整式的加减法(1)
- 格式:ppt
- 大小:971.50 KB
- 文档页数:24
七年级上册数学《整式的加减》教案精选范文五篇教育是石,撞击生命的火花。
教育是灯,照亮夜行者踽踽独行的路。
教育是路,引领人类走向黎明。
因为有教育,一切才都那么美好,因为有教育,人类才有无穷的希望。
下面是小编给大家准备的七年级上册数学《整式的加减》教案精选范文,供大家阅读参考。
七年级上册数学《整式的加减》教案精选范文一教学目标和要求:1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
3.初步体会数学与人类生活的密切联系。
教学重点和难点:重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1、创设问题情境⑴5个人+8个人=⑵5只羊+8只羊=⑶5个人+8只羊=(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。
学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。
)2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.同类项的定义:我们常常把具有相同特征的事物归为一类。
8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。
整式的加减法去括号和添括号的用法(一)整式的加减法去括号和添括号的用法本文将介绍整式的加减法去括号和添括号的用法,并详细讲解以下几个方面:1.去括号和添括号的定义2.整式去括号的规则和示例3.整式添括号的规则和示例4.注意事项和常见错误1. 去括号和添括号的定义•去括号:将一个整式中的括号内的表达式按照括号前的符号进行分配运算,去掉括号。
•添括号:在一个整式中提取其中的一部分进行括号,用于改变运算顺序或减少计算量。
2. 整式去括号的规则和示例•去括号的规则:–括号前有正号或无符号:将括号内的每一项与括号前的符号相乘。
–括号前有负号:将括号内的每一项与括号前的符号相乘,并改变项内的符号。
•示例1:–原式:2(3x + 5y)–去括号后:6x + 10y•示例2:–原式:-3(2x - 4y)–去括号后:-6x + 12y3. 整式添括号的规则和示例•添括号的规则:–可以在整式中的任意位置添加括号,但需保持运算的正确性。
–添括号可以改变整式的运算顺序,提高计算效率。
•示例1:–原式:3x + 2y + 4z - 5w–添括号后:(3x + 2y) + (4z - 5w)•示例2:–原式:2x^2 + 3x - 5–添括号后:2x^2 + (3x - 5)4. 注意事项和常见错误•注意事项:–在运算中,括号的使用必须符合数学运算的法则。
–添括号时要注意运算顺序,确保计算的正确性。
•常见错误:–在去括号过程中,忽略了括号前的符号,导致计算错误。
–在添括号过程中,未保持原式的运算顺序,导致计算结果不正确。
这些是整式的加减法去括号和添括号的常用用法和规则,希望可以帮助你更好地理解和运用整式的运算。
在实际运算中,需要根据具体的情况和题目要求灵活运用这些方法。
整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m a a a n m n m +=•),(都是正整数)(n m a a m n n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 5D .54x n ·25x m =12x m+n2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 3.下列运算正确的是( ).A .a 2·a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 6-a 2=a 4 4.下列运算中正确的是( ).A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。
整式的加减法典型例题及练习一、整式的概念整式是由常数、变量及它们的积、商、幂次和各项次数非负的代数和确定次序的运算符号相连接而成的代数式。
整式可包括单项式和多项式。
二、整式的加法整式的加法是指将两个或多个整式相加得到一个新的整式。
在整式的加法中,同类项要进行合并。
例题1:将3x² + 2x - 5和-5x² + x + 3进行相加。
解:首先合并同类项,得到:(3x² - 5x²) + (2x + x) + (-5 + 3) = -2x² + 3x - 2练习1:将4x³ + 2x² - x + 3和-7x³ + 5x² + 4x - 2进行相加。
三、整式的减法整式的减法是指将一个整式减去另一个整式得到一个新的整式。
在整式的减法中,需要将被减数相应的改变符号,然后进行相加。
例题2:将4x² - 3x + 7减去(2x² + x - 3)。
解:首先将被减数相应的改变符号,得到:4x² - 3x + 7 + (-2x² - x + 3) = 2x² - 4x + 10练习2:将5x³ + 2x² - x + 3减去(3x³ - 2x² + 4x - 1)。
四、整式的加减混合运算整式的加减混合运算是指同时进行整式的加法和减法运算。
例题3:将(4x² - 3x + 7) - (2x² + x - 3) + (6x² - 4x + 5)进行运算。
解:先进行括号内的减法运算,得到:(4x² - 3x + 7) - (2x² + x - 3) + (6x² - 4x + 5) = 4x² - 3x + 7 - 2x² - x + 3 + 6x² - 4x + 5合并同类项:(4x² - 2x² + 6x²) + (-3x - x - 4x) + (7 + 3 + 5) = 8x² - 8x + 15练习3:将(5x³ + 2x² - x + 3) + (3x³ - 2x² + 4x - 1) - (4x³ + x² - 3x + 5)进行运算。