围内,不与弹簧曲线相交的各电磁力曲线中,对应的电流在弹簧曲线以下,不会引起衔铁位移;在弹簧曲线以上时,若输出这样的电流,电磁力将超过弹簧力,将衔铁一直拉到极限位置为止。
相反,若电磁铁具有水平特性,那么在同样的弹簧曲线下,将与电磁力曲线族产生许多交点。
在这些交点上,弹簧力与电磁力相等,就是说,逐渐加大输入电流时,衔铁能连续地停留在各个位置上。
三、比例阀,又称电液比例阀,是一种介于通断控制与伺服控制之间的新型电液控制元件。
是根据电信号连续的、按比例地控制液压系统中的压力、流量、方向,并可以防止液压冲击。
由于其结构设计、工艺性能、使用价格都介于通断控制元件和伺服控制之间,近年来得到广泛应用。
控制原理:当电信号输入其电磁系统中,便会产生与电流成比例的电磁推力,该推力控制相应元件和阀芯,导致阀芯平衡系统调定的压力,使系统压力与电信号成比例。
如输入电信号按比例或一定程序变化,则系统各参数也随着变化.
比例阀一般采用两端承压面积不等的差径活塞结构。
工作原理如图12-9所示,比例阀不工作时,差径活塞2在弹簧3的作用下处于上极限位置。
此时阀门1保持开启,因而在输入控制压力P1与输出压力P2从零同步增长的初始阶段,总是P1=P2。
但是压力P1的作用面积为A1=π(D2-d2)/4,压力阀的作用面积为A2=πd2/4,因而A2>A1,故活塞上方液压作用力大于活塞下方液压作用力。
在P1、P2同步增长过程中当活塞上、下两端液压作用之差超过弹簧3的预紧力时,活塞便开始下移。
当P1和P2增长到一定值Ps时活塞2内腔中的阀座与阀门1接触,进油腔与出油腔即为隔绝。
此即比例阀的平衡状态。
若进一步提高P1则活塞将回升,阀门再度开启。
油液继续流入出油腔使P2也升高但由于A2>A1,P2尚未及增长到新的P1值,活塞又下降到平衡位置。
在任一平衡状态下,差径活塞的力的平衡方程为:P2A=P1A1+F(此处F为平衡状态下的弹簧力)。