2019届重庆八中数学初三下入学考试(解析版)
- 格式:doc
- 大小:789.00 KB
- 文档页数:33
2019-2020学年重庆八中九年级(下)第一次月考数学试卷一、选择题(本大题共12小题,共48.0分)1.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是A. 圆柱B. 圆锥C. 球D. 正方体2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是A. B.C. D.3.下列各线段中,能与长为4,6的两线段组成三角形的是A. 2B. 8C. 10D. 124.下列命题正确的是A. 若锐角满足,则B. 在平面直角坐标系中,点关于x轴的对称点为C. 两条直线被第三条直线所截,同旁内角互补D. 相似三角形周长之比与面积之比一定相等5.中国明代数学著作算法统宗中有这样一首古诗:“巍巍古寺在山中,不知寺内几多僧?三百六十四只碗,恰好用尽不用争.三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x,则得到的方程是A. B. C. D.6.如果,那么代数式的值为A. B. C. 2 D.7.若点,都在二次函数为常数,且的图象上,则m和n的大小关系是A. B.C. D. 以上答案都不对8.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的小正方形组成的.设直角三角形的两直角边长为a,b,且满足,若小正方形的面积为11,则大正方形的面积为A. 15B. 17C. 30D. 349.重庆移动为了提升新型冠状肺炎“停课不停学”期间某片区网络信号,保证广大师生网络授课、听课的质量,临时在坡度为:的山坡上加装了信号塔如图所示,信号塔底端Q到坡底A的距离为米.同时为了提醒市民,在距离斜坡底A点米的水平地面上立了一块警示牌当太阳光线与水平线成角时,测得信号塔PQ落在警示牌上的影子EN长为3米,则信号塔PQ的高约为结果精确到十分位,参考数据:,,A. B. C. D.10.如图,在中,,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时的度数为A. B. C. D.11.已知,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程米与甲出发的时间分钟之间的关系如图所示,则下列结论错误的是A. A、B两地相距2480米B. 甲的速度是60米分钟,乙的速度是80米分钟C. 乙出发17分钟后,两人在C地相遇D. 乙到达A地时,甲与A地相距的路程是300米12.若整数a既使得关于x的分式方程有整数解,又使得关于x,y的方程组的解为正数,则符合条件的所有a的个数为A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共24.0分)13.计算:______.14.正多边形的一个外角是,则这个多边形的内角和的度数是______.15.如图,四边形OABC的顶点O为坐标原点,以O为位似中心,作出四边形与四边形OABC位似,若的对应点为,四边形OABC的面积为27,则四边形的面积为______.16.如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1,则称为“离心三角形”,而如果面积恰好等于1,则称为“环绕三角形”,B是网格图形中已知的两个格点,点C是另一格点,且满足是“离心三角形”,则是“环绕三角形”的概率是______.17.如图,在平面直角坐标系内,O为坐标原点,点A为直线上一动点,过A作轴,交x轴于点点C在原点右侧,交双曲线于点B,且,则当存在时,其面积为______.18.如图,在中,,,将绕点B顺时针旋转一定角度后得到,连接,,过点A作交于点D,若,,且,则AD的长为______.三、计算题(本大题共1小题,共10.0分)19.解不等式组:;化简:.四、解答题(本大题共7小题,共68.0分)20.如图,AB为的直径,弦,垂足为E,,连接OC,,F为圆上一点,过点F作圆的切线交AB的延长线于点G,连接BF,.求的半径;求证:;求阴影部分的面积.21.据第四次全国经济普査的数据表明,中国经济已经开始由高速度增长转向高质量发展,供给侧结构性改革初见成效.各地产品质量监管部门也严抓质量,整顿生产,促进经济更好发展.某质量监管部门对甲、乙两家工厂生产的同种产品进行检测,分别随机抽取50件产品,并对产品的某项关键质量指标做检测,获得质量指标检测值t,对数据整理分析的部分信息如下:【1】甲、乙两工厂的样本数据频数分布表如下:工厂类别合计甲工厂频数0a10350频率b乙工厂频数3151318150频率其中,乙工厂样品质量指标检测值在范围内的数据分别是:100,,99,102,97,95,101,98,100,98,102,104.【2】两工厂样本数据的部分统计数据如下:平均数中位数众数方差甲工厂96乙工厂c107根据以上信息,回答下列问题:表格中,______,______,______;已知质量指标检测值在内,属于合格产品.若乙工厂某批产品共1万件,估计该批产品中不合格的有多少件?若质量指标检测值为100时为优秀,偏离100越小,产品质量越高.现有一家公司需大量采购该种产品,根据题目给定的数据,你认为选择哪家工厂的产品更好?并请说明理由.22.如图,已知矩形ABCD,,,点M为线段BC上一动点,沿线段BC由B向C运动,连接AM,以AM为边向右侧作正方形AMNP,连接CN,设M的路程即BM的长为xcm,C、N间的距离为,D、N间的距离为.数学兴趣小组的小刚根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行探究,过程如下:根据表中自变量x的取值进行取点,画图,测量,分别得到几组对应值,请将01234563a30b其中,______,______;在同一平面直角坐标系中,描点,,并画出,的函数图象;当为等腰三角形时,BM的长度约为______.23.随着人们的生活水平不断提高,人们越来越注重生活品质,注重食物营养水果罐头在保存鲜度和营养方面得天独厚,仅次于现摘水果,水果罐头不仅果肉好吃,水果的本色本味完全融入到糖水中,罐头水的风味甚至比果汁还要浓郁.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费万元购进的甲种水果与万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.求甲、乙两种水果的单价;车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的的还要多3元,调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少?若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的,每听罐头的价钱应为多少钱?24.如图,抛物线与x轴交于A,B两点,与y轴交于C点,连结AC,已知,且抛物线经过点.求抛物线的解析式;若点E是抛物线上位于x轴下方的一点,且,求E的坐标;若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.25.请阅读下列材料:问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍解:设所求方程的根为y,则,所以.把代入已知方程,得化简,得故所求方程为.这种利用方程根的代换求新方程的方法,我们称为“换根法”.已知方程,求一个一元二次方程,使它的根分别是已知方程根的3倍,则所求方程为______已知关于x的一元二次方程有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数;已知关于x的方程有两个实数根,求一个方程,使它的根分别是已知方程根的平方.26.在,中,,连接BD,F为BD中点,连接AF,EF.如图1,若A,C,E三点在同一直线上,,已知,,求线段AF的长;如图2,若,求证:为等腰直角三角形;如图3,若,请判断的形状,并说明理由.答案和解析1.【答案】C【解析】解:主视图、俯视图和左视图都是圆的几何体是球.故选:C.利用三视图都是圆,则可得出几何体的形状.本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.2.【答案】B【解析】解:由题意得:,解得:,在数轴上表示为:,故选:B.根据二次根式有意义的条件可得,根据分式有意义的条件可得,再解即可.此题主要考查了二次根式有意义和分式的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.3.【答案】B【解析】解:设组成三角形的第三边长为x,由题意得:,即:,故选:B.设组成三角形的第三边长为x,根据三角形的三边关系可得不等式,进而可得x的范围,然后可得答案.此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.4.【答案】B【解析】解:A、若锐角满足,则,故本选项错误;B、在平面直角坐标系中,点关于x轴的对称点为,正确;C、两条平行直线被第三条直线所截,同旁内角互补,故本选项错误;D、相似三角形面积之比等于周长比的平方,故本选项错误;故选:B.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.【答案】B【解析】解:设和尚的个数为x,根据题意得,,故选:B.由“设和尚的个数为x,3个和尚合吃一碗饭“知共用饭碗只,由“4个和尚合分一碗汤“知共用汤碗只,再根据总用了364只碗,列出方程.本题考查由实际问题抽象出一元一次方程,关键以碗的只数做为等量关系列方程求解.6.【答案】A【解析】解:,,原式.故选:A.直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.此题主要考查了分式的化简求值,正确掌握分式的混合运算是解题关键.7.【答案】A【解析】解:二次函数为常数,且可知,抛物线开口向上,抛物线的对称轴为直线,.故选:A.先利用二次函数的性质得到抛物线的对称轴为y轴,然后根据二次函数的性质解决问题.本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.8.【答案】B【解析】解:如图所示:,,小正方形的面积为11,,大正方形的面积为17.故选:B.观察图形可知,小正方形的面积大正方形的面积个直角三角形的面积,利用已知,小正方形的面积为11,可以得出直角三角形的面积,进而求出答案.此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.9.【答案】B【解析】解:过点E作于点F,延长PQ交BA于点G,可得,,QG::,设,则,,解得:,则,,故,解得:,,信号塔PQ的高约为:.故选:B.直接根据已知构造直角三角形利用坡度的定义得出QG的长,再利用锐角三角函数关系得出PF的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出EF的长是解题关键.10.【答案】A【解析】解:如图,连接AD,根据作图过程可知:AE是BD的垂直平分线,,,设,则,,,,,,,.故选:A.连接AD,根据作图过程可得,AE是BD的垂直平分线,,,设,则,,根据,求出x的值后再根据直角三角形两个锐角互余即可求得的度数.本题考查了作图复杂作图,解决本题的关键是理解作图过程,利用线段垂直平分线的性质、等腰三角形的性质、三角形外角的性质.11.【答案】C【解析】解:由图象可知,A、B两地相距2480米,故选项A不合题意;甲的速度为米分钟,乙的速度为米分钟,故选项B不合题意;甲、乙相遇的时间为分钟,故选项C符合题意;A、C两地之间的距离为米,乙到达A地时,甲与A地相距的路程为米故选项D不合题意.故选:C.根据图象可知A、B两地相距2480米;利用速度路程时间可求出甲、乙的速度,由二者相遇的时间、B两地之间的路程二者速度和,可求出二者相遇的时间,再由A、C两地之间的距离甲的速度二者相遇的时间可求出A、C两地之间的距离,由A、C两地之间的距离结合甲、乙的速度,可求出乙到达A地时甲与A地相距的路程.本题考查了一次函数的应用,利用数量关系,求出甲、乙的速度及A、C两地之间的距离是解题的关键.12.【答案】B【解析】解:解方程得,,分式方程有整数解,且,或或或1或2或4,且,或1或2或4或5,解方程组得,,方程组的解为正数,,解得,,综上,或5,故选:B.先解分式方程得x关于a的代数式,根据分式方程有整数解和不能为增根,求出a的取值,再解方程组,根据方程组的解为正数,列出a的不等式组求得a的取值范围,进而综合求得a的取值个数.本题主要考查了解分式方程,二元一次方程组,解不等式组,整数解的应用,容易忽略分式方程增根的限制条件.13.【答案】【解析】解:原式故答案为.根据二次根式的化简、负整数指数幂、特殊角的三角函数值、绝对值得到原式,然后合并即可.本题考查了二次根式的化简、负整数指数幂、特殊角的三角函数值、绝对值,熟练掌握这些运算法则是解题的关键.14.【答案】【解析】解:多边形的边数:,正多边形的内角和的度数是:.故答案为:.根据任何多边形的外角和都是,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是,把多边形的边数代入公式,就得到多边形的内角和.考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.【答案】12【解析】解:以O为位似中心,作出四边形与四边形OABC位似,的对应点为,四边形与四边形OABC的位似比为:4::3,四边形与四边形OABC的面积比为:4:9,四边形OABC的面积为27,四边形的面积为:.故答案为:12.直接利用位似图形的性质得出四边形与四边形OABC的位似比,进而得出面积比,即可得出答案.此题主要考查了位似变换,正确得出四边形的位似比是解题关键.16.【答案】【解析】解:满足是“离心三角形”的C点有11个,而是“环绕三角形”的C点有5,所以是“环绕三角形”的概率.故答案为.利用三角形面积公式,的面积不小于1的C点有11个,而为1的点有5个,然后根据概率公式可计算出是“环绕三角形”的概率.本题考查了概率公式:随机事件A的概率事件A所占有的结果数除以与总的等可能的结果数.也考查了三角形面积公式.17.【答案】1【解析】解:根据题意设点,,所以,.,可列方程,即解得:或1,或,或,存在,舍去,.的面积.故答案为1.根据题意表示出AC,BC的长,进而得出等式求出m的值,进而得出答案.此题主要考查了反比例函数图象上点的坐标特征与一次函数图象上点的坐标特征,正确表示出各线段长是解题关键.18.【答案】【解析】解:过点作于Q,交AM于P.由题意:≌,,,,,,∽,,,,设,,则,,,,,设,,则有,解得或,或,,.故答案为.过点作于Q,交AM于利用相似三角形的性质证明,推出,设,,则,可得,解得,推出,,设,,构建方程组解决问题即可.本题考查旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.19.【答案】解:由不等式得:由不等式得:不等式组的解集为解:原式【解析】分别求出两个不等式的解集,找出解集的公共部分即可;根据整式的乘法法则计算即可.本题主要考查解不等式组和整式的运算,重点侧重考查运算能力,熟练掌握运算的方法是解题的关键.20.【答案】解:设的半径为r,则,,,在中,,即,解得,,答:的半径为6;证明:连接OF,是的切线,,即,为的直径,,即,,,,,,,;解:,,,在和中,,≌,为等边三角形,,,由勾股定理得,,阴影部分的面积.【解析】根据垂径定理求出CE,根据勾股定理列式计算求出的半径;连接OF,根据切线的性质得到,根据圆周角定理得到,根据等腰三角形的性质和判定证明结论;证明≌,根据全等三角形的性质得到,得到为等边三角形,根据圆的面积公式、三角形的面积公式计算,得到答案.本题考查的是切线的性质、垂径定理、圆周角定理、全等三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21.【答案】25【解析】解:甲工厂的频数,甲工厂的频数为,甲工厂的频率,甲工厂在范围内的数据从小大大排列95,97,98,98,,99,100,100,101,102,102,104.中位数.故答案为25,,;由题,乙工厂产品抽查中,样品中不合格的占,件,答:大约有800件不合格.选择甲工厂的产品.因为在质量指标检测中,甲工厂产品高质量件数多于乙工厂的.说明甲工厂产品质量更高,样品质量指标检测值的平均数相同时,甲的方差更小,说明产品质量更稳定.根据频率频数总数计算;由题,乙工厂产品抽查中,样品中不合格的占,件;择甲工厂的产品.因为在质量指标检测中,甲工厂产品高质量件数多于乙工厂的.说明甲工厂产品质量更高,样品质量指标检测值的平均数相同时,甲的方差更小,说明产品质量更稳定.本题主要考查了统计与概率的相关知识应用问题,也考查了对数据处理能力的应用问题.22.【答案】0或或或【解析】解:当时,以AM为边向右侧构造正方形AMNP,连接NC,测得NC的长约为,所以a约为.当时,以BM为边向右侧构造正方形AMNP,连接ND,测得ND的长约为,所以b约为;故答案为:、;如图所示,即为,的函数图象;当时,由图可得,BM约为;当时,因为,由图可得,BM约为或;当时,因为,由图可得,或3,但是当时,,不能构成三角形,需舍去.综上所述:BM约为0或或或.故答案为:0或或或.当时,测得NC的长约为,当时,测得ND的长约为,即可;根据表格数据即可画出,的函数图象;根据为等腰三角形,分三种情况讨论:当时,由图可得,BM约为;当时,因为,由图可得,BM约为或;当时,因为,由图可得,或3,进而得BM的大致长度.本题考查了动点问题的函数图象,解决本题的关键是分三种情况进行讨论解答.23.【答案】解:设甲种水果的单价为x元千克,乙种水果的单价为元千克,根据题意得,,解得:,经检验,是方程的根,,答:甲、乙两种水果的单价分别为6元千克,8元千克;由知每听罐头的水果成本为:元,每听罐头的总成本为:元,设降价m元,则利润,,当时,W有最大值为64000,当售价为23元时,利润最大,最大利润为64000元;由知,,解得:或,但是降价的幅度不超过定价的,,售价为元,答:每听罐头的价钱应为25元.【解析】设甲种水果的单价为x元千克,乙种水果的单价为元千克,根据题意列方程健康得到结论;由知每听罐头的水果成本为:元,每听罐头的总成本为:元,设降价m元,根据题意得到函数解析式,然后根据二次函数的性质健康得到结论;根据题意列方程健康得到结论.本题考查了二次函数的应用,分式方程的应用,正确的理解题意是解题的关键.24.【答案】解:把,代入得,解得:.故抛物线的解析式为;当时,,解得,,,,当时,,,,,设AC的解析式为,把,代入得,解得.,如图1,过点E作x轴的垂线交直线AC于点F,设点,点,其中,,,或,解得舍去,,,,,,;在中,当时,,,,如图2,设,则,,,当时,则,;当时,即,,;当时,点P在AC的垂直平分线上,则∽,,,,,当时,,综上所述,P点的坐标或或或【解析】根据待定系数法可求抛物线的解析式;在中,当时,,可得,当时,,得到,根据待定系数法可求AC的解析式,如图1,过点E作x轴的垂线交直线AC于点F,设点,点,其中根据,得到关于a的方程,解方程即可求解;如图2,设,则,,根据勾股定理得到,当时,则,当时,当时,点P在AC的垂直平分线上,根据相似三角形的性质得到,当时,于是得到结论.本题考查了二次函数综合题,涉及待定系数法求函数解析式,等腰三角形的判定和性质,三角形的面积公式,正确地作出辅助线是解题的关键.25.【答案】;设所求方程的根为y,则,于是把代入方程,得去分母,得.若,有,于是方程有一个根为0,不符合题意,,故所求方程为;设所求方程的根为y,则,所以.当时,把代入已知方程,得,即;当时,把代入已知方程,得,即.【解析】解:设所求方程的根为y,则,所以.把代入已知方程,得化简,得,故所求方程为.故答案是:;见答案;见答案.根据所给的材料,设所求方程的根为y,再表示出x,代入原方程,整理即可得出所求的方程.本题主要考查了一元二次方程的解、根的判别式.本题是一道材料题,是一种新型问题,解题时,要提取材料中的关键性信息.26.【答案】解:连接CF,在,中,,,,,,C,E三点在同一直线上,,为BD的中点,,,≌,,同理:≌,,为等腰直角三角形,,,.证明:取BC的中点M,CD的中点N,连接AM,MF,EN,FN,为BD的中点,为的一条中位线,,,四边形MCNF为平行四边形,,,,在中,M为BC的中点,,,同理:,,,,.,≌,,,.为等腰直角三角形;证明:取BC的中点M,CD的中点N,连接AM,MF,EN,FN,为BD的中点,为的一条中位线,,,四边形MCNF为平行四边形,,,,在中,M为BC的中点,,,同理:,,,,.,≌,,,.为等边三角形.【解析】连接CF,根据SSS可证明≌,同理可得≌,则为等腰直角三角形,可求出答案;取BC的中点M,CD的中点N,连接AM,MF,EN,FN,可得四边形MCNF为平行四边形,证明≌,可得,,则可得结论;取BC的中点M,CD的中点N,连接AM,MF,EN,FN,证得四边形MCNF为平行四边形,证明≌,可得,,则结论得证.本题属于三角形综合题,考查了等腰直角三角形的性质,中位线定理,平行四边形的判定与性质,等边三角形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2019届重庆市校九年级下学期第一阶段考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 实数-15的相反数是()A. 15B.C. -15D.2. 下列图案中,不是中心对称图形的是()3. 下列运算正确的是()A. B.C. D.4. 如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=,则∠2的度数是()A. B. C. D.5. 下列说法中不正确的是()A.选举中,人们通常最关心的数据是众数B.要了解一批烟花的燃放时间,可采用抽样调查的方法C.若甲组数据的方差,乙组数据的方差,则甲组数据比乙组数据稳定D.某抽奖活动的中奖率是60℅,说明参加该活动10次就有6次会中奖6. 不等式组的解集在数轴上表示正确的是()7. 函数中自变量x的取值范围是()A. B. C. D.8. 如图,AB是⊙O的直径,∠ADC=,OA=2,则BC的长为()A. 2B.C. 4D.9. 已知点P(1-2a,a-2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程的解是()A.3 B.1 C.5 D.不确定10. 某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路原速返回b千米(a〉b),再调头沿原方向比原速大的速度行驶,则此人离起点的距离S与时间t的函数关系的大致图象是()11. 观察下表,回答问题:第______个图形中“△”的个数是“○”的个数的5倍.()A.5 B.10. C.20 D.4012. 如图,双曲线经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,过D作DE⊥OA交OA于点E,若△OBC的面积为3,则k的值是().A.1 B.2 C. D.3二、填空题13. 地球的表面积约为5.1亿平方千米,其中海洋约占70%,则海洋的面积用科学记数法可表示为平方千米.14. 已知△ABC∽△DEF,且相似比为4:3,△ABC中BC边上的中线AM=8,则△DEF中,EF边上的中线DN=。
重庆八中2018-2019学年度(下)入学考试初三年级数 学 试 题(满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24()24b ac b a a--,,对称轴是2b x a=-. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.下列实数-3 、3 、0、π中,无理数是( )A .-3B .3C .0D .π2.如图是两个等直径圆柱构成的“T ”形管道,其左视图是( )A .B .C .D .3. 下列运算正确的是( )A .2x x x -=-B . 2x y xy -=-C . 224+x x x = D .()2211x x -=-4+1x 有意义,则x 的取值范围是( ) A .x >-1 B .x ≥-1 C .x ≠0 D .x >-1且x ≠05.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40° B.50°C.70°D.80°6.已知a为整数,且218a+<,则a的值为()A. 3 B.8 C.9 D.127.如图,函数221y ax x=-+和y ax a=- ( 是常数,且)在同一平面直角坐标系的图象可能是()A.B. C. D. 8.如图,将ABC∆沿BC边上的中线AD平移到A B C'''∆的位置,已知ABC∆的面积为9,阴影部分三角形的面积为4.若1AA'=,则A D'等于()A. 2B. 3C.23D. 329.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(,1)l-,点B在x轴正半第9题图5题图第8题图轴上,点D 在第三象限的双曲线6y x=上,过点C 作//CE x 轴交双曲线于点E ,连接BE ,则BCE ∆的面积为( )A .5B .6C .7D .810. 将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是A .2019B .2018C .2016D .201311.如图,将含有30︒角的直角三角板ABC 放入平面直角坐标系,顶点A 、B 分别落在x 、y 轴的正半轴上,60OAB ∠=︒,点A 的坐标为(1,0).将三角板ABC 沿x 轴向右作无滑动的滚动 (先绕点A 按顺时针方向旋转60︒,再绕点C 按顺时针方向旋转90)︒⋯,当点B 第一次落在x 轴上时,则点B 运动的路径与两坐标轴围成的图形面积是 .A .3B .17312π+C . 133+12π D .3+π 12.若数a 使得关于x 的分式方程5131=----xx x a 有正数解,且使得关于y 的不等式组211+32y a y y a -≥-⎧⎪⎨<⎪⎩有解,那么符合条件的所有整数a 的个数为( ) A .1 B .2 C .3 D .4二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.计算:()=-⎪⎭⎫⎝⎛---︒-30tan 2132π ____________. 14.已知ABC ∆与DEF ∆的相似比为3:2.若ABC ∆周长为12,则DEF ∆周长为_____. 15.关于x 的方程()0141222=-++-n x n x 有两个相等的实数根,则=n __________.x y 073214002720(min )(m )16.如图,在ABC ∆中,CB CA =,︒=∠90ACB ,4=AB ,点D 为AB 的中点,以点D 为圆心作圆心角为︒90的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为_____________.17.张同学与王同学分别从B A ,两地出发参加往直线往返运动,同时出发匀速相向而行;张同学的速度为120米/分,王同学的速度大于张同学;第一次相遇后,王同学在相遇处休息12分钟后以原速接着向A 地运动,此时张同学未到达B 地;两人分别到达后以原路原速返回,两人之间的距离y (米)与运动时间x (分)之间的关系如图所示,则第_____分钟时两人第二次相遇.18.某体育彩票投注站推出“英超、西甲、意甲”三大足球联赛的竞猜活动;猜对一场英超奖励3元,猜对一场西甲奖励2元,猜对一场意甲奖励1元;若干名球迷看到此活动后,分成三支小分队参与竞猜活动;第一小分队平均每人能猜对7场英超,5场西甲,3场意甲;第二小分队平均每人能猜对4场英超,4场西甲,2场意甲;第三小分队平均每人能猜对9场英超,6场西甲;这三支小分队在此活动中共获得奖励578元,其中通过猜对英超获得的奖励为339元,则第二支小分队的球迷人数为 人.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 19.计算:(1)()()()224a b a b a b ---- (2)2231111x x x x x -⎛⎫+÷-- ⎪--⎝⎭20.某学校教学楼(甲楼)的顶部E 和大门A 之间挂了一些彩旗.小孟测得大门A 距甲楼的距离AB 是31m ,在A 处测得甲楼顶部E 处的仰角是31°. (1)求甲楼的高度EB (精确到0.1m )(2)若小孟在甲楼楼底C 处测得学校后面医院楼(乙楼)楼顶G 处的仰角为40°,爬到甲楼楼顶F 处测得乙楼楼顶G 处的仰角为19°,求乙楼的高度GD 及甲乙两楼之间的距离CD .(精确到0.1m )(cos 31°≈0.86,tan 31°≈0.60,cos 19°≈0.95,tan 19°≈0.34,cos 40°≈0.77,tan 40°≈0.84)21.在某次训练活动中,甲乙两位射击运动员的射击成绩(环)如下所示: 甲: 乙:环数 5 6 7 8 9 次数 21331(1)根据上述数据完成下表:平均数中位数 众数 方差 甲射击成绩(环) 7 7和8 乙射击成绩(环)78.2(2)根据前面的统计分析,回答下列问题:平均数能较好地反映乙运动员的射击成绩吗?为什么?22.如图,P 是半圆弧AB 上一动点,连接PA 、PB ,过圆心O 作BP OC //交PA 于点C ,连接CB .已知cm AB 6=,设O ,C 两点间距离为xcm ,B ,C 两点间的距离为ycm .小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:环数 2 3 5 6 9 10 次数111223(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:cm x / 0 5.0 1 5.1 2 5.23 cm y /31.30.43.56说明:补全表格时相关数据取了近似值,保留一位小数(2)y 与x 的函数关系式为__________________.()0,30>≤≤y x(3)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;23.华为手机与苹果手机深受消费者喜爱,某商户每周都用25000元购进250张华为手机壳和150张苹果手机壳. (1)商户在第一周销售时,每张华为手机壳的售价比每张苹果手机壳的售价的2倍少10元,且两种手机壳在一周之内全部售完,总盈利为5000元.商户销售苹果手机壳的价格每张多少元?(2)商户在第二周销售时,受到各种因素的影响,每张华为手机壳的售价比第一周每张华为手机壳的售价增加了%35a ,但华为手机壳的销售量比第一周华为手机壳的销售量下降了%a ;每张苹果手机壳的售价比第一周每张苹果手机壳的售价下降了%a ,但苹果手机壳销售量与第一周苹果手机壳销售量相同,结果第二周的总销售额为30000元,求a ()0>a 的值.24.如图,平行四边形ABCD 中,DC BF ⊥交DC 于点F ,且AB BF =,E 点是BC 边上一点,连接AE 交BF 于G ;(1)若AE 平分DAB ∠,︒=∠60C ,3=BE ,求BG 的长; (2)若FC BG AD +=,求证:AE 平分DAB ∠.25.阅读与应用:同学们:你们已经知道2()0a b -…,即2220a ab b -+…. 222a b ab ∴+…(当且仅当a b =时取等号).阅读1:若a 、b 为实数,且0a >,0b >,20…,0a b ∴-…a b ∴+…a b =时取等号). 阅读2:若函数(0my x m x=+>,0x >,m 为常数),由阅读1结论可知:m x x +…m x x+…,∴当mx x=,即2x m =,0)x m ∴=>时,函数m y x x =+的最小值为阅读理解上述内容,解答下列问题: 问题1:若函数91(1)1y a a a =-+>-,则a = 时,函数91(1)1y a a a =-+>-的最小值为 ;问题2:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x ,周长为42()x x+,求当x = 时,周长的最小值为 ;问题3:求代数式225(1)1m m m m ++>-+的最小值.三、解答题(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图1,抛物线2y =++与x 轴交于A ,B 两点(点A 在点B 右侧),与y 轴交于点C ,点D 是抛物线的顶点,连结AD 、BD .(1)如图2,连结AC 、BC ,若点P 是直线AC 上方抛物线上一动点,过点P 作PE ∥BC 交AC 于点E ,作PQ ∥y 轴交AC 于点Q ,当△PQE 周长最大时,若点M 在y 轴上,点N 在x 轴上,求'3P M MN AN +-的最小值; (2)如图3,点G 为x 轴正半轴上一点,且OG=OC ,连接CG ,过点G 作GH ⊥AC 于点H ,将△CGH 绕点O 顺时针旋转α(0°<α<180°),记旋转中的△CGH 为△C′G′H′,在旋转过程中,直线C′G′,G′H′分别与直线AC 交于点M ,N ,△G ′MN 能否成为等腰三角形?若能请直接写出所有满足条件的α的值;若不能,请说明理由.重庆八中初2019级初三下入学考试数学答案 1-6 DBAADA 7-12 BACDBC 13. 333-- 14.18 15.2- 16.2-π 17.7300 18.15 19. (1)5⋅⋅⋅⋅⋅ab 分 (2)522⋅⋅⋅⋅⋅⋅⋅+x 分 20. (1)解:在ABE Rt ∆中,ABBE=≈︒60.031tan ,m EB 6.186.031=⨯=…………4分 (2) 解:延长EF 交GD 于M ,在GDC Rt ∆中,CDGD=︒40tan图 2图 1在FGM Rt ∆中,FM GM =︒19tan ,⎪⎩⎪⎨⎧-==CD GD CD GD 6.1834.084.0m CD 2.37=………3分 m GD 2.13= ……3分平均数 中位数 众数 方差 甲射击成绩(环) 7 1.6 乙射击成绩(环)7.510…………………………8分(2)不能,因为乙的成绩受极端值影响较大…………………2分22.(1)cm x /cm y /3.54.6…………………………4分 (2)932+=x y …………………………3分(3)……………3分23. (1)解:设每张苹果手机壳的销售价为x 元,则()102250150500025000-+=+x x , 解得50=x 答:每张苹果手机壳的销售价为50元…………………………4分 (2)由题意:()()150%150%1250%3519030000⨯-+-⎪⎭⎫⎝⎛+=a a a ………3分 01=a (舍去),202=a答:a 的值为20……………………………………………3分24. (1)3…………………………4分(2) 延长GB 至Q ,使得CF BQ =,连接AQ .证BFC ABQ ∆≅∆,QE AQ BC AD ===,所以QGA QAG ∠=∠ 再由等角减等角,得BEA BAE ∠=∠,即可………………………6分25.解:问题1,由阅读2知,1a -=即:4a =时,函数91(1)1y a a a =-+>-的最小值是6=, 答案为4,6;问题2,由阅读2知,2x 时,周长为42()x x+的最小值是28⨯=,故答案为2,8;(3)22225214(1)4411111m m m m m m m m m m +++++++===++++++,∴当1m +=时,即1m =时,225(1)1m m m m ++>-+最小值是4.26题(1)3,2P ⎛⎫ ⎪ ⎪⎝⎭ PM MN AN +-最小2=-(2)︒15 ︒5.37 ︒60 ︒5.127。
重庆市2019届九年级下学期开学考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 的相反数是().A. B. C.5 D.二、单选题2. 计算的结果是()A. B. C. D.3. 如图,已知,,为上一点,平分,则的度数为()A. B. C. D.4. 观察下列图案,既是中心对称图形又是轴对称图形的是()A. B. C. D.5. 下列调查中,最适合采用抽样调查的是()A. 对旅客上飞机前的安检B. 了解全班同学每周体育锻炼的时间C. 调查奥运会金牌获得者的兴奋剂使用情况D. 调查我国居民对汽车废气污染环境的看法6. 如图,是⊙的直径,、是圆上两点,,则的度数为()A. B. C. D.7. 已知方程组的解为,则的值为()A. B. C. D.8. 如图,在边长为的菱形中,,为边上的高,将沿所在直线翻折得,与边交于点,则的长度为()A. B. C. D.9. 如图,点、、在直线上,点、、、在直线上,若,从如图所示的位置出发,沿直线向右匀速运动,直到与重合时停止运动.在运动过程中,与矩形()重合部分的面积随时间变化的图象大致是()A. B. C. D.10. 如图,每个图形都由同样大小的“△”按照一定的规律组成,其中第个图形有个“△”,第个图形有个“△”,第个图形有个“△”,…,则第个图形中“△”的个数为()A. B. C. D.11. 右图是二次函数图象的一部分,过点(,),,对称轴为直线.给出四个结论:①;②;③;④ ,其中正确的结论有()A. 个B. 个C. 个D. 个12. 如图,直线()与轴交于点,与轴交于点,以为边作矩形,点在轴上.双曲线经过点,与直线交于点。
则点的坐标为()A. (,)B. (,)C. (,)D. (,)三、填空题13. 正六边形的每个外角的度数为______.14. 计算:_____.15. 如图,、、都与垂直,垂足分别是、、,且,,则︰的值为______.四、解答题16. 有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为__________五、填空题17. 如图,在矩形中,,分别以点、为圆心,为半径画弧,与边分别交于点、,且与对角线交于同一点,则图中阴影部分的面积为_______.18. 如图,在正方形中,为边上一点,以为对角线构造正方形,点在正方形内部,连接,与边交于点.若,,连接,则的长为_______.六、解答题19. 如图,四边形是平行四边形,点在的延长线上,点在边上,且,.求证:.20. 网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数21. 化简:(1)(2)22. 某公司保安部计划从商店购买同一品牌的应急灯和手电筒,已知购买一个应急灯比购买一个手电筒多用元,若用元购买应急灯和用元购买手电筒,则购买应急灯的个数是购买手电筒个数的一半.(1)分别求出该品牌应急灯、手电筒的定价;(2)经商谈,商店给予该公司购买一个该品牌应急灯赠送一个该品牌手电筒的优惠,如果该公司需要手电筒的个数是应急灯个数的倍还多个,且该公司购买应急灯和手电筒的总费用不超过元,那么该公司最多可购买多少个该品牌应急灯?23. 如图,斜坡长米,坡度︰,,现计划在斜坡中点处挖去部分坡体修建一个平行于水平线的平台和一条新的斜坡.(1)若修建的斜坡的坡角为,求平台的长;(结果保留根号)(2)斜坡正前方一座建筑物上悬挂了一幅巨型广告,小明在点测得广,告顶部的仰角为,他沿坡面走到坡脚处,然后向大楼方向继行走米来到处,测得广告底部的仰角为,此时小明距大楼底端处米.已知、、、、在同一平面内,、、、在同一条直线上,求广告的长度.(参考数据:,,,,)24. 若一个正整数,它的各位数字是左右对称的,则称这个数是对称数,如22,797,12321都是对称数.最小的对称数是11,没有最大的对称数,因为数位是无穷的.(1)有一种产生对称数的方式是:将某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,便可得到一个对称数.如:17的逆序数为71,17+71=88,88是一个对称数;39的逆序数为93,39+93=132,132的逆序数为231,132+231=363,363是一个对称数.请你根据以上材料,求以687产生的第一个对称数;(2)若将任意一个四位对称数分解为前两位数所表示的数,和后两位数所表示的数,请你证明这两个数的差一定能被9整除;(3)若将一个三位对称数减去其各位数字之和,所得的结果能被11整除,则满足条件的三位对称数共有多少个?25. 在中,,为射线上一点,,为射线上一点,且,连接.(1)如图,若,,求的长;(2)如图,若,连接并延长,交于点,求证:;(3)如图,若,垂足为点,求证:.26. 如图,抛物线与直线:交于点,点的横坐标为,直线与轴的交点为,将直线向上平移后得到直线,直线刚好经过抛物线与轴正半轴的交点和与轴的交点.(1)直接写出点和点的坐标,并求出点的坐标;(2)若点是抛物线第一象限内的一个动点,连接,交直线于点,连接和.设的面积为,当取得最大值时,求出此时点的坐标及的最大值;(3)如图,动点以每秒个单位长度的速度从点出发,沿射线运动;同时,动点以每秒个单位长度的速度从点出发,沿射线运动,设运动时间为().过点作轴,交抛物线于点,当点、、所组成的三角形是直角三角形时,直接写出的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
重庆八中2018-2019学年度下期初2019级初三第一次月考数学试卷一.选择题(共12小题)1.下列实数中,最小的数是()A.﹣2B.2C.3D.﹣32.下列图形中,只有一条对称轴的图形是()A.等腰梯形B.矩形C.等边三角形D.圆3.计算(a2)3下列运算中,结果正确的是()A.a4B.a5C.a6D.a84.若x+2y=5,则代数式3﹣x﹣2y的值为()A.﹣8B.﹣2C.2D.85.若一个多边形的内角和为540°,则该多边形为()边形.A.四B.五C.六D.七6.估计的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.若式子有意义,则一次函数y=(3﹣k)x+k﹣3的图象可能是()A.B.C.D.8.如图,已知△ABC中,AB=4,tan∠C=,过A作AD⊥BC交边BC于D点,且AD=BD,则BC=()A.8B.8C.7D.79.古希腊著名的毕达哥拉斯学派把1、3、6,10…这样的数称为“三角形数”,而把1、9、16…这样的数称为“正方形数”,从下图可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算,(a7﹣a6)的值为()A.7B.6C.5D.410.如图,在⊙O中,AB=AC,若∠ABC=57.5°,则∠BOC的度数为()A.132.5°B.130°C.122.5°D.115°11.如图,正方形ABCD的点A,B点分别在x轴,y轴上,与双曲线y=恰好交于BC 的中点E,若OB=2OA,则S△ABO的值为()A.6B.8C.12D.1612.若数m使关于x的不等式组至少有3个整数解且所有解都是2x﹣5≤1的解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2二.填空题(共6小题)13.计算:|2﹣π|+=.14.如图,在△ABC中,DE∥BC,若=,则S△ADE:S△ABC=.15.如图,菱形ABCD中,以A为圆心,AB为半径画弧,恰好过点C,已知AB=4,则图中阴影部分的面积为(结果保留π).16.已知二次函数y=﹣x2﹣2x+3图象如图,与x轴交于A,B两点(A在B的左侧),与y 轴交于C,图象顶点为D,则直线CD的解析式为.17.A,B两站相距330千米,甲、乙两车都从A站出发开往B站,甲车先出发,且在途中C站停靠6分钟,甲车出发半小时后,乙车从A站直达B站后停止,两车之间的距离y (千米)与甲车行驶的时间x(小时)之间的函数图象如图,则乙车恰好追上甲车时距离C站有千米.18.甲,乙,丙三人做一个抽牌游戏,三张纸牌上分别写有个数字0,x,y(x,y均为正整数,且x<y),每人抽一张纸牌,纸牌上的数字就是这一轮的得分.经过若干轮后(至少四轮),甲的总得分为20,乙的总得分为10,丙的总得分为9.则甲抽到x的次数最多为.三.解答题(共8小题)19.计算:(1)(m﹣2)(m+1)﹣(m+2)2.(2).20.如图①,在Rt△ABC中∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)根据勾股定理的知识,请直接写出a,b,c之间的数量关系;(2)若正方形EFMN的面积为64,Rt△ABC的周长为18,求Rt△ABC的面积.21.某射击队从甲、乙两人中选拔一人参加比赛,在相同条件下各进行了15次满分为10分的射击测试,成绩如下表整理、描述数据甲8976878878108698乙910775107898587710成绩x x<66≤x≤78≤x≤9x=10甲0591乙2553(说明:成绩6分以下为不合格,6﹣7分为及格,8﹣9分为良好,10分为优秀)(1)两组样本数据的平均数、中位数、众数、方差如下表所示,请补全表格:平均数中位数众数方差甲7.816.4乙7.836.4(2)你认为从甲、乙两人中选择谁去参加比赛更合适?(填“甲”或“乙”),理由为.22.有这样一个问题探究函数(b、c为常数)的图象和性质.元元根据学习函数的经验,对该函数的图象和性质进行了以下探究:下面是元元的探究过程,请你补充完整x……﹣10123456……y……0 2.54m4 2.501……(1)根据上表信息,其中b=,c=,m=.(2)如图,在下面平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,并画出该函数的另一部分图象;(3)观察函数图象,请写出该函数的一条性质:.(4)解决问题:若直线y=3n+2(n为常数)与该函数图象有3个交点时,求n的范围.23.2017年10月18日,党的十九大报告提出“乡村振兴”战略,之后各地发展乡村旅游,某村在2018年3月1日首次举办“百花节”,开园免费赏花,于是大批游客涌入该村赏花,吃农家饭买土特产,平均每人消费100元.(1)据统计,某个周六早上开园后平均每小时有500人进园,两小时后,平均每小时有100人离园,园区规定,当园区内游客人数达到3000时,将停止进园,那么从开园起经过多少小时后停止进园?(2)该村对园区加大建设和宣传力度,2019年3月1日,第二届“百花节”如期开园,同时规定进园门票费为每人60元,受各种因素影响,与2018年同期相比,人数在20000的基础上降低了a%,除门票外平均每人消费金额增长了a%,园区总收入增长了a%,求a的值.24.在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.25.初中数学代数知识中,方程、函数、不等式存在着紧密的联系,请阅读下列两则材料,回答问题:材料一:利用函数图象找方程x3﹣x+1=0解的范围.设函数y=x3﹣x+1,当x=2时,y=﹣5<0;当x=﹣1时,y=1>0则函数y=x3﹣x+1的图象经过两个点(﹣2,﹣5)与(﹣1,1),而点(﹣2,﹣5)在x轴下方,点(﹣1,1)在x轴上方,则该函数图象与x轴交点横坐标必大于﹣2,小于﹣1.故,方程x3﹣x+1=0有解,且该解的范围为﹣2<x<﹣1.材料二:解一元二次不等式(x﹣1)(x+2)<0.由“异号两数相乘,结果为负”可得:情况①,得,则﹣2<x<﹣1.情况②,得,则无解.故,(x﹣1)(x+2)<0的解集为﹣2<x<﹣1.(1)请根据材料一解决问题:已知方程﹣x3+2x﹣5=0有唯一解x0,且a<x0<a+1(a 为整数),求整数a的值.(2)请结合材料一与材料二解决问题:若关于x的方程mx2﹣(m+1)x﹣4=0的解分别为x1、x2,且﹣1<x1<0,2<x2<3,求m的取值范围.26.如图1,抛物线y=x2﹣3与x轴交于AB两点(点A在点B的右侧),与y轴交于点C,连接AC.点Q是线段AC上的动点,过Q作直线l∥x轴,直线1与∠BAC的平分线交于点M,与∠CAx的平分线交于点N.(1)P是直线AC下方抛物线上一动点,连接P A,PC,当△P AC的面积最大时,求PQ+AM 的最小值;(2)如图2,连接MC,NC,当四边形AMCN为矩形时,将△AMN沿着直线AC平移得到△A'M'N',边A'M'所在的直线与y轴交于D点,若△DM'N'为等腰三角形时,求OD的长.参考答案与试题解析一.选择题(共12小题)1.下列实数中,最小的数是()A.﹣2B.2C.3D.﹣3【分析】将各项数字按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣3<﹣2<2<3,则最小的数是﹣3,故选:D.2.下列图形中,只有一条对称轴的图形是()A.等腰梯形B.矩形C.等边三角形D.圆【分析】根据等腰梯形的性质,矩形的性质,等边三角形的性质,圆的性质逐个判断即可.【解答】解:A、等腰梯形是轴对称图形,并且只有一条对称轴,故本选项符合题意;B、矩形是轴对称图形,有两条对称轴,故本选项不符合题意;C、等边三角形是轴对称图形,有三条对称轴,故本选项不符合题意;D、圆是轴对称图形,有无数条对称轴,故本选项不符合题意;故选:A.3.计算(a2)3下列运算中,结果正确的是()A.a4B.a5C.a6D.a8【分析】根据幂的乘方的运算法则计算可得.【解答】解:(a2)3=a2×3=a6,故选:C.4.若x+2y=5,则代数式3﹣x﹣2y的值为()A.﹣8B.﹣2C.2D.8【分析】将x+2y的值代入原式=3﹣(x+2y)计算可得.【解答】解:∵x+2y=5,∴3﹣x﹣2y=3﹣(x+2y)=3﹣5=﹣2,故选:B.5.若一个多边形的内角和为540°,则该多边形为()边形.A.四B.五C.六D.七【分析】根据多边形的内角和的公式(n﹣2)×180°=540°,解方程即可求出n的值.【解答】解:由多边形的内角和公式可得(n﹣2)×180°=540°解得:n=5故选:B.6.估计的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先把无理数式子进行化简,再进行估计即可.【解答】解:=6﹣,∵1<<2,∴4<<5,故选:C.7.若式子有意义,则一次函数y=(3﹣k)x+k﹣3的图象可能是()A.B.C.D.【分析】先求出k的取值范围,再判断出3﹣k及k﹣3的符号,进而可得出结论.【解答】解:∵式子有意义,∴k﹣3>0,解得k>3,∴3﹣k<0,k﹣3>0,∴一次函数y=(3﹣k)x+k﹣3的图象过一、二、四象限.故选:D.8.如图,已知△ABC中,AB=4,tan∠C=,过A作AD⊥BC交边BC于D点,且AD=BD,则BC=()A.8B.8C.7D.7【分析】解直角三角形分别求出BD,CD即可.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=4,BD=AD,∴AD=BD=4,∵tan C==,∴CD=3,∴BC=BD+CD=4+3=7,故选:C.9.古希腊著名的毕达哥拉斯学派把1、3、6,10…这样的数称为“三角形数”,而把1、9、16…这样的数称为“正方形数”,从下图可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算,(a7﹣a6)的值为()A.7B.6C.5D.4【分析】根据题意和题目中的图形可以求得a7﹣a6的值,本题得以解决.【解答】解:由题意可得,a2﹣a1=3﹣1=2,a3﹣a2=6﹣3=3,a4﹣a3=10﹣6=4,…则a7﹣a6=7,故选:A.10.如图,在⊙O中,AB=AC,若∠ABC=57.5°,则∠BOC的度数为()A.132.5°B.130°C.122.5°D.115°【分析】根据等腰三角形性质求出∠ACB,根据三角形内角和定理求出∠A,根据圆周角定理求出即可.【解答】解:∵AB=AC,∠ABC=57.5°,∴∠ACB=∠ABC=57.5°,∴∠A=180°﹣∠ABC﹣∠ACB=65°,∴由圆周角定理得:∠BOC=2∠A=130°,故选:B.11.如图,正方形ABCD的点A,B点分别在x轴,y轴上,与双曲线y=恰好交于BC 的中点E,若OB=2OA,则S△ABO的值为()A.6B.8C.12D.16【分析】过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,证明△ABM≌△BCN,可得BN=AM=2a,CN=BM=a,所以点C坐标为(2a,a),BC 的中点E的坐标为(a,1.5a),把点E代入双曲线y=,可得a的值,进而得出S△ABO 的值.【解答】解:如图,过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABM=90°﹣∠CBN=∠BCN,∵∠M=∠N=90°,∴△ABM≌△BCN(AAS),∵OB=2OA,∴设OA=a,OB=2a,则BN=AM=2a,CN=BM=a,∴点C坐标为(2a,a),∵E为BC的中点,B(0,2a),∴E(a,1.5a),把点E代入双曲线y=,得1.5a2=12,a2=8,∴S△ABO==8,故选:B.12.若数m使关于x的不等式组至少有3个整数解且所有解都是2x﹣5≤1的解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2【分析】根据题意解不等式组,用常数m表示x的解集,通过x的不等式组至少有3个整数解且所有解都是2x﹣5≤1的解,确定常数m的取值范围,其次,解分式方程,同样用含有常数m的代数式去表示方程的解,排除掉当解为增根时m的取值,从剩下的整数m的取值中选择使为整数的取值即可.【解答】解:化简得,∴﹣5<x≤m.又∵2x﹣5≤1解得,x≤3.由不等式组至少有三个整数解且所有解都满足x≤3故﹣2≤m≤3.又∵+=2化整得,4x﹣2﹣(3m﹣1)=2(x﹣1)解得,x=.由该方程有整数解,则≠1,且3m﹣1应为2的整数倍.解得,m≠1.∴在﹣2≤m≤3且m≠1中,满足3m﹣1应为2的倍数的整数m的取值有两个,分别为,﹣1,3.故选:D.二.填空题(共6小题)13.计算:|2﹣π|+=π﹣1.【分析】直接利用绝对值以及零指数幂的性质分析得出答案.【解答】解:原式=π﹣2+1=π﹣1.故答案为:π﹣1.14.如图,在△ABC中,DE∥BC,若=,则S△ADE:S△ABC=.【分析】求出=,根据相似三角形的判定得出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵=,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,即S△ADE:S△ABC=,故答案为:.15.如图,菱形ABCD中,以A为圆心,AB为半径画弧,恰好过点C,已知AB=4,则图中阴影部分的面积为﹣8(结果保留π).【分析】连接AC,过A作AE⊥BC于E,求出∠BAC的度数,再分别求出扇形BAC和△BAC的面积,即可求出答案.【解答】解:连接AC,过A作AE⊥BC于E,∵四边形ABCD是菱形,AB=4,∴AB=AD=BC=CD=4,∵以A为圆心,AB为半径画弧,恰好过点C,∴AC=4=AB=BC=CD=AD,∴△ABC和△ACD都是等边三角形,∴∠BAC=∠CAD=60°,∵AE⊥BC,∴BE=CE=2,AE==2,∴阴影部分的面积S=2×(S扇形BAC﹣S△BAC)=2×(﹣)=﹣8,故答案为:﹣8.16.已知二次函数y=﹣x2﹣2x+3图象如图,与x轴交于A,B两点(A在B的左侧),与y 轴交于C,图象顶点为D,则直线CD的解析式为y=﹣x+3.【分析】根据顶点坐标公式求出顶点D的坐标,再令x=0时求出C坐标,再根据待定系数法求得最后结果.【解答】解:令x=0,得y=3,∴C(0,3),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4),设直线CD的解析式为:y=kx+b(k≠0),则,解得,,∴直线CD的解析式为:y=﹣x+3.故答案为:y=﹣x+3.17.A,B两站相距330千米,甲、乙两车都从A站出发开往B站,甲车先出发,且在途中C站停靠6分钟,甲车出发半小时后,乙车从A站直达B站后停止,两车之间的距离y (千米)与甲车行驶的时间x(小时)之间的函数图象如图,则乙车恰好追上甲车时距离C站有200千米.【分析】分析如图,根据题意和图象分析各关键点(即图象拐点)的坐标求解即可.【解答】解:∵甲车从A地开出0.5h后行驶了80km.∴甲车的速度为,=200km/h.又由图可知乙车从A站直达B站后停止共用了1.6﹣0.5=1.1h.∴乙车的速度为,=300km/h.∴乙车从A地出发第一次与甲车相遇用了=0.8h.此时甲乙两车距离A地均为300×0.8=240km.又由图得,甲车从A地到达C地用了0.3﹣=0.3﹣0.1=0.2h.∴A地到C地的距离为,200×0.2=40km.∴则乙车恰好追上甲车时距离C站有240﹣40=200km.故答案为200km.18.甲,乙,丙三人做一个抽牌游戏,三张纸牌上分别写有个数字0,x,y(x,y均为正整数,且x<y),每人抽一张纸牌,纸牌上的数字就是这一轮的得分.经过若干轮后(至少四轮),甲的总得分为20,乙的总得分为10,丙的总得分为9.则甲抽到x的次数最多为6.【分析】根据题意,可得每轮甲,乙,丙得数之和为:x+y,则n轮之和三人得数总和为:n(x+y),所以可得:n(x+y)=39,由n≥4,且n为正整数,可得n=13,x+y=3,根据x,y均为正整数,且x<y,可得x=1,y=2,根据甲的总得分为20,可以设甲a次得0分,b次得x,c次得y,根据题意列方程即可求解.【解答】解:根据题意,每轮甲,乙,丙得数之和为:x+y,则n轮之和三人得数总和为:n(x+y),所以可得:n(x+y)=20+10+9=39,∵n≥4,且n为正整数,而39=3×13,∴n=13,x+y=3,∵x,y均为正整数,且x<y,∴x=1,y=2,∵甲的总得分为20,设甲a次得0分,b次得x,c次得y,则a×0+bx+cy=b+2c=20∴b=20﹣2c∴c=(20﹣b)∵0≤c≤13,0≤b≤13,b+c≤13且b,c为正整数,∴7≤c≤10,0≤b≤6,所以b最大为6.答:甲抽到x的次数最多为6.故答案为:6.三.解答题(共8小题)19.计算:(1)(m﹣2)(m+1)﹣(m+2)2.(2).【分析】(1)先算多项式乘多项式,再减去完全平方式;(2)先算括号里的运算再与前边的分式通分计算.【解答】解:(1)原式=m2﹣m﹣2﹣m2﹣4m﹣4=﹣5m﹣6;(2)原式===.20.如图①,在Rt△ABC中∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)根据勾股定理的知识,请直接写出a,b,c之间的数量关系;(2)若正方形EFMN的面积为64,Rt△ABC的周长为18,求Rt△ABC的面积.【分析】(1)根据勾股定理得到a,b,c之间的数量关系;(2)根据题意求出c,得到a+b的值,根据三角形的面积公式、完全平方公式计算,得到答案.【解答】解:(1)由勾股定理得,a2+b2=c2;(2)∵正方形EFMN的面积为64,∴c2=64,即c=8,∵Rt△ABC的周长为18,∴a+b+c=18,∴a+b=10,则Rt△ABC的面积=ab=[(a+b)2﹣(a2+b2)]=9.21.某射击队从甲、乙两人中选拔一人参加比赛,在相同条件下各进行了15次满分为10分的射击测试,成绩如下表整理、描述数据甲8976878878108698乙910775107898587710成绩x x<66≤x≤78≤x≤9x=10甲0591乙2553(说明:成绩6分以下为不合格,6﹣7分为及格,8﹣9分为良好,10分为优秀)(1)两组样本数据的平均数、中位数、众数、方差如下表所示,请补全表格:平均数中位数众数方差甲7.88816.4乙7.88736.4(2)你认为从甲、乙两人中选择谁去参加比赛更合适?(填“甲”或“乙”),理由为甲.【分析】(1)根据中位数和众数的定义分别进行解答即可;(2)根据方差的意义,方差越小数据越稳定,即可得出答案.【解答】解:(1)把甲这些数从小到大排列为:6,6,7,7,7,8,8,8,8,8,8,8,9,9,10,则中位数是8,众数是8;把乙这些数从小到大排列为:5,5,7,7,7,7,7,8,8,8,9,9,10,10,10,则中位数是8,众数7;故答案为:8,8,8,7;(2)∵S甲2=16.4,S乙2=36.4,∴S甲2<S乙2,∴甲参加比赛更合适;故答案为:甲.22.有这样一个问题探究函数(b、c为常数)的图象和性质.元元根据学习函数的经验,对该函数的图象和性质进行了以下探究:下面是元元的探究过程,请你补充完整x……﹣10123456……y……0 2.54m4 2.501……(1)根据上表信息,其中b=2,c= 2.5,m= 4.5.(2)如图,在下面平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,并画出该函数的另一部分图象;(3)观察函数图象,请写出该函数的一条性质:当x<2时,y随x的增大而增大.(4)解决问题:若直线y=3n+2(n为常数)与该函数图象有3个交点时,求n的范围.【分析】(1)利用待定系数法以及二次函数图象上点的坐标特征可得答案;(3)根据描点法画函数图象,可得答案;(4)根据图象的变化趋势,可得答案;(5)根据图象,可得答案.【解答】解:(1)由表格数据得:当x=﹣1时,y=0;当x=5时,y=0;当x=0时,y =2.5;∴﹣b==2,c=2.5∴y=∴当x=2时,y=4.5,即m=4.5故答案为:2,2.5,4.5;(2)图象如下:(3)观察图象可知:当x<2时,y随x的增大而增大故答案为:当x<2时,y随x的增大而增大(4)∵当x=2时,y=4.5;∴由图象可知直线y=4.5与该函数图象有2个交点,直线y=0与该函数图象有2个交点,∴直线y=3n+2(n为常数)与该函数图象有3个交点时,0<3n+2<4.5∴﹣<n<.23.2017年10月18日,党的十九大报告提出“乡村振兴”战略,之后各地发展乡村旅游,某村在2018年3月1日首次举办“百花节”,开园免费赏花,于是大批游客涌入该村赏花,吃农家饭买土特产,平均每人消费100元.(1)据统计,某个周六早上开园后平均每小时有500人进园,两小时后,平均每小时有100人离园,园区规定,当园区内游客人数达到3000时,将停止进园,那么从开园起经过多少小时后停止进园?(2)该村对园区加大建设和宣传力度,2019年3月1日,第二届“百花节”如期开园,同时规定进园门票费为每人60元,受各种因素影响,与2018年同期相比,人数在20000的基础上降低了a%,除门票外平均每人消费金额增长了a%,园区总收入增长了a%,求a的值.【分析】(1)根据“开园后平均每小时有500人进园,两小时后,平均每小时有100人离园“,列方程即可得到结论;(2)根据题意列方程即可得到结论.【解答】解:(1)设从开园起经过x小时后停止进园,由题意得,500x﹣100(x﹣2)=3000,解得:x=7,答:从开园起经过7小时后停止进园;(2)根据题意得,20000(1﹣a%)[60+100(1+a%)]=20000×100×(1+a%),解得:a=40.24.在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.【分析】(1)证明AF=EF,可得S△ABF=S△ABE解决问题.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.利用全等三角形的性质证明EC=AF,EF=AG即可解决问题.【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=S△ABE=••62=.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.25.初中数学代数知识中,方程、函数、不等式存在着紧密的联系,请阅读下列两则材料,回答问题:材料一:利用函数图象找方程x3﹣x+1=0解的范围.设函数y=x3﹣x+1,当x=2时,y=﹣5<0;当x=﹣1时,y=1>0则函数y=x3﹣x+1的图象经过两个点(﹣2,﹣5)与(﹣1,1),而点(﹣2,﹣5)在x轴下方,点(﹣1,1)在x轴上方,则该函数图象与x轴交点横坐标必大于﹣2,小于﹣1.故,方程x3﹣x+1=0有解,且该解的范围为﹣2<x<﹣1.材料二:解一元二次不等式(x﹣1)(x+2)<0.由“异号两数相乘,结果为负”可得:情况①,得,则﹣2<x<﹣1.情况②,得,则无解.故,(x﹣1)(x+2)<0的解集为﹣2<x<﹣1.(1)请根据材料一解决问题:已知方程﹣x3+2x﹣5=0有唯一解x0,且a<x0<a+1(a 为整数),求整数a的值.(2)请结合材料一与材料二解决问题:若关于x的方程mx2﹣(m+1)x﹣4=0的解分别为x1、x2,且﹣1<x1<0,2<x2<3,求m的取值范围.【分析】(1)结合材料一,找出函数y=﹣x3+2x﹣5的图象经过两个点(﹣3,16)与(﹣2,﹣1),由该两点分布在x轴的两侧结合a<x0<a+1,可求出a的值;(2)设函数y=mx2﹣(m+1)x﹣4,找出当x=0,﹣1,2,3时y的值,结合材料二可得出关于m的一元二次不等式组,解之即可得出m的取值范围.【解答】解:(1)设函数y=﹣x3+2x﹣5,当x=﹣3时,y=16>0;当x=﹣2时,y=﹣1<0,∴函数y=﹣x3+2x﹣5的图象经过两个点(﹣3,16)与(﹣2,﹣1),∵点(﹣3,16)在x轴上方,(﹣2,﹣1)在x轴下方,∴该函数图象与x轴交点横坐标必大于﹣3,小于﹣2,∴a=﹣3.(2)设函数y=mx2﹣(m+1)x﹣4,∴当x=0时,y=﹣4;当x=﹣1时,y=2m﹣3;当x=2时,y=2m﹣6;当x=3时,y =6m﹣7,∴,解得:<m<3.答:m的取值范围为<m<3.26.如图1,抛物线y=x2﹣3与x轴交于AB两点(点A在点B的右侧),与y轴交于点C,连接AC.点Q是线段AC上的动点,过Q作直线l∥x轴,直线1与∠BAC的平分线交于点M,与∠CAx的平分线交于点N.(1)P是直线AC下方抛物线上一动点,连接P A,PC,当△P AC的面积最大时,求PQ+AM 的最小值;(2)如图2,连接MC,NC,当四边形AMCN为矩形时,将△AMN沿着直线AC平移得到△A'M'N',边A'M'所在的直线与y轴交于D点,若△DM'N'为等腰三角形时,求OD的长.【分析】(1)用割补法求得△P AC面积的表达式,获得点P的坐标,利用30°构造AM 为斜边的直角三角形,转换的关系,可证点P到x轴的距离即为PQ+的最小值;(2)当四边形AMCN为矩形时,根据矩形的性质点Q为AC与MN的中点,△AMN的三边长度固定,当△DM'N'为等腰三角形时,以D、M'、N'为顶点分三类进行讨论,以线段相等作方程,求得OD的长.【解答】解:(1)由已知可得A(,0),B(﹣,0),C(0,﹣3)设P(m,m2﹣3)S△P AC=S△POC+S△AOP﹣S△AOC=+﹣=当m=时,△P AC的面积有最大值,此时点P坐标(,)如图,作AH⊥MN,AH=AMAH长为点Q到x轴的距离PQ+AM=PQ+AH=(2)当四边形AMCN为矩形时,MN=AC,点Q为AC与MN中点有题意可知,直线AC的解析式l1为y=x﹣3过点M与AC平行的直线解析式l2为y=x过点N与AC平行的直线解析式l3为y=x﹣6直线AM的解析式l4为y=设点N'(n,n﹣6),M'(n﹣2,n﹣6)设直线A'M'的解析式为y=将点M'代入可得b=直线A'M'的解析式为y=+则DM'2=(n﹣2)2+(﹣6﹣)2=DN'2=(n)2+(﹣6﹣)2=M'N'2=(n﹣n+2)2+(﹣6﹣+6)2=12①当DM'=DN'时,DM'2=DN'2=解得n=OD=2②当DM'=M'N'时,DM'2=M'N'2=12解得n=0或OD=6或0③当DN'=M'N'时,DN'2=M'N'2=12解得n=±3OD=综上所述,OD的长为2或6或。
重庆八中2018—2019学年度(下)初三年级第一次全真模拟考试数 学 试 题(参考答案)一、选择题DC ACABD BBBBB :1211:106:51---;;二、填空题13:6105.3⨯ 14:π41 15:6 16:12 17:90 18:5750 三、解答题19.(1)解:原式222244=a ab b a b -++- …………………3分2=54a ab - …………………5分(2)解:原式2(2)1=1(2)(2)a a a a a +-⨯--+ …………………3分 22a a +=- …………………5分 20.(1)设B ∠为xAC BC B A x=∠=∠=∵∴ 又44ACB B x ∠=∠=∵在ABC ∆中,180A B ACB ∠+∠+∠=︒4180x x x ∴++=︒,解得=30x ︒∵点D 是AC 边中点且DE AC ⊥AE CE ∴=(三线合一)30,90ECD BCE ∴∠=︒∠=︒…………………5分 (2)设CE 为a在t R EBC ∆中,=30B ∠︒2B E a ∴=由(1)可得,AE EC a ==33AB a AB EC∴=∴=…………………10分 21.(1)4,8,85.5,88a b c d ====…………………4分(2)600人 解:651000+1200=6002020⨯⨯…………………6分 (3)初二 …………………8分理由:①初二的平均数更大,说明学生普遍水平更高②初二的方差更小,说明学生之间水平差异更小③初二中位数更大,中等水平学生水平更高…………………10分22.(1)解:设每千克售价降低x 元100+20=280x …………………2分=9x答:每千克的售价应为21元. …………………4分(2)解:设桃片售价为y 元[](2115)280320(15)1002030)y y -⨯+=-⨯+-()…………………7分2(25)0y -=25y =答:桃片售价应为25元/千克. …………………10分23.(1)2112y x x =+-…………………2分 (2)图象见右…………………6分 (3)①213y y y <<…………………8分②1311,8242k x x <≤≤≤≠且 24.(1)中21a n =+,222b n n =+,2221c n n =++(n 为正整数) ∵()()()2222222222212214421c b n n n n n n n a -=++-+=++=+=, ∴222a b c +=,∴21a n =+,222b n n =+,2221c n n =++(n 为正整数)是一组勾股数. ………………………………………………………………4分(2):5n = 221(5)2a m ∴=-,5b m =,21(25)2c m =+直角三角形的一边长为37 ∴分三种情况讨论,①当37a =时,221(5)372m -= 解得m =±5分 ②当37b =时,537m =, 解得375m =(不合题意舍去);………6分 ③当37c =时,2137(25)2m =+ 解得7m =±,………8分 m n 、为正整数7m ∴=,把7m =代入得,12a =,35b =.综上所述:当5n =时,一边长为37的直角三角形另两边的长分别为12,35.……10分25.(1)解:设BE 为xtan 33316ABE AE BE AE xBC BD DE BE x∠=====+=+∵∴∴∵在AED ∆中,222(3)16(16)x x +=+4x =或0(舍去)20BC ∴=,AB =ABCD C ∴=平行四边形分(2)方法一:连接DF ,过C 作CM DB ⊥四边形ABCD 为平行四边形//,AD BC AO OC ∴=45ADB DBC ∴∠=∠=︒又90AED ∠=︒ AED ∴∆是等腰直角三角形 AE DE ∴=在AOE ∆和MOC 中,(),2AOE MOC AEO OMC OA OC AOE MOC AAS OM OE CM DEME OE AF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴≅∴==∴== A E A F D E M E ∴-=-,即EF DM =在DEF 和DCM 中,(),EF DM FED DMCDE CM DFE DMC SAS DF DC FDE DCM=⎧⎪∠=∠⎨⎪=⎩∴≅∴=∠=∠又+=90MDC DCM ∠∠︒ 90FDE EDF ∴∠+∠=︒且DF DC =DFC ∴为等腰直角三角形CF ∴…………………10分方法二:过C 作CM //OE 交AE 的延长线于M ,连接DM .(下略)四、解答题26. (1)设294P m m ⎛-- ⎝5,4Q m m ⎛- ⎝∴()29222PQMN C QP NP m ⎛=+=+ ⎝矩形∵0<,开口向下,∴m =当 (,3P - ∵最少时间12t RK KT TB =++, ∵R -,作R 关于y 轴对称'R ⎛- ⎝过'R 点作直线:4l y =- 的垂线交于H 点'H R 即为所求. ''''t R K K T TH =++ ∴过''R 作''R H l ⊥ ∴min 9'2t R H =(2)综上()()((21310,6;0,12;0,3;0,3E E E E +-。
2019-2020学年重庆八中九年级(下)第一次强化训练数学试卷一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一-个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.4的相反数是()A.4B.﹣4C.D.2.下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.7×10﹣7B.0.7×10﹣8C.7×10﹣8D.7×10﹣94.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.135.估计(2﹣)×的值应在()A.﹣1和0之间B.0和1之间C.1和2之间D.2和3之间6.如图,AB是圆O的直径.点P是BA延长线上一点,PC与圆O相切,切点为C,连接OC,BC,如果∠P=40°,那么∠B的度数为()A.40°B.25°C.35°D.45°7.下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.菱形的对角线相等且互相垂直8.如图,以O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=6,AB=2,则CD =()A.6B.4C.8D.4.59.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米10.使得关于x的分式方程﹣2=有正整数解,且关于x的不等式组至少有2个整数解,那么符合条件的所有整数a的和为()A.﹣17B.﹣9C.﹣7D.﹣511.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为()cmA.6﹣2B.6﹣2C.D.12.如图,点B在反比例函数y=(k≠0,x>0)的图象上,连接OB,AB⊥BO,且AB =BO,线段AB交y轴于点C,若AC:BC=2:3,△COA的面积为,则k的值为()A.﹣B.﹣C.﹣15D.﹣30二.填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案且接明任管起下中对应的横找上13.计算:﹣(π﹣3)0+(﹣)﹣2=.14.把多项式a(x﹣y)+b(y﹣x)因式分解的结果是.15.如图,矩形ABCD中.DB=4.以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.在三张分别标有数字﹣1,﹣2,3的不透明卡片,它们除数字不同外其余均相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a后放回,再次洗匀从中任取一张,将数字记为b,则方程x2+ax+b=0有解的概率是.17.已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则当甲到达C地时,乙距A地米.18.和平药店出售A、B、C三种口罩,A、B、C的单价分别是2元/个、3元/个、6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A口罩的数量(单位:个)是B口罩数量的2倍,B口罩的数量(单位:个)是C口罩数量的3倍.某个周六,A、B、C三种口罩的上货量分别比一个工作日的上货量增加了50%,60%,10%,且全部售出,但是由于软件问题,发生了一起错单(即消费者买某种口罩的时候,收款机显示的是另一种口罩的价格并按照这个价格进行了收费),在结算的时候发现这起错单的数量是1个,结果这个周六的销售收入比一个工作日的销售收入多了364元,则这个药店一个工作日出售口罩的销售收入是元.三、解答题:(本大题共8小题.第26题8分,其余每小题0分.共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)(2x+1)(1﹣2x)+(x﹣4)2;(2)÷﹣.20.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.21.某品牌服装为了解某件衣服的销售情况,对线上、线下两种销售模式进行了抽样调查,从线上、线下两种销售模式中分别随机抽取20个店,记录下某一周各自的销售情况(单位:件)如下:线上:76 88 93 65 78 99 89 68 95 5089 88 89 89 77 97 87 88 98 97线下:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)整理、描述数据:对销售件数进行分组,各组的频数如下:销售件数50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100线上123a6线下011018(2)分析数据:两组样本数据的平均数、中位数如下表所示:销售模式平均数中位数众数线上8588.5c线下84.2b74请根据以上信息,回答下列问题:(1)填空:a=,b=,c=.(2)线上,线下两种销售模式目前销售该品牌服装的店面共2000个(线上、线下的门店数差不多),估计该品牌服装每周销售的件数约为多少?(3)根据以上数据,你认为线上、线下两种销售该品牌服装的销售模式哪种情况比较好?并说明理由.22.请阅读下列材料,并解决相应的问题:一个四位数t的千位数字为a,百位数字为b,十位数字为c,个位数字为d.则t=1000a+100b+10c+d.若a+d=n(b+c),b=c+2(n为正整数a≥d),则称这个四位数为“倍多分数”.(1)请直接判断2200、3031是不是“倍多分数“;(2)对一个四位数t,记F(t)=,求F(t)为整数的“倍多分数”t的个数.23.已知函数y=a|x﹣1|﹣x﹣b,其中当x=1时y=﹣3,当x=﹣1时,y=3.(1)根据给定的条件.则a=,b=.(2)在给出的平面直角坐标系中画出函数图象;(3)①结合所画的图象,写出函数图象的一条性质:.②图中已给出y=||的图象,直接写出方程||=a|x﹣1|﹣x﹣b的解,解为.(精确到十分位)24.随着人们生活水平的提高,越来越多的人更注重生活品质.人们喜欢用美丽的鲜花装点屋子,也增添了生活情趣.姜荷花形态出众、开花繁密、花期长,是很好的室内观赏植物,某花市老板发现今年姜荷花很受欢迎,二月份试购了两个品种荷兰红、玉如意,荷兰红每盆的进价比玉如意每盆的进价便宜2元,用3200元购进荷兰红的数量和用3360元购进玉如意的数量相同.(1)荷兰红和玉如意每盆的进价各是多少元?(2)三月份该花市老板决定加大进货量,三月份购进两个品种共1000盆,由于市场需求较大,两个品种进价均涨至上个月玉如意进价,花市老板将荷兰红以每盆80元、玉如意以每盆64元的价格销售.三月份全部售出且总获利为33200元,四月份玉如意花型饱满,在进价维持三月不变的情况下,该老板决定调整价格,将荷兰红的售价在三月份的基础上下调a%(降价后售价不低于进价),玉如意的价格上调a%,同时荷兰红的销量较三月份销量下降了a%,玉如意的销量较三月份销量上升了40%,结果四月份的销售额比三月份增加了3520元,求a的值.25.如图,抛物线y=ax2+bx+3与x轴交于A,B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线对称轴为直线x=﹣.连接AC,BC,点P是抛物线上在第二象限内的一个动点.过点P作x轴的垂线PH,垂足为点H,交AC于点Q.过点P作PG⊥AC 于点G.(1)求抛物线的解析式.(2)求△PQG周长的最大值及此时点P的坐标.(3)在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.26.已如△ABC是等边三角形,CD⊥AB交AB于M,DB⊥BC,E是AC上一点,EH⊥BC,垂足为H,EH与CD交于点F,连接BE.(1)如图1,若EC=AC,EH=6,求BE的长;(2)如图2,连接AF,将AF绕点A顺时针旋转,使F点落在BD边上的G点处,AG 交CD于Q,求证:BG=CF;(3)如图3,在(2)的条件下,连接FG,交BE于N,连接MN,若=,△AGF 的面积为49,求MN的长.2019-2020学年重庆八中九年级(下)第一次强化训练数学试卷参考答案与试题解析一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一-个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.4的相反数是()A.4B.﹣4C.D.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,又是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.3.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.7×10﹣7B.0.7×10﹣8C.7×10﹣8D.7×10﹣9【分析】由科学记数法知0.000000007=7×10﹣9;【解答】解:0.000000007=7×10﹣9;故选:D.4.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.13【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.5.估计(2﹣)×的值应在()A.﹣1和0之间B.0和1之间C.1和2之间D.2和3之间【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【解答】解:(2﹣)×=﹣2∵2<<3,∴0<﹣2<1.故选:B.6.如图,AB是圆O的直径.点P是BA延长线上一点,PC与圆O相切,切点为C,连接OC,BC,如果∠P=40°,那么∠B的度数为()A.40°B.25°C.35°D.45°【分析】由切线的性质可得∠OCP=90°,求出∠POC的度数,由等腰三角形的性质可得出答案.【解答】解:∵PC与圆O相切,切点为C,∴OC⊥PC,∴∠OCP=90°,∵∠P=40°,∴∠POC=90°﹣∠P=90°﹣40°=50°,∵OB=OC,∴∠B=∠OCB,∵∠POC=∠B+∠C,∴∠B=POC=25°.故选:B.7.下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.菱形的对角线相等且互相垂直【分析】根据平行线的判定定理、平行四边形的判定定理、菱形的性质判断即可.【解答】解:A、同旁内角互补,两直线平行,本选项说法是假命题;B、对角线互相平分的四边形是平行四边形,本选项说法是真命题;C、相等的两个角不一定是对顶角,本选项说法是假命题;D、菱形的对角线互相垂直,但不一定相等,本选项说法是假命题;故选:B.8.如图,以O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=6,AB=2,则CD =()A.6B.4C.8D.4.5【分析】根据位似变换的概念得到△OAB∽△OCD,根据相似三角形的性质列式计算,得到答案.【解答】解:∵以O为位似中心,将△OAB放大后得到△OCD,∴△OAB∽△OCD,∴=,即=,解得,CD=6,故选:A.9.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点E,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.10.使得关于x的分式方程﹣2=有正整数解,且关于x的不等式组至少有2个整数解,那么符合条件的所有整数a的和为()A.﹣17B.﹣9C.﹣7D.﹣5【分析】不等式组变形后,根据无解确定出a的范围,再表示出分式方程的解,由分式方程有正整数解,确定出满足条件a的值,进而求出之和.【解答】解:解不等式组,得,∵不等式组至少有2个整数解,∴a+7≤3,∴a≤﹣4.解分式方程﹣2=,得x=,∵x=为正整数,a≤﹣4,∴a=﹣4或﹣5或﹣8,∵a=﹣8时,x=1,原分式方程无解,故将a=﹣8舍去,∴符合条件的所有整数a的和是﹣4﹣5=﹣9,故选:B.11.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为()cmA.6﹣2B.6﹣2C.D.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=2.根据折叠的性质可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(2﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=2﹣2.则FC=4﹣x=6﹣2.故选:A.12.如图,点B在反比例函数y=(k≠0,x>0)的图象上,连接OB,AB⊥BO,且AB =BO,线段AB交y轴于点C,若AC:BC=2:3,△COA的面积为,则k的值为()A.﹣B.﹣C.﹣15D.﹣30【分析】过B作BM⊥轴于M,作CN⊥BM,交MB延长线于N,根据AC:BC=2:3,△COA的面积为,易求得S△BOC=,进而求得S△BOM+S△BNC=S△BOC=,通过证得△OBM∽△BCN,得出=,即可求得S△OBM=,根据反比例函数系数k的几何意义,即可求得k的值.【解答】解:过B作BM⊥轴于M,作CN⊥BM,交MB延长线于N,∵AC:BC=2:3,△COA的面积为,∴S△BOC=S△COA=,∵四边形OMNC是矩形,∴S△BOM+S△BNC=S△BOC=,∵AB⊥BO,且AB=BO,∴∠CBN+∠OBM=90°,∵∠BOM+∠OBM=90°,∴∠BOM=∠CBN,∵∠BMO=∠CNB=90°,∴△OBM∽△BCN,∴,∵AC:BC=2:3,∴AB:BC=5:3,∴OB:BC=5:3,∴=,∴S△OBM=,∵点B在反比例函数y=(k≠0,x>0)的图象上,∴S△OBM=|k|=,∴图象在第三象限,∴k=﹣,故选:B.二.填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案且接明任管起下中对应的横找上13.计算:﹣(π﹣3)0+(﹣)﹣2=1.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:原式=﹣2﹣1+4=1.故答案为:1.14.把多项式a(x﹣y)+b(y﹣x)因式分解的结果是(x﹣y)(a﹣b).【分析】原式变形后,提取公因式即可.【解答】解:原式=a(x﹣y)﹣b(x﹣y)=(x﹣y)(a﹣b).故答案为:(x﹣y)(a﹣b).15.如图,矩形ABCD中.DB=4.以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为4π.(结果保留π)【分析】如图,设DC=2x,连接OE,利用切线的性质得OE⊥AB,易得四边形OEAD 为正方形,由勾股定理求得OD=BC=4,先利用扇形面积公式,利用S正方形OEAD﹣S扇形EOD计算由弧DE、线段AE、AD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,设DC=2x,∵以CD为直径的半圆O与AB相切于点E,∴OD=x,OE⊥BC,∵∠EBC=∠OCB=90°,OE=OC,∴四边形OEAD为正方形,∴BC=x,∵DC2+BC2=BD2,∴,解得x=4.∴由弧DE、线段AE、AD所围成的面积S=S正方形OEAD﹣S扇形ODE=16﹣=16﹣4π,∴阴影部分的面积:S△ABD﹣S=×4×8﹣(16﹣4π)=4π,故答案为:4π.16.在三张分别标有数字﹣1,﹣2,3的不透明卡片,它们除数字不同外其余均相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a后放回,再次洗匀从中任取一张,将数字记为b,则方程x2+ax+b=0有解的概率是.【分析】画出树状图,共有9种等可能结果,能使a2﹣4b≥0的结果有6种,由概率公式即可得出答案.【解答】解:画树状图如下:共有9种等可能结果,能使a2﹣4b≥0的结果有:(﹣1,﹣1)、(﹣1,﹣2)、(﹣2,﹣1)、(﹣2,﹣2)、(3,﹣1)、(3,﹣2)这6种,故方程x2+ax+b=0有解的概率为=;故答案为:.17.已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则当甲到达C地时,乙距A地6075米.【分析】根据题意和函数图象中的数据,可以分别求得甲乙刚开始的速度和后来的速度,也可求得A、B两地的距离、A、C两地的距离,然后即可求得甲到达C地时,乙距A地距离.【解答】解:由题意可得,甲乙两人刚开始的速度之差为:900÷(23﹣14)=100(米/分),设甲刚开始的速度为x米/分,乙刚开始的速度为(x+100)米/分,12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,则A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),∵当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,∴后来乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),甲到达C地的时间为:23+[7200﹣(23﹣2)×300]÷400=25(分钟),∴当甲到达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),故答案为:6075.18.和平药店出售A、B、C三种口罩,A、B、C的单价分别是2元/个、3元/个、6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A口罩的数量(单位:个)是B口罩数量的2倍,B口罩的数量(单位:个)是C口罩数量的3倍.某个周六,A、B、C三种口罩的上货量分别比一个工作日的上货量增加了50%,60%,10%,且全部售出,但是由于软件问题,发生了一起错单(即消费者买某种口罩的时候,收款机显示的是另一种口罩的价格并按照这个价格进行了收费),在结算的时候发现这起错单的数量是1个,结果这个周六的销售收入比一个工作日的销售收入多了364元,则这个药店一个工作日出售口罩的销售收入是810元.【分析】设这个药店一个工作日销售x个C口罩,则一个工作日销售3x个B口罩,一个工作日销售6x个A口罩,根据“某个周六正常销售口罩的收入小于一个工作日销售口罩的收与364之和,某个周六正常销售口罩的收入加上多出错误一单的最大差值不小于一个工作日销售口罩的收与364之和.“列出不等式组求出x的整数解,便可求得最后结果.【解答】解:设这个药店一个工作日销售x个C口罩,则一个工作日销售3x个B口罩,一个工作日销售6x个A口罩,于是这个药店一个工作日出售口罩的销售收入是:2×6x+3×3x+6x=27x(元),∵某个周六,A、B、C三种口罩的上货量分别比一个工作日的上货量增加了50%,60%,10%,且全部售出,∴该周六正常出售的收入是:2×1.5×6x+3×1.6×3x+6×1.1x=39x(元),根据题意得不等式组,解得,30≤x<30,∵x为整数,∴x=30,∴这个药店一个工作日出售口罩的销售收入是:27x=810(元),故答案为:810.三、解答题:(本大题共8小题.第26题8分,其余每小题0分.共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)(2x+1)(1﹣2x)+(x﹣4)2;(2)÷﹣.【分析】(1)根据平方差公式和完全平方公式可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)(2x+1)(1﹣2x)+(x﹣4)2=1﹣4x2+x2﹣8x+16=﹣3x2﹣8x+17;(2)÷﹣=====.20.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.【分析】(1)由平行四边形的性质得出AD∥BC,AD∥BE,由平行线的性质得出∠ADF =∠BEF,由AAS证明△ADF≌△BEF得出AD=BE,即可得出结论;(2)作DG⊥BC于G,BH⊥CD于H,由等腰三角形的性质得出CH=DH=CD=3,由勾股定理得出BH==4,由△BCD的面积得出DG==,由平行四边形的性质得出E=AD,得出BE=BC=5,由平行四边形面积公式即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥BE,∴∠ADF=∠BEF,∵点F是AB的中点,∴AF=BF,在△ADF和△BEF中,,∴△ADF≌△BEF(AAS),∴AD=BE,又∵AD∥BE,∴四边形AEBD是平行四边形;(2)解:作DG⊥BC于G,BH⊥CD于H,如图所示:∵BD=BC=5,CD=6,∴CH=DH=CD=3,∴BH===4,∵△BCD的面积=BC×DG=CD×BH,∴DG===,∵四边形AEBD是平行四边形,∴BE=AD,∴BE=BC=5,∴平行四边形AEBD的面积=BE×DG=5×=24.21.某品牌服装为了解某件衣服的销售情况,对线上、线下两种销售模式进行了抽样调查,从线上、线下两种销售模式中分别随机抽取20个店,记录下某一周各自的销售情况(单位:件)如下:线上:76 88 93 65 78 99 89 68 95 5089 88 89 89 77 97 87 88 98 97线下:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)整理、描述数据:对销售件数进行分组,各组的频数如下:销售件数50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100线上123a6线下011018(2)分析数据:两组样本数据的平均数、中位数如下表所示:销售模式平均数中位数众数线上8588.5c线下84.2b74请根据以上信息,回答下列问题:(1)填空:a=8,b=77,c=89.(2)线上,线下两种销售模式目前销售该品牌服装的店面共2000个(线上、线下的门店数差不多),估计该品牌服装每周销售的件数约为多少?(3)根据以上数据,你认为线上、线下两种销售该品牌服装的销售模式哪种情况比较好?并说明理由.【分析】(1)根据题意和题目中的数据,可以得到a的值;根据中位数与众数的定义可得b、c的值;(2)利用样本估计总体,用2000乘以样本中20个店线上、线下该品牌服装每周销售的平均数即可;(3)根据题目中的数据,可以从平均数、中位数、众数来说明理由.【解答】解:(1)由题意,可得a=20﹣(1+2+3+6)=8,∵线上20个数据中,89出现了4次,次数最多,∴众数c=89,∵线下20个数据从小到大排列为:69,72,72,73,74,74,74,74,76,76,78,89,96,97,97,98,98,99,99,99,第10、11个数分别是76,78,∴中位数b=(76+78)÷2=77.故答案为8,77,89;(2)2000×=169200(件).答:估计该品牌服装每周销售的件数约为169200件;(3)根据以上数据,我认为线上、线下两种销售该品牌服装的销售模式线上情况比较好,理由:线上、线下比较,线上的平均数、中位数、众数均高于线下,所以线上销售模式比较好.22.请阅读下列材料,并解决相应的问题:一个四位数t的千位数字为a,百位数字为b,十位数字为c,个位数字为d.则t=1000a+100b+10c+d.若a+d=n(b+c),b=c+2(n为正整数a≥d),则称这个四位数为“倍多分数”.(1)请直接判断2200、3031是不是“倍多分数“;(2)对一个四位数t,记F(t)=,求F(t)为整数的“倍多分数”t的个数.【分析】(1)根据“倍多分数”的定义进行判断即可.(2)根据四位数是9的倍数且是倍多分数进行判断t的个数即可.【解答】解:(1)2200是“倍多分数”,∵a=2,b=2,c=0,d=0,且a+d=2,b+c=2,∴此时,n=1,b=c+2,∴2200是“倍多分数”;3031不是“倍多分数”,∵a=3,b=0,c=3,d=1,且a+d=4,b+c=3,∴不存在整数n,使得a+d=n(b+c),故3031不是“倍多分数”;(2)设四位数t为1000a+100b+10c+d,由F(t)=知F(t)为9的倍数,且为“倍多分数”,∴b=c+2,∴t=1000a+100b+10c+d=999a+(110+2n)c+200+2n,∴F(t)=110a+,∴(110+2n)c+200+2n为9的倍数,∵a+d=n(b+c)=n(2c+2)=2n(c+1),∴,∴,当c=0时,n可为1,2,3,4,5,6,7,8,9,∴(110+2n)c+200+2n=200+2n,一一代入得,当n=8时,符合题意;当c=1时,n可为1,2,3,4,∴(110+2n)c+200+2n=310+4n,一一代入得,无n的值符合题意;以此类推,可知当c=0时,n=8;c=2时,n=2符合题意:若c=0,n=8,则b=2,a=9,d=7或b=2,a=8,d=8;若c=2,n=2,则b=4,a=6,d=6或b=4,a=7,d=5或b=4,a=8,d=4或b=4,a=9,d=3,∴综上所述,共有6个.23.已知函数y=a|x﹣1|﹣x﹣b,其中当x=1时y=﹣3,当x=﹣1时,y=3.(1)根据给定的条件.则a=2,b=2.(2)在给出的平面直角坐标系中画出函数图象;(3)①结合所画的图象,写出函数图象的一条性质:函数有最小值﹣3.②图中已给出y=||的图象,直接写出方程||=a|x﹣1|﹣x﹣b的解,解为x=﹣0.6或x=4.7.(精确到十分位)【分析】(1)将x=0,y=1;x=﹣1,y=3分别代入函数y=|2x+b|+kx(k≠0)得关于k 和b的二元一次方程组,解得k和b的值,则可得函数的解析式;(2)分别按照当2x+1≥0时和当2x+1<0,求得函数的解析式,再根据解析式的特点画出图象,然后结合图象得出其一条性质即可;(3)由(2)中函数图象可直接得出不等式的解集.【解答】解:(1)将x=1,y=﹣3,当x=﹣1,y=3分别代入函数y=a|x﹣1|﹣x﹣b得:解得:故答案为2,2;(2)如图:这个函数的一条性质为:函数有最小值﹣3,故答案为函数有最小值﹣3.(3)由(2)中图象可知方程||=a|x﹣1|﹣x﹣b的解为x=﹣0.6或x=4.7,故答案为x=﹣0.6或x=4.7.24.随着人们生活水平的提高,越来越多的人更注重生活品质.人们喜欢用美丽的鲜花装点屋子,也增添了生活情趣.姜荷花形态出众、开花繁密、花期长,是很好的室内观赏植物,某花市老板发现今年姜荷花很受欢迎,二月份试购了两个品种荷兰红、玉如意,荷兰红每盆的进价比玉如意每盆的进价便宜2元,用3200元购进荷兰红的数量和用3360元购进玉如意的数量相同.(1)荷兰红和玉如意每盆的进价各是多少元?(2)三月份该花市老板决定加大进货量,三月份购进两个品种共1000盆,由于市场需求较大,两个品种进价均涨至上个月玉如意进价,花市老板将荷兰红以每盆80元、玉如意以每盆64元的价格销售.三月份全部售出且总获利为33200元,四月份玉如意花型饱满,在进价维持三月不变的情况下,该老板决定调整价格,将荷兰红的售价在三月份的基础上下调a%(降价后售价不低于进价),玉如意的价格上调a%,同时荷兰红的销量较三月份销量下降了a%,玉如意的销量较三月份销量上升了40%,结果四月份的销售额比三月份增加了3520元,求a的值.【分析】(1)设荷兰红每盆的进价是x元,则玉如意每盆的进价是(x+2)元,根据数量=总价÷单价结合用3200元购进荷兰红的数量和用3360元购进玉如意的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设三月份购进荷兰红m盆,则购进玉如意(1000﹣m)盘,根据总利润=每盆的利润×销售数量(购进数量),即可得出关于m的一元一次方程,解之即可得出三月份购进两种花的数量,根据四月份的销售额比三月份增加了3520元,即可得出关于a的一元二次方程,解之即可得出a的值,再结合荷兰红降价后售价不低于进价,即可确定a值.【解答】解:(1)设荷兰红每盆的进价是x元,则玉如意每盆的进价是(x+2)元,依题意,得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴x+2=42.答:荷兰红每盆的进价是40元,玉如意每盆的进价是42元.(2)设三月份购进荷兰红m盆,则购进玉如意(1000﹣m)盘,依题意,得:(80﹣42)m+(64﹣42)(1000﹣m)=33200,解得:m=700,∴1000﹣m=300.∵四月份的销售额比三月份增加了3520元,∴80(1﹣a%)×700(1﹣a%)+64(1+a%)×300(1+40%)=80×700+64×300+3520,整理,得:a2﹣72a+1040=0,解得:a1=20,a2=52.当a=20时,80(1﹣a%)=64,∵64>42,∴符合题意;当a=52时,80(1﹣a%)=38.4,∵38.4<42,∴不符合题意,舍去.答:a的值为20.25.如图,抛物线y=ax2+bx+3与x轴交于A,B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线对称轴为直线x=﹣.连接AC,BC,点P是抛物线上在第二象限内的一个动点.过点P作x轴的垂线PH,垂足为点H,交AC于点Q.过点P作PG⊥AC 于点G.(1)求抛物线的解析式.(2)求△PQG周长的最大值及此时点P的坐标.(3)在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.【分析】(1)将已知点B(2,0)代入,抛物线对称轴为直线x=﹣,即,联立方程组,求出a,b,即可确定二次函数的解析式;(2)首先根据△PQG是等腰直角三角形,设P(m,﹣m2﹣m+3)得到F(m,m+3),进而得到PQ=﹣m2﹣m+3﹣m﹣3=﹣m2﹣m,从而得到△PQG周长=﹣m2。
重庆市八中初2019级初中毕业考试数学试题(本试题共五个大题,26个小题,满分150分,时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答. 2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为)44,2(2a b ac a b --一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑. 1.-3的相反数是( ) A .-3B .3C .13 D .13- 2.下列计算正确的是( ) A .235()x x =B . 623x x x ÷= C .235a b ab +=D .339m n mn =3.如图,直线//,100,70AB CD B F ∠=∠=,则E ∠等于( )度。
A .30B .40C . 50D .604.分式方程212x x -=的解为( ) A .1 B .2 C .3 D .45.下列调查中,适合采用全面调查的事件是( ) A .环境保护部门调查4月长江某水域的水质情况B .了解中央电视台直播节目“舌尖上的中国”在全国的收视率C .调查2019年全国中学生的心理健康情况D .对你所在班级的所有同学的身高的调查6 如图,由小立方体组成的几何体的主视图是( )。
A .B .C .D .7.如图,A 、B 、C 为O 上三点,且∠OAB=55°,则∠ACB 的度数为( )度。
A .30 B .35C.40D .45第7题图第8题图第9题图8.如图,点D 、E 分别在△ABC 的边BA 、CA 的延长线上,DE ∥BC ,EC =5,EA =2,△ADE 的面积FCB EA .50B .20C .18D .10 9.如图,在矩形ABCD 中,AD =10,AB =6,E 为BC 上一点,DE 平分∠AEC ,则CE 的长为( )。
2018-2019学年九年级(下)第三次定时练习数学试卷一.选择题(共12小题)1.﹣1,0,1,2四个数中,绝对值最小的数是()A.﹣1 B.0 C.1 D.22.如图图形中是轴对称图形的是()A.B.C.D.3.计算(x3)3的结果是()A.x27B.x6C.x9D.3x34.要使有意义,则x的取值范围为()A.x B.x C.x D.x5.下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每周锻炼所用时间的调查B.对重庆市某校九年级(1)班学生进行“是否有生日在同一天问题的调查C.对重庆市中学生心理健康现状的调查D.对重庆市中学生周末上网时间的调查6.×+的值介于()A.6至7之间B.7至8之间C.8至9之间D.9至10之间7.若x+y=3,xy=1,则﹣5x﹣5y+3xy的值为()A.﹣12 B.﹣14 C.12 D.188.如图,△ABC中,DE∥BC,且AE:EC=1:3,若S△ABC=16,则△ADE的面积是()A.1 B.3 C.4 D.99.如图,以点O为圆心、2cm为半径作半圆,以圆心O为直角顶点作等腰Rt△AOB,斜边AB刚好与半圆相切于点C,两直角边都与半圆所在弧相交,则图中阴影部分的面积为()A.4cm2B.2cm2C.πcm2D.2πcm210.如图,观察这组图形中五角星的个数,其中第①个图形中共有4个五角星,第②个图形中共有10个五角星,第③个图形中共有18个五角星…,按此规律,则第⑥个图形中五角星的个数为()A.64 B.34 C.40 D.5411.如图,某社区一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB,小明站在位于建筑物正前方的台阶一上D点处测得条幅顶端A的仰角为36.9°,朝着条幅的方向走到台阶下的E点处,测得条幅顶端A的仰角为63.5°,已知台阶DE的坡度为1:2,DC=2米,则条幅AB的长度约为()(参考数据:sin36.9°≈0.60,tan36.9°≈0.75,sin63.5°≈0.89,tan63.5°≈2.00)A.7米B.8米C.9米D.10米12.如果关于x的方程+=1有正分数解,且关于x的不等式组的解集为x<﹣6,则符合条件的所有整数a的和为()A.0 B.2 C.3 D.4二.填空题(共5小题)13.2016年我国高新技术产品出口总额达40500亿元,将数40500用科学记数法表示为.14.计算:()﹣2+(π﹣3)0﹣=.15.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为.16.为了方便出行,王叔叔连续统计了重庆市市区五一节前后5天的最高气温,并制作成折线统计图,则这五个数据的中位数与极差之和为.17.星期天早晨,王老师骑自己的摩托车与一辆货车同时从A地出发,以不同的速度匀速向B地行驶,货车的行驶速度较快,当货车到达B地后,停车装上货物后就沿原路以原速返回,在途中与王老师相遇.若两车之间的距离y(千米)与行驶时间x(小时)之间的函数图象如图所示,则A,B两地之间的距离是千米.三.解答题(共7小题)18.如图,已知∠1=∠4,∠2与∠3互补,求证:AB∥CE.19.某市4所大学(用A、B、C、D表示)各组织部分学生参加“汉语桥”大赛,各学校组织的学生人数绘制成的条形统计图和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图补充完整;扇形统计图中C代表的扇形的圆心角为度;(2)赛后,大赛组织方从参赛的学生中挑选出2名学生前往西藏的日噶则、那区、山南3个地区(分别用R、N、S表示)宣传汉语,每名学生各自随机选择一个地区进行宣传工作,请用画树状图或列表的方法求出两人恰好都选择了同一地区的概率.20.化简:(1)(a﹣b)2﹣(a+b)(a﹣3b)(2)÷(m﹣2﹣)21.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A,B 两点,与x轴交于点C,与y轴交于点D,已知OA=,点B的坐标为(m,﹣2),tan ∠AOC=(1)求反比例函数和一次函数的解析式;(2)若点P在y轴的正半轴上,且使得S△PBC=6S△AOC,求P点的坐标.22.2017年3月23日,2018年足球世界杯预选赛中国队与韩国队在长沙交锋,由于球迷热情参与,五万多张票一票难求,3月1日大麦网楷书四启动球票申购,许多球票被一些不良商家大量抢购,再高价卖出,某不良商家以480元/张的价格购进若干张球票,将这些球票标价为1500元/张,然后在标价的基础上打折出售,折后再降价180/张.(1)问该商家最多打几折销售,能使利润率不低于50%?(2)为了照顾广大球迷,组委会决定将大量球票通过球迷协会统一购买的方式卖给球迷.某球迷协会组委会售票处得(m+60)张球票,每张球票价格比(1)中商家售出的最低价格少(m+10)%,购票共用去38880元,求m的值(m≠0).23.在等边△ABC中,BD是AC边上的高,BE平分∠CBD交AC于点E.(1)如图1,过点E作EK⊥AB于点K,若EK=,求CE的长;(2)如图2,在BC上取一点G,连接EG,且EG=2DE.点F是△ABC外一点,连接AF,BF,∠FBE=∠FAB=60°,连接GF交EB于点H,求证:GF⊥BE.24.当一个多位数的位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:在435729中间插入数字6可得435729的一个关联数4356729;在435729中间插入数字7可得435729的另一个关联数4357729.请阅读以上材料,解决下列问题:(1)若一个两位数M的关联数是原数的9倍,求满足条件的M的关联数;(2)对于一个六位数N=(1≤x≤5,0≤y≤9,0≤z≤7且x、y、z为整数),在N的中间位插入一位数(z+2),得其关联数,已知N为21的倍数,且N的关联数与N 之差为9的倍数,求证:x+y+1能被3整除.参考答案与试题解析一.选择题(共12小题)1.﹣1,0,1,2四个数中,绝对值最小的数是()A.﹣1 B.0 C.1 D.2 【分析】求出四个数的绝对值,比较即可.【解答】解:|﹣1|=1,|0|=0,|1|=1,|2|=2,绝对值最小的数是0.故选:B.2.如图图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.3.计算(x3)3的结果是()A.x27B.x6C.x9D.3x3【分析】根据幂的乘方的运算法则计算可得.【解答】解:(x3)3=x9,故选:C.4.要使有意义,则x的取值范围为()A.x B.x C.x D.x【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数,此外还需考虑分母不为零.【解答】解:要使有意义,则2x﹣1>0,∴x的取值范围为.故选:C.5.下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每周锻炼所用时间的调查B.对重庆市某校九年级(1)班学生进行“是否有生日在同一天问题的调查C.对重庆市中学生心理健康现状的调查D.对重庆市中学生周末上网时间的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A.对重庆市中学生每周锻炼所用时间的调查适合抽样调查;B.对重庆市某校九年级(1)班学生进行“是否有生日在同一天问题的调查适合全面调查;C.对重庆市中学生心理健康现状的调查适合抽样调查;D.对重庆市中学生周末上网时间的调查适合抽样调查;故选:B.6.×+的值介于()A.6至7之间B.7至8之间C.8至9之间D.9至10之间【分析】直接利用二次根式的混合运算法则计算进而估算的取值范围,进而得出答案.【解答】解:原式=6+,∵2<<3,∴8<6+<9,故选:C.7.若x+y=3,xy=1,则﹣5x﹣5y+3xy的值为()A.﹣12 B.﹣14 C.12 D.18【分析】本题可对﹣5x﹣5y+3xy进行转换,可转换为﹣5(x+y)+3xy,题中已知x+y=3,xy=1,代入即可.【解答】解:由分析可得:﹣5x﹣5y+3xy=﹣5(x+y)+3xy,已知x+y=3,xy=1,代入可得﹣5x﹣5y+3xy=﹣12.故选:A.8.如图,△ABC中,DE∥BC,且AE:EC=1:3,若S△ABC=16,则△ADE的面积是()A.1 B.3 C.4 D.9【分析】证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方列式计算,得到答案.【解答】解:∵=,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2,即=,解得,△ADE的面积=1,故选:A.9.如图,以点O为圆心、2cm为半径作半圆,以圆心O为直角顶点作等腰Rt△AOB,斜边AB刚好与半圆相切于点C,两直角边都与半圆所在弧相交,则图中阴影部分的面积为()A.4cm2B.2cm2C.πcm2D.2πcm2【分析】连接OC,根据切线的性质得出OC⊥AB,求出AB长,再求出阴影部分的面积即可.【解答】解:连接OC,∵AB切半圆O于C,∴OC⊥AB,∵△BOA是等腰直角三角形,∴∠AOB=90°,OA=OB,∠A=∠B=45°,∴AC=BC,OC=BC=AC=2cm,即AB=4cm,∠DOF+∠EOG=180°﹣90°=90°,∴阴影部分的面积S=+﹣=4(cm2),故选:A.10.如图,观察这组图形中五角星的个数,其中第①个图形中共有4个五角星,第②个图形中共有10个五角星,第③个图形中共有18个五角星…,按此规律,则第⑥个图形中五角星的个数为()A.64 B.34 C.40 D.54【分析】先根据题意求找出其中的规律,即可求出第⑥个图形中五角星的个数.【解答】解:第①个图形一共有0+2×2=4个五角星,第②个图形一共有:1+(3×3)=10个五角星,第③个图形一共有2+(4×4)=18个五角星,…第n个图形一共有n﹣1+(n+1)•(n+1)个五角星,把n=6代入n﹣1+n•n=5+7×7=54,故选:D.11.如图,某社区一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB,小明站在位于建筑物正前方的台阶一上D点处测得条幅顶端A的仰角为36.9°,朝着条幅的方向走到台阶下的E点处,测得条幅顶端A的仰角为63.5°,已知台阶DE的坡度为1:2,DC=2米,则条幅AB的长度约为()(参考数据:sin36.9°≈0.60,tan36.9°≈0.75,sin63.5°≈0.89,tan63.5°≈2.00)A.7米B.8米C.9米D.10米【分析】要求AB的长,只要构造出直角三角形,利用锐角三角函数进行求解即可,作DF⊥AB于点F,然后根据题目中的数量关系,可以表示出关于AB的等式,从而可以得到AB的值.【解答】解:作DF⊥AB于点F,如右图所示,由题意可得,DF=CB,∵台阶DE的坡度为1:2,DC=2米,∴CE=2CD=4米,∵∠AFD=90°,∠ADF=36.9°,DC=2米,tan∠ADF=,∴tan36.9°=,即DF=,又∵∠ABE=90°,∠AEB=63.5°,CE=4米,CB=DF,tan∠AEB=,∴BE=,即DF﹣4=,∴,解得,AB≈8米,故选:B.12.如果关于x的方程+=1有正分数解,且关于x的不等式组的解集为x<﹣6,则符合条件的所有整数a的和为()A.0 B.2 C.3 D.4【分析】分式方程去分母转化为整式方程,表示出整数方程的解,由分式方程的解为正分数求出a的范围,再由不等式组的解集确定出a的范围,进而求出a的具体范围,确定出整数a的值,求出之和即可.【解答】解:分式方程去分母得:4x﹣(5+a)=x﹣2,解得:x=,由分式方程的解为正分数,得到a+3>0,即a>﹣3,∵x≠2,∴≠2,a≠3,不等式整理得:,由不等式的解集为x<﹣6,得到6﹣3a≥﹣6,即a≤4,∴a的范围是﹣3<a≤4,且a≠3∵a是整数,∴a的值为﹣2,﹣1,0,1,2,4,把a=﹣2代入x=,即x=,符合题意;把a=﹣1代入x=,即x=,符合题意;把a=0代入x=,即x=1,不符合题意;把a=1代入x=,即x=,符合题意;把a=2代入x=,即x=,符合题意;把a=4代入x=,即x=,符合题意;∴符合条件的整数a取值为﹣2,﹣1,1,2,4,之和为4,故选:D.二.填空题(共5小题)13.2016年我国高新技术产品出口总额达40500亿元,将数40500用科学记数法表示为4.05×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:40500用科学记数法表示为:4.05×104.故答案为:4.05×104.14.计算:()﹣2+(π﹣3)0﹣= 2 .【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=4+1﹣3=2,故答案为:215.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为50°.【分析】根据三角形内角和定理求出∠BOC,根据圆周角定理解答即可.【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,由圆周角定理得,∠A=∠BOC=50°,故答案为:50°.16.为了方便出行,王叔叔连续统计了重庆市市区五一节前后5天的最高气温,并制作成折线统计图,则这五个数据的中位数与极差之和为27 .【分析】根据折线统计图,读出其中的数据,根据中位数及极差相关知识即可求得.【解答】解:由图知,重庆市市区五一节前后5天的最高气温分别为:22℃、24℃、23℃、25℃、24℃.将这五个数据由小到大排序为:22、23、24、24、25.则这五个数据的中位数为24.极差为:25﹣22=3则中位数与极差之和为:24+3=27故答案为:27.17.星期天早晨,王老师骑自己的摩托车与一辆货车同时从A地出发,以不同的速度匀速向B地行驶,货车的行驶速度较快,当货车到达B地后,停车装上货物后就沿原路以原速返回,在途中与王老师相遇.若两车之间的距离y(千米)与行驶时间x(小时)之间的函数图象如图所示,则A,B两地之间的距离是360 千米.【分析】根据题意和函数图象中的数据可以分别求得王老师骑摩托车的速度和货车的速度,从而可以求得A,B两地之间的距离.【解答】解:设王老师骑摩托车的速度为akm/h,则货车的速度为:a+=(a+30)km/h,120﹣(4.5﹣4)a=[a+(a+30)]×(5.1﹣4.5)解得,a=60,∴a+30=90,∴A,B两地之间的距离是:90×4=360(千米),故答案为:360.三.解答题(共7小题)18.如图,已知∠1=∠4,∠2与∠3互补,求证:AB∥CE.【分析】想办法证明∠3+∠ACE=180°即可解决问题.【解答】证明:∵∠1=∠4,∴AC∥BD,∴∠2=∠ACE,∵∠3+∠2=180°,∴∠3+∠ACE=180°,∴AB∥EC.19.某市4所大学(用A、B、C、D表示)各组织部分学生参加“汉语桥”大赛,各学校组织的学生人数绘制成的条形统计图和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图补充完整;扇形统计图中C代表的扇形的圆心角为144 度;(2)赛后,大赛组织方从参赛的学生中挑选出2名学生前往西藏的日噶则、那区、山南3个地区(分别用R、N、S表示)宣传汉语,每名学生各自随机选择一个地区进行宣传工作,请用画树状图或列表的方法求出两人恰好都选择了同一地区的概率.【分析】(1)先利用A代表的人数和它所占的百分比计算出样本容量为200,则可计算出C代表的人数为80,然后用360°乘以C代表所占的百分比得到扇形统计图中C代表的扇形的圆心角的度数;最后补全条形统计图;(2)画树状图展示所有9种等可能的结果数,再找出两人恰好都选择了同一地区的结果数,然后根据概率公式求解.【解答】解:(1)20÷10%=200,所以样本容量为200,所以C代表的人数为200﹣20﹣40﹣60=80(人),所以扇形统计图中C代表的扇形的圆心角的度数为360°×=144°;条形统计图补充完整为:故答案为144;(2)画树状图为:共有9种等可能的结果数,其中两人恰好都选择了同一地区的结果数为3,所以两人恰好都选择了同一地区的概率==.20.化简:(1)(a﹣b)2﹣(a+b)(a﹣3b)(2)÷(m﹣2﹣)【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=a2﹣2ab+b2﹣(a2﹣3ab+ab﹣3b2)=a2﹣2ab+b2﹣a2+3ab﹣ab+3b2=4b2;(2)原式=÷(﹣)=÷=•==.21.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A,B 两点,与x轴交于点C,与y轴交于点D,已知OA=,点B的坐标为(m,﹣2),tan ∠AOC=(1)求反比例函数和一次函数的解析式;(2)若点P在y轴的正半轴上,且使得S△PBC=6S△AOC,求P点的坐标.【分析】(1)过A作AE⊥x轴于E,由tan∠AOE=,得到OE=3AE,根据勾股定理即可求出AE和OE的长,即得到A的坐标,代入双曲线即可求出k的值,得到解析式;把B的坐标代入反比例函数的解析式即可求出B的坐标,把A和B的坐标代入一次函数的解析式即可求出a、b的值,即得到答案.(2)设P点坐标为P(0,t),再根据面积关系列出方程求解.【解答】解:(1)过A作AE⊥x轴于E,tan∠AOE=,∴OE=3AE,∵OA=,由勾股定理得:OE2+AE2=10,解得:AE=1,OE=3,∴A的坐标为(3,1),∵A点在双曲线上y=上,∴1=,∴k=3,∴双曲线的解析式y=;∵B(m,﹣2)在双曲y=上,∴﹣2=,解得:m=﹣,∴B的坐标是(﹣,﹣2),代入一次函数的解析式得:,解得:,则一次函数的解析式为:y=x﹣1;(2)设P点坐标为P(0,t),如图所示,∵一次函数的解析式为:y=x﹣1;∴D(0,﹣1),C(,0),∴OD=t+1,OC=,∵S△PBC=6S△AOC,∴,即,解得,t=5,∴P(0,5).22.2017年3月23日,2018年足球世界杯预选赛中国队与韩国队在长沙交锋,由于球迷热情参与,五万多张票一票难求,3月1日大麦网楷书四启动球票申购,许多球票被一些不良商家大量抢购,再高价卖出,某不良商家以480元/张的价格购进若干张球票,将这些球票标价为1500元/张,然后在标价的基础上打折出售,折后再降价180/张.(1)问该商家最多打几折销售,能使利润率不低于50%?(2)为了照顾广大球迷,组委会决定将大量球票通过球迷协会统一购买的方式卖给球迷.某球迷协会组委会售票处得(m+60)张球票,每张球票价格比(1)中商家售出的最低价格少(m+10)%,购票共用去38880元,求m的值(m≠0).【分析】(1)设该商家最多打x折销售,根据(售价﹣降价﹣进价)除以进价等于利润率,让其大于等于50%,解不等式即可;(2)先根据(1)求得的打折数,求出实际售价,根据单张售价乘以售出张数,列方程求解即可.【解答】解:(1)设该商家最多打x折销售,根据题意得:≥50%化简得:150x≥900∴x≥6答:该商家最多打6折销售,能使利润率不低于50%.(2)由(1)得1500×﹣180=900﹣180=720(元)由题意得:720[1﹣(m+10)%](m+60)=38880化简得:(90﹣m)(m+60)=5400∴m2﹣30m=0∴m(m﹣30)=0∵m≠0∴m﹣30=0∴m=30答:m的值为30.23.在等边△ABC中,BD是AC边上的高,BE平分∠CBD交AC于点E.(1)如图1,过点E作EK⊥AB于点K,若EK=,求CE的长;(2)如图2,在BC上取一点G,连接EG,且EG=2DE.点F是△ABC外一点,连接AF,BF,∠FBE=∠FAB=60°,连接GF交EB于点H,求证:GF⊥BE.【分析】(1)证明△BEK是等腰直角三角形,得出BK=EK=,由直角三角形的性质得出AK=EK=1,AE=2AK=2,得出AC=AB=AK+BK=1+,即可得出答案;(2)证明△ABF≌△CBE(ASA),得出BF=BE,证出△BEF是等边三角形,得出BF=EF,作EM⊥BC于M,证出BG=EG,证明△BFG≌△EFG(SSS),得出∠BGF=∠EGF,由等腰三角形的性质即可得出结论.【解答】(1)解:∵△ABC是等边三角形,BD是AC边上的高,∴AB=AC,∠A=∠C=∠ABC=60°,BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=30°,∵BE平分∠CBD,∴∠CBE=∠DBE=15°,∴∠ABE=∠ABD+∠DBE=45°,∵EK⊥AB,∴△BEK是等腰直角三角形,∴BK=EK=,∵∠AEK=90°﹣∠A=30°,∴AK=EK=1,AE=2AK=2,∴AC=AB=AK+BK=1+,∴CE=AC﹣AE=﹣1;(2)证明:∵∠FBE=∠FAB=60°,∠ABC=∠C=60°,∴∠ABF=∠CBE,∠FAE=∠C,在△ABF和△CBE中,,∴△ABF≌△CBE(ASA),∴BF=BE,∵∠FAB=60°,∴△BEF是等边三角形,∴BF=EF,作EM⊥BC于M,如图2所示:∵BE平分∠CBD,∴ME=DE,∵EG=2DE,∴EG=2ME,∴∠EGM=30°,∵∠EGM=∠CBE+∠GEB,∴∠GEB=30°﹣15°=∠CBE,∴BG=EG,在△BFG和△EFG中,,∴△BFG≌△EFG(SSS),∴∠BGF=∠EGF,∵BG=EG,∴GF⊥BE.24.当一个多位数的位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:在435729中间插入数字6可得435729的一个关联数4356729;在435729中间插入数字7可得435729的另一个关联数4357729.请阅读以上材料,解决下列问题:(1)若一个两位数M的关联数是原数的9倍,求满足条件的M的关联数;(2)对于一个六位数N=(1≤x≤5,0≤y≤9,0≤z≤7且x、y、z为整数),在N的中间位插入一位数(z+2),得其关联数,已知N为21的倍数,且N的关联数与N 之差为9的倍数,求证:x+y+1能被3整除.【分析】(1)设原数为=10a+b,其关联数为=100a+10m+b,根据关联数为原数的9倍即可得出b与a,m之间的关系,结合a、b、m即可得出结论;(2)根据N的关联数与N之差为9的倍数得出z=7,而原数是21的倍数,得出3(33x+3y+2)+(x+y+1)是3的倍数,继而结论.【解答】解:(1)设原数为=10a+b,其关联数为=100a+10m+b,∵=9∴100a+10m+b=9×(10a+b),∴5a+5m=4b∴5(a+m)=4b∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4;∴或或或;∴满足条件的三位关联数为135,225,315,405;(2)证明:原六位数N==1001(100x+10y+z),在N的中间位插入一位数(z+2),N的关联数==10001(100x+10y+z)+1000(z+2)N的关联数与N之差=10001(100x+10y+z)+1000(z+2)﹣1001(100x+10y+z)=9000(100x+10y+z)+1000(z+2)∵N的关联数与N之差为9的倍数,∴1000(z+2)是9的倍数,又∵0≤z≤7,故z=7又∵原六位数N==1001(100x+10y+z)=7×143×(100x+10y+z),它是21的倍数,∴100x+10y+7=3(33x+3y+2)+(x+y+1)是3的倍数,∴(x+y+1)是3的倍数;。
2019-2020学年重庆八中九年级(下)自主练习数学试卷(八)一.选择题(共12小题)1.在﹣2,﹣9,0,2四个数中,最小的数是()A.﹣9B.﹣2C.0D.22.如图的几何体的俯视图是()A.B.C.D.3.下列命题是真命题的是()A.对角线相互垂直的四边形是平行四边形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相等且相互平分的四边形是矩形4.如图,P A、PB分别切⊙O于A、B,∠APB=60°,⊙O半径为2,则P A的长为()A.3B.4C.D.5.根据如图所示的程序计算函数y的值,若输入的x值是﹣3和2时,输出的y值相等,则b等于()A.5B.﹣5C.7D.3和46.估计的值应在()A.2.5和3之间B.3和3.5之间C.3.5和4之间D.4和4.5之间7.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.B.C.D.8.如图,等腰Rt△ABC与等腰Rt△CDE是以点O为位似中心的位似图形,位似比为k=1:3,∠ACB=90°,BC=4,则点D的坐标是()A.(18,12)B.(16,12)C.(12,18)D.(12,16)9.在课外实践中,小明为了测量江中信号塔A离河边的距离AB,采取了如下措施:如图在江边D处,测得信号塔A的俯角为40°,若DE=55米,DE⊥CE,CE=36米,CE 平行于AB,BC的坡度为i=1:0.75,坡长BC=140米,则AB的长为()(精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)A.78.6米B.78.7米C.78.8米D.78.9米10.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,则CE的长为()A.B.C.3.5D.511.若关于x的不等式组至少有六个整数解,且关于y的分式方程+1=的解为整数,则符合条件的所有整数a有()个A.1个B.2个C.3个D.4个12.如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B'落在矩形ABCD的边上,则a的值为()A.B.C.或D.或二.填空题(共6小题)13.计算:=.14.若分式的值为0,则x=.15.从某油菜籽种子在相同条件下发芽试验的结果如下:每批粒数100400800100020004000发芽的频数8529865279316043204发芽的频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该油菜籽种子发芽的概率为(精确到0.1).16.如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为.17.已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则当甲到达C地时,乙距A地米.18.一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF =12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H 相应移动的路径长共为.(结果保留根号)三.解答题(共8小题)19.计算:(1)(2x﹣y)2﹣(x﹣y)(4x﹣y);(2).20.如图,⊙O为等边△ABC的外接圆,AD∥BC,∠ADC=90°,CD交⊙O于点E.(1)求证:AD是⊙O的切线;(2)若DE=2,求阴影部分的面积.21.为了增强学生对新冠病毒预防知识的了解,我校初一年级开展了网上预防知识的宣传教育活动.为了解这次宣传教育活动的效果,学校从初一年级1500名学生中随机抽取部分学生进行网上知识测试(测试满分100分,得分均为整数),并根据抽取的学生测试成绩,制作了如下统计图表:抽取学生知识测试成绩的频数表成绩a(分)频数(人)频率50≤a<60 100.160≤a<7015b70≤a<80m0.280≤a<9040c90≤a<100n d由图表中给出的信息回答下列问题:(1)m=,n=,并补全频数直方图;(2)如果80分以上(包括80分)为优秀,请估计初一年级1500名学生中成绩优秀的人数;(3)小强在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由.22.已知y=|2x+4|+kx,当x=1时,y=5.(1)求这个函数的表达式(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|2x+4|+kx ≥的解集.23.小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.24.定义:如果一个三位数,它的各个数位上的数字都不为零,且满足百位上的数字与个位上的数字的平均数等于十位上的数字,则称这个三位数为开合数.设A为一个开合数,将A的百位数字与个位数字交换位置后得到的新数再与A相加的和记为Φ(A).例如:852是“开合数”,则Φ(852)=852+258=1110.(1)已知开合数m=103+10x(0<x≤9,且为x整数),求Φ(m)的值;(2)三位数A是一个开合数,若百位数字小于个位数字,是一个整数,且Φ(A)能被个位数字与百位数字的差整除,请求满足条件的所有A值.25.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.26.问题提出(1)如图①,在等腰Rt△ABC中,斜边AC=4,点D为AC上一点,连接BD,则BD 的最小值为;问题探究(2)如图②,在△ABC中,AB=AC=5,BC=6,点M是BC上一点,且BM=4,点P 是边AB上一动点,连接PM,将△BPM沿PM翻折得到△DPM,点D与点B对应,连接AD,求AD的最小值;问题解决(3)如图③,四边形ABCD是规划中的休闲广场示意图,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=2km,AB=3km,点M是BC上一点,MC=4km.现计划在四边形ABCD内选取一点P,把△DCP建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP、MP,从实用和美观的角度,要求满足∠PMB=∠ABP,且景观绿化区面积足够大,即△DCP区域面积尽可能小.则在四边形ABCD内是否存在这样的点P?若存在,请求出△DCP面积的最小值;若不存在,请说明理由.2019-2020学年重庆八中九年级(下)自主练习数学试卷(八)参考答案与试题解析一.选择题(共12小题)1.在﹣2,﹣9,0,2四个数中,最小的数是()A.﹣9B.﹣2C.0D.2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣9<﹣2<0<2,∴在﹣2,﹣9,0,2四个数中,最小的数是﹣9.故选:A.2.如图的几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面看,上面是3个正方形,右下角是2个正方形.故选:C.3.下列命题是真命题的是()A.对角线相互垂直的四边形是平行四边形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相等且相互平分的四边形是矩形【分析】A、对角线相互垂直的四边形是平行四边形,不是真命题;B、对角线相等且相互垂直的四边形是菱形,也可能是正方形,所以,不是真命题;C、四条边相等的四边形是正方形,也可能是菱形,所以,不是真命题;D、对角线相等且相互平分的四边形是矩形,正确,是真命题.【解答】解:A、对角线相互垂直的四边形是平行四边形,不是真命题;B、对角线相等且相互垂直的四边形是菱形,也可能是正方形,所以,不是真命题;C、四条边相等的四边形是正方形,也可能是菱形,所以,不是真命题;D、对角线相等且相互平分的四边形是矩形,正确,是真命题,故选:D.4.如图,P A、PB分别切⊙O于A、B,∠APB=60°,⊙O半径为2,则P A的长为()A.3B.4C.D.【分析】连接OA、OP,根据切线长定理即可求得∠OP A=∠APB,在Rt△OAP中利用三角函数即可求解.【解答】解:连接OA、OP,∵P A、PB是⊙O的切线∴∠OAP=90°,∠APO=∠APB=30°,∴∠POA=60°,Rt△OAP中,∵tan∠POA=,∴P A=OA•tan60°=2×=2.故选:C.5.根据如图所示的程序计算函数y的值,若输入的x值是﹣3和2时,输出的y值相等,则b等于()A.5B.﹣5C.7D.3和4【分析】把x=﹣3与x=2代入程序中计算,根据y值相等即可求出b的值.【解答】解:当x=﹣3时,y=9,当x=2时,y=4+b,由题意得:4+b=9,解得:b=5,故选:A.6.估计的值应在()A.2.5和3之间B.3和3.5之间C.3.5和4之间D.4和4.5之间【分析】直接化简二次根式,进而估算无理数的取值范围即可.【解答】解:原式===,∵7<<8,∴3.5<<4,故选:C.7.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.B.C.D.【分析】设甲原有x文钱,乙原有y文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的=48文钱,据此列方程组可得.【解答】解:设甲原有x文钱,乙原有y文钱,根据题意,得:,故选:A.8.如图,等腰Rt△ABC与等腰Rt△CDE是以点O为位似中心的位似图形,位似比为k=1:3,∠ACB=90°,BC=4,则点D的坐标是()A.(18,12)B.(16,12)C.(12,18)D.(12,16)【分析】直接利用相似三角形的判定与性质得出==,进而得出DE的长,即可得出EC的长,则可以得出点D的坐标.【解答】解:由题意可得:△OBC∽△ODE,则==,∵BC=4,∴ED=12,∵等腰Rt△CDE,∴CE=DE=12,∴=,解得:CO=6,故EO=18,∴点D的坐标是(18,12).故选:A.9.在课外实践中,小明为了测量江中信号塔A离河边的距离AB,采取了如下措施:如图在江边D处,测得信号塔A的俯角为40°,若DE=55米,DE⊥CE,CE=36米,CE 平行于AB,BC的坡度为i=1:0.75,坡长BC=140米,则AB的长为()(精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)A.78.6米B.78.7米C.78.8米D.78.9米【分析】作CH⊥AB交线段AB的延长线于H,延长DE交线段AB的延长线于F,根据坡度的概念分别求出CH、BH,根据正切的定义求出AF,计算即可.【解答】解:作CH⊥AB交线段AB的延长线于H,延长DE交线段AB的延长线于F,则四边形CHFE为矩形,∴CH=EF,HF=CE=36米,∵BC的坡度为i=1:0.75,∴CH=4x,BH=3x,由勾股定理得,BC==5x,则5x=140,解得,x=28,∴EF=CH=112米,BH=84米,∴DF=DE+EF=55+112=167(米),在Rt△DAF中,tan A=,则AF==≈198.8(米),∴AB=AF﹣BH﹣HF=198.8﹣84﹣36=78.8(米)故选:C.10.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,则CE的长为()A.B.C.3.5D.5【分析】证明△DHA≌△CGD(AAS)、△ANB≌△DGC(AAS)得到:AN=DG=1=AH,而AH=﹣1﹣m=1,解得:m=﹣2,即可求解.【解答】解:设点D(m,),如图所示,过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣,﹣5),GE=,CE=CG﹣GE=DH﹣GE=5﹣=,故选:B.11.若关于x的不等式组至少有六个整数解,且关于y的分式方程+1=的解为整数,则符合条件的所有整数a有()个A.1个B.2个C.3个D.4个【分析】不等式组整理后,由整数解至少有六个确定出a的范围,再由分式方程的解为整数确定出满足题意a的值即可.【解答】解:不等式组整理得:,解得:﹣5<x≤a,∵不等式组至少有六个整数解,∴a≥1,分式方程去分母得:﹣2+y﹣2=﹣ay,即(a+1)y=4,解得:y=(a≠﹣1且a≠1),∵分式方程解为整数,∴a+1=±1,±2,±4,解得:a=0,﹣2,1,﹣3,3,﹣5,∵a>1,∴a=3,只有1个.故选:A.12.如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B'落在矩形ABCD的边上,则a的值为()A.B.C.或D.或【分析】分两种情况:①点B′落在AD边上,根据矩形与折叠的性质易得AB=BE,即可求出a的值;②点B′落在CD边上,证明△ADB′∽△B′CE,根据相似三角形对应边成比例即可求出a的值.【解答】解:分两种情况:①当点B′落在AD边上时,如图1,∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,∴∠BAE=∠B′AE=∠BAD=45°,∴AB=BE,∴a=1,∴a=;②当点B′落在CD边上时,如图2.∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′=a,∴DB′==,EC=BC﹣BE=a﹣a=a.∵∠B'AD=∠EB'C=90°﹣∠AB'D,∠D=∠C=90°,∴△ADB′∽△B′CE,∴,∴=解得a1=,a2=﹣(舍去).综上,所求a的值为或,故选:C.二.填空题(共6小题)13.计算:=3.【分析】原式利用零指数幂、负整数指数幂法则计算即可求出值.【解答】解:原式=4﹣1=3,故答案为:314.若分式的值为0,则x=2.【分析】分式的值是0的条件是,分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,x+2≠0,当x=﹣2时,x+2=0.∴当x=2时,分式的值是0.故答案为:2.15.从某油菜籽种子在相同条件下发芽试验的结果如下:每批粒数100400800100020004000发芽的频数8529865279316043204发芽的频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该油菜籽种子发芽的概率为0.8(精确到0.1).【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,∴该油菜籽种子发芽的概率为0.8,故答案为:0.8.16.如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为.【分析】设BD=x,则EC=3x,AE=6﹣3x,利用三角形的面积公式,构建二次函数,利用二次函数的性质解决问题即可;【解答】解:设BD=x,则EC=3x,AE=6﹣3x,∵∠A=90°,∴EA⊥BD,∴S△DEB=•x(6﹣3x)=﹣x2+3x,∵a=﹣<0,∴当x=1时,S最大值==,故答案为.17.已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则当甲到达C地时,乙距A地6075米.【分析】根据题意和函数图象中的数据,可以分别求得甲乙刚开始的速度和后来的速度,也可求得A、B两地的距离、A、C两地的距离,然后即可求得甲到达C地时,乙距A地距离.【解答】解:由题意可得,甲乙两人刚开始的速度之差为:900÷(23﹣14)=100(米/分),设甲刚开始的速度为x米/分,乙刚开始的速度为(x+100)米/分,12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,则A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),∵当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,∴后来乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),甲到达C地的时间为:23+[7200﹣(23﹣2)×300]÷400=25(分钟),∴当甲到达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),故答案为:6075.18.一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF =12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H 相应移动的路径长共为(12﹣18)cm.(结果保留根号)【分析】如图1中,作HM⊥BC于M,设HM=CM=a.在Rt△BHM中,BH=2HM=2a,BM=a,根据BM+MF=BC,可得a+a=12,推出a=6﹣6,推出BH=2a =12﹣12.如图2中,当DG⊥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2,由此即可解决问题.【解答】解:如图1中,作HM⊥BC于M,设HM=a,则CM=HM=a.在Rt△ABC中,∠ABC=30°,BC=12,在Rt△BHM中,BH=2HM=2a,BM=a,∵BM+FM=BC,∴a+a=12,∴a=6﹣6,∴BH=2a=12﹣12.如图2中,当DG⊥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,∴HH1=BH﹣BH1=9﹣15,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2=18﹣30+[6﹣(12﹣12)]=12﹣18.故答案为(12﹣18)cm.三.解答题(共8小题)19.计算:(1)(2x﹣y)2﹣(x﹣y)(4x﹣y);(2).【分析】(1)根据整式的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4x2﹣4xy+y2﹣(4x2﹣5xy+y2)=4x2﹣4xy+y2﹣4x2+5xy﹣y2=xy.(2)原式=÷=•=.20.如图,⊙O为等边△ABC的外接圆,AD∥BC,∠ADC=90°,CD交⊙O于点E.(1)求证:AD是⊙O的切线;(2)若DE=2,求阴影部分的面积.【分析】(1)连接AO并延长交BC于F,证明四边形AFCD是矩形,得出∠DAF=90°,AF∥CD,得出AD⊥OA即可得出结论;(2)连接AE、OE,由(1)得AF∥CD,由平行线的性质得出∠ACD=∠CAF=∠BAC =30°,由圆周角定理得出∠AOE=2∠ACD=60°,证明△AOE是等边三角形,得出OA=AE,∠OAE=60°,求出∠DAE=30°,由直角三角形的性质得出OA=AE=2DE =4,AD=DE=2,阴影部分的面积=梯形OADE的面积﹣扇形AOE的面积,即可得出答案.【解答】(1)证明:连接AO并延长交BC于F,如图所示:则AF⊥BC,∴∠AFC=90°,∵AD∥BC,∠ADC=90°,∴∠BCD=180°﹣∠ADC=90°,∴四边形AFCD是矩形,∴∠DAF=90°,AF∥CD,∴AD⊥OA,∴AD是⊙O的切线;(2)解:连接AE、OE,如图2所示:由(1)得:AF∥CD,∴∠ACD=∠CAF=∠BAC=30°,∴∠AOE=2∠ACD=60°,∵OA=OE,∴△AOE是等边三角形,∴OA=AE,∠OAE=60°,∴∠DAE=30°,∵∠ADC=90°,∴OA=AE=2DE=4,AD=DE=2,∴阴影部分的面积=梯形OADE的面积﹣扇形AOE的面积=(2+4)×2﹣=6﹣.21.为了增强学生对新冠病毒预防知识的了解,我校初一年级开展了网上预防知识的宣传教育活动.为了解这次宣传教育活动的效果,学校从初一年级1500名学生中随机抽取部分学生进行网上知识测试(测试满分100分,得分均为整数),并根据抽取的学生测试成绩,制作了如下统计图表:抽取学生知识测试成绩的频数表成绩a(分)频数(人)频率50≤a<60 100.160≤a<7015b70≤a<80m0.280≤a<9040c90≤a<100n d由图表中给出的信息回答下列问题:(1)m=20,n=15,并补全频数直方图;(2)如果80分以上(包括80分)为优秀,请估计初一年级1500名学生中成绩优秀的人数;(3)小强在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由.【分析】(1)根据50≤a<60 的频数和频率求出总人数,用总人数乘以70≤a<80的频率求出m,再用总数减去其它分数段的频数,求出n,从而补全统计图;(2)利用样本估计总体思想求解可得;(3)根据中位数的定义判断即可得出答案.【解答】解:(1)抽取的总人数是:10÷0.1=100(人),m=100×0.2=20,n=100﹣10﹣15﹣20﹣40=15;补全频数直方图如下:故答案为:20,15;(2)根据题意得:1500×=825(人),答:全校1500名学生中成绩优秀的人数约为825人;(3)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a<90中,当他们的平均数不一定是85分.22.已知y=|2x+4|+kx,当x=1时,y=5.(1)求这个函数的表达式(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|2x+4|+kx ≥的解集.【分析】(1)根据在函数y=|2x+4|+kx中,当x=1时,y=5;可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.【解答】解:(1)∵在函数y=|2x+4|+kx中,当x=1时,y=5,∴6+k=5,解得k=﹣1,∴这个函数的表达式是y=|2x+4|﹣x;(2)∵y=|2x+4|﹣x,∴y=,∴该函数的图象如图所示:由图象可知:当x>﹣2时,y随x的增大而增大;当x<﹣2时y随x的增大而减小;(3)由函数图象可得,不等式|2x+4|+kx≥的解集是x≥1或x<0.23.小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.【分析】(1)可设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,根据等量关系:①买1件毛衣的钱数+买3件牛仔裤的钱数=500元;②买2件毛衣的钱数+买1件牛仔裤的钱数=500元,列出方程组求解即可;(2)根据等量关系:两件商品总的销售额为3960元,列出方程求解即可.【解答】解:(1)设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,依题意有,解得.答:买一件毛衣需要200元钱,买一件牛仔裤需要100元钱.(2)依题意有:200(1﹣a%)×10(1+2a%)+100(1﹣a%)×20=3960,解得a1=﹣10(舍去),a2=10.故a的值为10.24.定义:如果一个三位数,它的各个数位上的数字都不为零,且满足百位上的数字与个位上的数字的平均数等于十位上的数字,则称这个三位数为开合数.设A为一个开合数,将A的百位数字与个位数字交换位置后得到的新数再与A相加的和记为Φ(A).例如:852是“开合数”,则Φ(852)=852+258=1110.(1)已知开合数m=103+10x(0<x≤9,且为x整数),求Φ(m)的值;(2)三位数A是一个开合数,若百位数字小于个位数字,是一个整数,且Φ(A)能被个位数字与百位数字的差整除,请求满足条件的所有A值.【分析】(1)根据开合数的定义得到x的值,可求m,进一步得到Φ(m)的值;(2)可设A=(1≤a<c≤9,0≤b≤9,a,b,c均为整数),根据开合数的定义得到Φ(A)=222b,得到=,根据整数的性质可得Φ(A)=888,根据Φ(A)能被个位数字与百位数字的差整除,可得c﹣a=1或2或4或6或8,再根据c+a =2b=8可求满足条件的所有A值.【解答】解:(1)由题意得:x==2,∴Φ(m)=Φ(123)=123+321=444;(2)设A=(1≤a<c≤9,0≤b≤9,a,b,c均为整数),∴Φ(A)=100a+10b+c+100c+10b+a=222b,∴==,∵是一个整数,0≤b≤9,∴2b=0或8,即b=0或4,∴Φ(A)=888或Φ(A)=0(不合题意,舍去),又∵Φ(A)能被个位数字和百位数字的差整除∴为整数,∴c﹣a=1或2或4或6或8,又∵c+a=2b=8,∴A=246或345或147.25.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.【分析】(1)首先求出点C的坐标,然后利用待定系数法求出抛物线的解析式;(2)本问采用数形结合的数学思想求解.将直线y=x+2沿y轴向上或向下平移2个单位之后得到的直线,与抛物线y轴右侧的交点,即为所求之交点.由答图1可以直观地看出,这样的交点有3个.联立解析式解方程组,即可求出m的值;(3)本问符合条件的点P有2个,如答图2所示,注意不要漏解.在求点P坐标的时候,需要充分挖掘已知条件,构造直角三角形或相似三角形,解方程求出点P的坐标.【解答】解:(1)在直线解析式y=x+2中,令x=0,得y=2,∴C(0,2).∵点C(0,2)、D(3,)在抛物线y=﹣x2+bx+c上,∴,解得b=,c=2,∴抛物线的解析式为:y=﹣x2+x+2.(2)∵PF∥OC,且以O、C、P、F为顶点的四边形是平行四边形,∴PF=OC=2,∴将直线y=x+2沿y轴向上、下平移2个单位之后得到的直线,与抛物线y轴右侧的交点,即为所求之交点.由答图1可以直观地看出,这样的交点有3个.将直线y=x+2沿y轴向上平移2个单位,得到直线y=x+4,联立,解得x1=1,x2=2,∴m1=1,m2=2;将直线y=x+2沿y轴向下平移2个单位,得到直线y=x,联立,解得x3=,x4=(不合题意,舍去),∴m3=.∴当m为值为1,2或时,以O、C、P、F为顶点的四边形是平行四边形.(3)存在.理由:设点P的横坐标为m,则P(m,﹣m2+m+2),F(m,m+2).如答图2所示,过点C作CM⊥PE于点M,则CM=m,EM=2,∴FM=y F﹣EM=m,∴tan∠CFM=2.在Rt△CFM中,由勾股定理得:CF=m.过点P作PN⊥CD于点N,则PN=FN•tan∠PFN=FN•tan∠CFM=2FN.∵∠PCF=45°,∴PN=CN,而PN=2FN,∴FN=CF=m,PN=2FN=m,在Rt△PFN中,由勾股定理得:PF==m.∵PF=y P﹣y F=(﹣m2+m+2)﹣(m+2)=﹣m2+3m,∴﹣m2+3m=m,整理得:m2﹣m=0,解得m=0(舍去)或m=,∴P(,);同理求得,另一点为P(,).∴符合条件的点P的坐标为(,)或(,).26.问题提出(1)如图①,在等腰Rt△ABC中,斜边AC=4,点D为AC上一点,连接BD,则BD 的最小值为2;问题探究(2)如图②,在△ABC中,AB=AC=5,BC=6,点M是BC上一点,且BM=4,点P 是边AB上一动点,连接PM,将△BPM沿PM翻折得到△DPM,点D与点B对应,连接AD,求AD的最小值;问题解决(3)如图③,四边形ABCD是规划中的休闲广场示意图,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=2km,AB=3km,点M是BC上一点,MC=4km.现计划在四边形ABCD内选取一点P,把△DCP建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP、MP,从实用和美观的角度,要求满足∠PMB=∠ABP,且景观绿化区面积足够大,即△DCP区域面积尽可能小.则在四边形ABCD内是否存在这样的点P?若存在,请求出△DCP面积的最小值;若不存在,请说明理由.【分析】(1)如图1,当BD⊥AC时,BD的值最小,根据直角三角形斜边中线的性质可得结论;(2)如图2,根据BM=DM可知:点D在以M为圆心,BM为半径的⊙M上,连接AM 交⊙M于点D',此时AD值最小,计算AM和半径D'M的长,可得AD的最小值;(3)如图3,先确定点P的位置,再求△DCP的面积;假设在四边形ABCD中存在点P,以BM为边向下作等边△BMF,可知:A、F、M、P四点共圆,作△BMF的外接圆⊙O,圆外一点与圆心的连线的交点就是点P的位置,并构建直角三角形,计算CD和PQ的长,由三角形的面积公式可求得面积.【解答】解:(1)当BD⊥AC时,如图1,。
2019 重庆初中毕业暨高中招生考试数学试题(分析版)注意事项:认真阅读理解,联合历年的真题,总结经验,查找不足!重在审题,多思虑,多理解!不论是单项选择、多项选择仍是阐述题,最重要的就是看清题意。
在阐述题中,问题大多拥有委婉性,特别是历年真题部分,在给考生较大发挥空间的同时也大大增添了考试难度。
考生要认真阅读题目中供给的有限资料,明确观察重点,最大限度的发掘资猜中的有效信息,建议考生答题时用笔将重点勾勒出来,方便频频细读。
只有经过认真斟酌,推测命题老师的企图,踊跃联想知识点,剖析答题角度,才能够将考点锁定,明确题意。
一、选择题〔本大题 10 个小题,每题 4 分,共 40 分〕在每个小题的下边,都给出了代号为A、B、 C、D 的四个答案,此中只有一个是正确的,请将答题卡上题号右边正确答案所对应的方框涂黑〔或将正确答案的代号填人答题卷中对应的表格内〕.1、〔 2018 重庆〕在﹣ 3,﹣ 1, 0, 2 这四个数中,最小的数是〔〕A、﹣ 3B、﹣ 1C、 0D、 2考点:有理数大小比较。
解答:解:这四个数在数轴上的地点以下列图:由数轴的特色可知,这四个数中最小的数是﹣3、应选 A、2、〔 2018 重庆〕以下列图形中,是轴对称图形的是〔〕A、B、C、D、考点:轴对称图形。
解答:解: A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误、应选 B、3、〔 2018 重庆〕计算ab 2的结果是〔〕A、 2abB、a2bC、a2b 2 D、ab2考点:幂的乘方与积的乘方。
解答:解:原式 =a2b2、应选 C、4、〔 2018 重庆〕:如图, OA,OB是⊙ O的两条半径,且OA⊥ OB,点 C 在⊙ O上,那么∠ACB的度数为〔〕A、 45°B、35°C、 25°D、 20°考点:圆周角定理。
2019-2020学年重庆八中九年级(下)定时练习数学试卷(五)一.选择题(共12小题)1.单项式﹣3x3y的次数为()A.﹣3B.1C.3D.42.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4B.左视图的面积为4C.俯视图的面积为3D.三种视图的面积都是43.点P(2,﹣3)关于原点对称的点的坐标是()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(﹣3,2)4.为了了解我校初三年级2000名学生的体重情况,从中抽查了100名学生的体重进行统计分析,在这个问题中,样本是()A.2000名学生的体重B.100C.100名学生D.100名学生的体重5.下列说法错误的是()A.16的平方根为±4B.⼀组对边平⼀,⼀组对⻆相等的四边形是平行四边形C.⼀限不循环小数是⼀理数D.对⻆线相等的四边形是矩形6.如果把分式中的x和y都扩大5倍,那么分式的值()A.不变B.缩小5倍C.扩大2倍D.扩大5倍7.如图,点A、B、C在⊙O上,若∠A=∠C=35o,则∠B的度数等于()A.65°B.70°C.55°D.60°8.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①②B.②③C.①③D.②④9.若抛物线y=(x+1)2先向下平移2个单位长度,再向左平移1个单位长度,则所得到的新抛物线的解析式是()A.y=(x+2)2+2B.y=x2﹣2C.y=x2+2D.y=(x+2)2﹣2 10.冬季,武隆仙女山迎来滑雪季,如图为滑雪场某段赛道示意图,AB段为助滑段,长为12米,坡角α为16°,一个曲面平台BCD连接了助滑坡AB与着陆坡DE,已知着陆坡DE的坡度为i=1:2.4,DE长度为19.5米,B、D之间的垂直距离为5.5米,则一人从A出发到E处下降的垂直距离为()米(参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29,结果保留一位小数)A.15.9B.16.4C.24.5D.16.011.对于二次函数y=2x2﹣(a﹣2)x+1,当x>1时,y随x的增大而增大;且关于x的分式方程﹣3=有整数解,则满足条件的整数a的和为()A.5B.6C.10D.1712.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.二.填空题(共6小题)13.2sin60°﹣(1﹣)2﹣|﹣1|=.14.若分式的值为0,则x的值为.15.有四张背⼀完全相同的卡⼀,正⼀上分别标有数字﹣2,﹣1,2,3.把这四张卡⼀背⼀朝上,随机抽取两张,记下数字为k、b,则y=kx+b不经过第三象限的概率为.16.如图,在平⼀直⻆坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线y=ax2﹣5ax+4(a>0)经过点C、D,则点B的坐标为.17.如图,在△ABC中,∠CAB=60°,点B落在双曲线y=上,将△ABC沿x轴负⼀向平移|k|个单位得到△DEF,点F在y轴上,将△DEF沿着DF翻折,点E恰好落在原点O上,连接CF交该双曲线于点G,若AB=2CG,则k的值为.18.如图,在矩形ABCD中,BC=3CD=6,点P是AD的中点,点E在BC上,CE =2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则PN =.三.解答题(共8小题)19.计算:(1)(a﹣b)(a+2b)﹣(2a﹣b)2(2)(1﹣)÷20.如图,四边形ABCD为平行四边形,∠BAD的⻆平分线AE交CD于点F,交BC的延长线于点E,且AF=FE.(1)求证:BE=CD;(2)若∠D=54°,求∠BFC.(3)若tan∠BEA=,AB=4,求平⼀四边形ABCD的⼀积.21.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.22.如图,AB是⊙O的直径,点C是⊙O上⼀点,∠CAB=30°,D是直径AB上⼀动点,连接CD并过点D作CD的垂线,与⊙O的其中⼀个交点记为点E(点E位于直线CD 上⼀或左侧),连接EC.已知AB=6cm,设A、D两点间的距离为xcm,C、D两点间的距离为y1cm,E、C两点间的距离为y2cm.⼀雪根据学习函数的经验,分别对函数y1,y2随⼀变量的变化⼀变化的规律进⼀了探究.下⼀是⼀雪的探究过程:(1)按照下表中⼀变量的值进⼀取点、画图、测量,分别得到了y1,y2与的⼀组对应值,请将表格补充完整;x/cm0123456y1/cm 5.20 4.36 3.60 2.65 2.65y2/cm 5.20 4.56 4.22 4.24 4.77 5.60 6.00(2)在同⼀平⼀直⻆坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1的图象;(3)结合函数图象,解决问题:当∠ECD=60°时,AD的长度约为.23.某商场春节期间计划购进某种茶壶、茶杯进⼀销售,有关信息如下表:原进价(元/个)零售价(元/个)成套售价(元/套)茶壶a300980元茶杯a﹣120 120已知⼀640元购进的茶杯数量是⼀800元购进的茶壶数量的2倍.(1)求表中a的值;(2)若该商场购进茶杯的数量是茶壶数量的5倍还多20个,且茶壶和茶杯的总数量不超过200个.该商场计划将⼀半的茶壶成套(⼀个茶壶和六个茶杯配成⼀套)销售,其余茶壶、茶杯以零售⼀式销售.请问怎样进货,才能获得最⼀利润?最⼀利润是多少?(3)由于原材料价格上涨,每个茶壶和茶杯的进价都上涨了20元,但销售价格保持不变.商场购进了茶壶和茶杯共400个,应怎样安排成套销售的销售量(成套销售不少于40套),使得实际全部售出后,最⼀利润与(2)中相同?请求出进货⼀案和销售⼀案.24.如图,在平⼀直⻆坐标系中,⼀次函数y=ax2+bx+c的图象与直线AB交于A、B两点,A(1,﹣)、B(﹣2,0),其中点A是抛物线y=ax2+bx+c的顶点,交y轴于点D.(1)求⼀次函数解析式;(2)如图1,点P是第四象限抛物线上⼀动点,若∠PBA=∠BAD,抛物线交x轴于点C.求△BPC的⼀积;(3)如图2,点Q是抛物线第三象限上⼀点(不与点B、D重合),连接BQ,以BQ为边作正⼀形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.25.阅读材料,回答问题:对三个实数x,y,z,记M{x,y,z}为它们中最⼀的数.记N{x,y,z}为这三个数最⼀的数.如M{﹣2,1,4}=4,M{﹣2,8,8}=8,N{2,1,﹣1}=﹣1,N{6,1,﹣2}=﹣2,(1)填空:M{4,3,π}=;N{,3.3,5}=.(2)若M{3m﹣2,4﹣2m,6}=6,求m的取值范围.(3)若M{2n2﹣4n,2n2﹣4n﹣3,10}=10,N{2n2﹣4n,2n2﹣4n﹣3,10}=3成⼀,且无论x取何值,ax2+2(a﹣1)x+a﹣b﹣2≤0恒成立.当ab取最大值且满⼀=n时,求a,b的值.26.已知:在△ABC中,∠C=90°,BC=AC.(1)如图1,若点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.求证:△OMN是等腰直⻆三角形;(2)将图1中△CDE绕着点C顺时针旋转90°如图2,O、M、N分别为AB、AD、BE 中点,则(1)中的结论是否成⼀,并说明理由;(3)如图3,将图1中△CDE绕着点C顺时针旋转,记旋转⻆为α(0<α<360°),O、M、N分别为AB、AD、BE中点,当MN=,请求出四边形ABED的⼀积.参考答案与试题解析一.选择题(共12小题)1.单项式﹣3x3y的次数为()A.﹣3B.1C.3D.4【分析】直接利用单项式的次数确定方法分析得出答案.【解答】解:单项式﹣3x3y的次数为:4.故选:D.2.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4B.左视图的面积为4C.俯视图的面积为3D.三种视图的面积都是4【分析】根据该几何体的三视图可逐一判断.【解答】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选:A.3.点P(2,﹣3)关于原点对称的点的坐标是()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(﹣3,2)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:已知点P(2,﹣3),则点P关于原点对称的点的坐标是(﹣2,3),故选:C.4.为了了解我校初三年级2000名学生的体重情况,从中抽查了100名学生的体重进行统计分析,在这个问题中,样本是()A.2000名学生的体重B.100C.100名学生D.100名学生的体重【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:由题意知,在这个问题中,样本是指被抽取得到100名学生的体重,故选:D.5.下列说法错误的是()A.16的平方根为±4B.⼀组对边平⼀,⼀组对⻆相等的四边形是平行四边形C.⼀限不循环小数是⼀理数D.对⻆线相等的四边形是矩形【分析】A、根据平方根的定义判断.B、根据平行四边形的判定定理判断.C、根据无理数的定义判断.D、根据矩形的判定定理判断.【解答】解:A、由于(±4)2=16,所以16的平方根为±4.故本选项说法正确.B、一组对边平行,一组对角相等的四边形可证出另一组对边也平行,所以该四边形是平行四边形.故本选项说法正确.C、无理数是⼀限不循环小数,故本选项说法正确.D、对⻆线相等的四边形不一定是矩形,例如等腰梯形,故本选项说法错误.故选:D.6.如果把分式中的x和y都扩大5倍,那么分式的值()A.不变B.缩小5倍C.扩大2倍D.扩大5倍【分析】根据分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【解答】解:根据题意,得==.∴分式的值不变.故选:A.7.如图,点A、B、C在⊙O上,若∠A=∠C=35o,则∠B的度数等于()A.65°B.70°C.55°D.60°【分析】先判断OA∥BC得到∠B=∠AOB,然后利用圆周角定理求出∠AOB即可.【解答】解:∵∠A=∠C=35o,∴OA∥BC,∴∠B=∠AOB,∵∠AOB=2∠C=70°,∴∠B=70°.故选:B.8.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①②B.②③C.①③D.②④【分析】分别求得四个三角形三边的长,再根据三角形三边分别成比例的两三角形相似来判定.【解答】解:∵①中的三角形的三边分别是:2::,②中的三角形的三边分别是:3::,③中的三角形的三边分别是:2:2:2,④中的三角形的三边分别是:3,,4,∵①与③中的三角形的三边的比为:1:,∴①与③相似.故选:C.9.若抛物线y=(x+1)2先向下平移2个单位长度,再向左平移1个单位长度,则所得到的新抛物线的解析式是()A.y=(x+2)2+2B.y=x2﹣2C.y=x2+2D.y=(x+2)2﹣2【分析】根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式即可.【解答】解:将抛物线y=(x+1)2向下平移2个单位长度,得到的抛物线的解析式是:y=(x+1)2﹣2,再向左平移1个单位长度,得到的抛物线的解析式是:y=(x+1+1)2﹣2,即y=(x+2)2﹣2,故选:D.10.冬季,武隆仙女山迎来滑雪季,如图为滑雪场某段赛道示意图,AB段为助滑段,长为12米,坡角α为16°,一个曲面平台BCD连接了助滑坡AB与着陆坡DE,已知着陆坡DE的坡度为i=1:2.4,DE长度为19.5米,B、D之间的垂直距离为5.5米,则一人从A出发到E处下降的垂直距离为()米(参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29,结果保留一位小数)A.15.9B.16.4C.24.5D.16.0【分析】作BF⊥AP于F,DG⊥AP于G,DH⊥PE于H,根据正弦的定义求出AF,根据坡度的概念求出DH,结合图形计算,得到答案.【解答】解:作BF⊥AP于F,DG⊥AP于G,DH⊥PE于H,在Rt△AFB中,sinα=,∴AF=AB•sinα≈3.36,设DH=x米,∵DE的坡度为i=1:2.4,∴HE=2.4x,由勾股定理得,(2.4x)2+x2=19.52,解得,x=7.5,∴一人从A出发到E处下降的垂直距离=3.36+5.5+7.5≈16.4(米),故选:B.11.对于二次函数y=2x2﹣(a﹣2)x+1,当x>1时,y随x的增大而增大;且关于x的分式方程﹣3=有整数解,则满足条件的整数a的和为()A.5B.6C.10D.17【分析】解分式方程可先确定出a的取值,再由二次函数的性质可确定出a的范围,从而可确定出a的取值,可求得答案.【解答】解:解分式方程﹣3=可得x=﹣,∵分式方程﹣3=有整数解,∴a=﹣1,2,4,5,7,∵y=2x2﹣(a﹣2)x+1,∴抛物线开口向上,对称轴为x=,∴当x>时,y随x的增大而增大,∵x>1时,y随x的增大而增大,∴≤1,解得a≤6,∴a能取的整数为﹣1,2,4,5;∴所有整数a值的和为10,故选:C.12.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.【分析】根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.【解答】解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.二.填空题(共6小题)13.2sin60°﹣(1﹣)2﹣|﹣1|=2﹣3.【分析】直接利用特殊角的三角函数值以及绝对值的性质分别化简得出答案.【解答】解:原式=2×﹣(1+3﹣2)﹣(﹣1)=﹣4+2﹣+1=2﹣3.故答案为:2﹣3.14.若分式的值为0,则x的值为﹣2.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x2﹣4=0且x﹣2≠0,解得x=﹣2,故答案为:﹣2.15.有四张背⼀完全相同的卡⼀,正⼀上分别标有数字﹣2,﹣1,2,3.把这四张卡⼀背⼀朝上,随机抽取两张,记下数字为k、b,则y=kx+b不经过第三象限的概率为.【分析】画树状图展示所有12种等可能的结果数,再根据一次函数的性质得到y=kx+b 不经过第三象限的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中y=kx+b不经过第三象限的结果数为4,所以随机抽取两张,记下数字为k、b,则y=kx+b不经过第三象限的概率==.故答案为.16.如图,在平⼀直⻆坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线y=ax2﹣5ax+4(a>0)经过点C、D,则点B的坐标为(2,0).【分析】根据抛物线y=ax2﹣5ax+4(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线的对称轴和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.【解答】解:∵抛物线y=ax2﹣5ax+4,∴该抛物线的对称轴是直线x=,点D的坐标为:(0,4),∴OD=4,∵抛物线y=ax2﹣5ax+4(a>0)经过点C、D,CD∥AB,∴CD=×2=5,∴AD=5,∵∠AOD=90°,OD=4,AD=5,∴AO===3,∵AB=5,∴OB=5﹣3=2,∴点B的坐标为(2,0),故答案为:(2,0).17.如图,在△ABC中,∠CAB=60°,点B落在双曲线y=上,将△ABC沿x轴负⼀向平移|k|个单位得到△DEF,点F在y轴上,将△DEF沿着DF翻折,点E恰好落在原点O上,连接CF交该双曲线于点G,若AB=2CG,则k的值为.【分析】设OD=m,解直角三角形求得OF,E的坐标,进而得出B、G的坐标,根据反比例函数系数k的几何意义得出(k+m)•m=(k﹣m)•m,求得得出B的坐标,代入解析式即可求得k的值.【解答】解:作EM⊥x轴于M,设OD=m,∵点O、E关于DF的对称,∴∠EDF=∠FDO,DE=OD=m,∵∠BAC=60°,∴∠EDF=60°,∴∠FDO=60°∴OF=OD=m,∴∠EDM=60°,∴DM=DE=m,EM=DE=m,∴E(m,m),∵将△ABC沿轴负⼀向平移|k|个单位得到△DEF,∴B(k+m,m),∴AB=2CG,∴CG=m,∴G(k﹣m,m),∵G、B在双曲线y=上,∴(k+m)•m=(k﹣m)•m,整理得m=k,∴B(k,k),∴k•k=k,解得k=,故答案为.18.如图,在矩形ABCD中,BC=3CD=6,点P是AD的中点,点E在BC上,CE =2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则PN =3或.【分析】分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,由矩形的性质及已知条件求得AD、AB、CD、BD和PD;由有两个角相等的三角形相似判定△PDF∽△BDA、△PNF∽△EDC,由相似三角形的性质列比例式,求得PF的长,进而求得PN 的长;②MN为等腰△PMN的腰时,PF⊥BD于F,设MN=PN=x,则FN=6﹣x,在Rt△PNF中,由勾股定理求得x值即可.【解答】解:分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,如图1所示:则∠PFM=∠PFN=90°,∵四边形ABCD是矩形,∴AB=CD,BC=AD=3AB=6,∠A=∠C=90°,∴AB=CD=2,BD==20,∵点P是AD的中点,∴PD=AD=3,∵∠PDF=∠BDA,∠PFD=∠A,∴△PDF∽△BDA,∴=,即=,解得:PF=3,∵CE=2BE,∴BC=AD=3BE,∴BE=CD,∴CE=2CD,∵△PMN是等腰三角形且底角与∠DEC相等,∴MF=NF,∠PNF=∠EDC,∵∠PFN=∠C=90°,∴△PNF∽△EDC,∴==,∴PN=3;②MN为等腰△PMN的腰时,PF⊥BD于F,如图2所示:由①得:PF=3,MF=6,设MN=PN=x,则FN=6﹣x,在Rt△PNF中,32+(6﹣x)2=x2,解得:x=,即PN=.故答案为:3或.三.解答题(共8小题)19.计算:(1)(a﹣b)(a+2b)﹣(2a﹣b)2(2)(1﹣)÷【分析】(1)根据多项式乘多项式、完全平方公式计算;(2)根据分式的混合运算法则计算.【解答】解:(1)(a﹣b)(a+2b)﹣(2a﹣b)2=a2+2ab﹣ab﹣2b2﹣4a2+4ab﹣b2=﹣3a2+5ab﹣3b2;(2)(1﹣)÷=•=.20.如图,四边形ABCD为平行四边形,∠BAD的⻆平分线AE交CD于点F,交BC的延长线于点E,且AF=FE.(1)求证:BE=CD;(2)若∠D=54°,求∠BFC.(3)若tan∠BEA=,AB=4,求平⼀四边形ABCD的⼀积.【分析】(1)证明∠BAE=∠BEA即可.(2)注意到BF是等腰△ABE的角平分线,因此∠BFC=∠ABF=∠ABE,而∠ABE=∠D,于是问题得解.(3)由于平行四边形的面积为△ABF面积的2倍,因此只需求△ABF的面积即可.BF 与EF的比值是确定的,BE=AB=4,然后算出BF、AF的长度即可解决问题.【解答】解:(1)∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∴∠BEA=∠DAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=CD.(2)∵AF=EF,BE=BA,∴BF⊥AE,∠EBF=∠ABF,∵∠D=54°,∴∠ABC=∠D=54°,∴∠ABF=∠CBF=27°,又∵AB∥CD,∴∠BFC=∠ABF=27°.(3)∵tan∠BEA==,∴设EF=3x,BF=4x,则BE=5x,∵BE=BA=4,∴5x=4,∴x=,∴EF=,BF=,BE=,∴AF=EF=,∴S△ABF=AF•BF=.∴平行四边形的面积为2S△ABF=.21.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=11,b=10,c=78,d=81.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.【分析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【解答】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,77,79,79,80,80,81,83,85,86,87,94,∴其中位数c==78,八年级成绩的众数d=81,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有1200×=90(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).22.如图,AB是⊙O的直径,点C是⊙O上⼀点,∠CAB=30°,D是直径AB上⼀动点,连接CD并过点D作CD的垂线,与⊙O的其中⼀个交点记为点E(点E位于直线CD 上⼀或左侧),连接EC.已知AB=6cm,设A、D两点间的距离为xcm,C、D两点间的距离为y1cm,E、C两点间的距离为y2cm.⼀雪根据学习函数的经验,分别对函数y1,y2随⼀变量的变化⼀变化的规律进⼀了探究.下⼀是⼀雪的探究过程:(1)按照下表中⼀变量的值进⼀取点、画图、测量,分别得到了y1,y2与的⼀组对应值,请将表格补充完整;x/cm0123456y1/cm 5.20 4.36 3.603 2.65 2.653y2/cm 5.20 4.56 4.22 4.24 4.77 5.60 6.00(2)在同⼀平⼀直⻆坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1的图象;(3)结合函数图象,解决问题:当∠ECD=60°时,AD的长度约为 4.5cm或6cm.【分析】(1)当x=3时,点D与点O重合,此时△DCE是等腰直角三角形;当x=6时,点D与点B重合,据此问题可解;(2)根据表中数据描点作图即可;(3)利用含30度角的直角三角形的性质可知:EC=2CD,从而可得y2=2y1,观察函数图象可得答案.【解答】解:(1)当x=3时,∵AB=6cm,AD=3cm∴点D与点O重合,此时△DCE是等腰直角三角形∴CD=DE=3∴y1=3当x=6时,点D与点B重合∴CD=BC∵∠CAB=30°∴CD=BC=AB=3故答案为:3,3.(2)函数图象如图所示:(3)当∠ECD=60°时在Rt△ECD中∵∠EDC=90°∴∠CED=30°∴EC=2CD∴y2=2y1∴由函数图象可知,满足条件的x的值为4.5cm或6cm.故答案为:4.5或6.23.某商场春节期间计划购进某种茶壶、茶杯进⼀销售,有关信息如下表:原进价(元/个)零售价(元/个)成套售价(元/套)茶壶a300980元茶杯a﹣120 120已知⼀640元购进的茶杯数量是⼀800元购进的茶壶数量的2倍.(1)求表中a的值;(2)若该商场购进茶杯的数量是茶壶数量的5倍还多20个,且茶壶和茶杯的总数量不超过200个.该商场计划将⼀半的茶壶成套(⼀个茶壶和六个茶杯配成⼀套)销售,其余茶壶、茶杯以零售⼀式销售.请问怎样进货,才能获得最⼀利润?最⼀利润是多少?(3)由于原材料价格上涨,每个茶壶和茶杯的进价都上涨了20元,但销售价格保持不变.商场购进了茶壶和茶杯共400个,应怎样安排成套销售的销售量(成套销售不少于40套),使得实际全部售出后,最⼀利润与(2)中相同?请求出进货⼀案和销售⼀案.【分析】(1)根据茶壶和茶杯数量相等列出方程求解即可;(2)设购进茶壶x个,茶杯(5x+20)个,销售利润为W元.根据购进总数量不超过200个,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售茶壶的利润+零售茶杯的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(3)设本次成套销售量为n套,零售茶壶m个,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)由题意得:,解得a=200,经检验,a=200是原分式方程的解;(2)购进茶壶x个,茶杯(5x+20)个,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=200,∴茶壶的进价为200元/张,茶杯的进价为80元/张.依题意可知:W=++=280x+800,∵k=280>0,∴W关于x的的增大而增大,当x=30时,W最大=9200;(3)设本次成套销售量为n套,零售茶壶m个,160n+80m+20(400﹣7n﹣m)=9200,解得:零售茶壶m=,∵m、n为正整数且n≥40,∴n=42或45或48或51或54或57.∴进货方案为:销售⼀案为:24.如图,在平⼀直⻆坐标系中,⼀次函数y=ax2+bx+c的图象与直线AB交于A、B两点,A(1,﹣)、B(﹣2,0),其中点A是抛物线y=ax2+bx+c的顶点,交y轴于点D.(1)求⼀次函数解析式;(2)如图1,点P是第四象限抛物线上⼀动点,若∠PBA=∠BAD,抛物线交x轴于点C.求△BPC的⼀积;(3)如图2,点Q是抛物线第三象限上⼀点(不与点B、D重合),连接BQ,以BQ为边作正⼀形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.【分析】(1)由待定系数法可求解析式;(2)先求出点D,点C坐标,可求BP解析式,联立方程组可求点P坐标,即可求解;(3)分两种情况讨论,由全等三角形的性质可得FH=QG,或BN=GQ,即可求解.【解答】解:(1)设抛物线解析式为:y=a(x﹣1)2﹣,且过点B(﹣2,0),∴0=9a﹣∴a=∴抛物线解析式为:y=(x﹣1)2﹣=x2﹣x﹣4;(2)∵y=x2﹣x﹣4与x轴交于B,C,交y轴与点D,∴当x=0,y=﹣4,即点D(0,﹣4),当y=0时,0=x2﹣x﹣4,∴x1=﹣2,x2=4,∴点C(4,0),∵点A(1,﹣),点D(0,﹣4)∴直线AD解析式为:y=﹣x﹣4,∵∠PBA=∠BAD,∴BP∥AD,∴设直线BP解析式为:y=﹣x+m,且过点B,∴0=﹣×(﹣2)+m∴m=﹣1,∴直线BP解析式为:y=﹣x﹣1,联立方程组可得:∴,∴点P(3,﹣)∴S△BPC=××6=(3)如图,过点Q作QG⊥BC于G,过点F作FH⊥GQ于H,设对称轴与BC交于N 点,∵四边形BEFQ是正方形,∴BE=EF=BQ=QF,∠EBQ=∠BQF=90°,∵∠BQG+∠FQH=90°,∠BQG+∠QBG=90°,∴∠GBQ=∠FQH,且∠FHQ=∠BGQ=90°,BQ=QF,∴△BGQ≌△QFH(AAS)∴BG=QH,FH=QG,设点Q(m,m2﹣m﹣4)若点F在对称轴上,∵FH=GQ,∴1﹣m=﹣m2+m+4,∴m=2+(舍去),m=2﹣,∴点Q坐标(2﹣,1﹣),若点E在对称轴上,同理可证:△BGQ≌△ENB,∴BN=GQ,∴1﹣(﹣2)=﹣m2+m+4,∴m=1+(舍去),m=1﹣,∴点Q坐标(1﹣,﹣3),综上所述:点Q坐标为(1﹣,﹣3)或(2﹣,1﹣).25.阅读材料,回答问题:对三个实数x,y,z,记M{x,y,z}为它们中最⼀的数.记N{x,y,z}为这三个数最⼀的数.如M{﹣2,1,4}=4,M{﹣2,8,8}=8,N{2,1,﹣1}=﹣1,N{6,1,﹣2}=﹣2,(1)填空:M{4,3,π}=4;N{,3.3,5}= 3.3.(2)若M{3m﹣2,4﹣2m,6}=6,求m的取值范围.(3)若M{2n2﹣4n,2n2﹣4n﹣3,10}=10,N{2n2﹣4n,2n2﹣4n﹣3,10}=3成⼀,且无论x取何值,ax2+2(a﹣1)x+a﹣b﹣2≤0恒成立.当ab取最大值且满⼀=n时,求a,b的值.【分析】(1)按照阅读材料中的定义:记M{x,y,z}为它们中最⼀的数,记N{x,y,z}为这三个数最⼀的数,可得答案.(2)按照阅读材料中的定义得关于m的不等式组,求得m的取值范围即可.(3)按照阅读材料中的定义得关于n的不等式或方程,解方程得出n的值,再由不等式验证则可得n的值;根据无论x取何值,ax2+2(a﹣1)x+a﹣b﹣2≤0恒成立,可得a<0及判别式△≤0,可解得ab≤﹣1,分别结合当=3或=﹣1,可求得答案.【解答】解:(1)∵3<π<4,∴M{4,3,π}=4,∵3.3<<5,∴N{,3.3,5}=3.3.故答案为:4,3.3.(2)∵M{3m﹣2,4﹣2m,6}=6,∴,∴解得﹣1≤m≤.∴m的取值范围是﹣1≤m≤.(3)∵M{2n2﹣4n,2n2﹣4n﹣3,10}=10,∴(1),∵N{2n2﹣4n,2n2﹣4n﹣3,10}=3,2n2﹣4n>2n2﹣4n﹣3,∴2n2﹣4n﹣3=3,∴n2﹣2n﹣3=0,∴n=3或n=﹣1,经检验n=3或n=﹣1满足(1)式;∵无论x取何值,ax2+2(a﹣1)x+a﹣b﹣2≤0恒成立,∴,∴解得:ab≤﹣1,∴ab的最大值为﹣1,∴当ab取最大值时,ab=﹣1,又=n,∵当=3时,a=3b,∴ab>0,与ab=﹣1矛盾;∴=﹣1,∴由得:或,∵a<0,∴a=﹣1,b=1.26.已知:在△ABC中,∠C=90°,BC=AC.(1)如图1,若点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.求证:△OMN是等腰直⻆三角形;(2)将图1中△CDE绕着点C顺时针旋转90°如图2,O、M、N分别为AB、AD、BE 中点,则(1)中的结论是否成⼀,并说明理由;(3)如图3,将图1中△CDE绕着点C顺时针旋转,记旋转⻆为α(0<α<360°),O、M、N分别为AB、AD、BE中点,当MN=,请求出四边形ABED的⼀积.【分析】(1)先根据题意得出BD=AE,再由O、M、N分别为AB、AD、BE中点OM∥BD且OM=BD,ON∥AE且ON=AE,故可得出∠AOM=∠ABD=45°,∠BON=∠BAE=45°,由三角形内角和定理得出∠MON的度数,进而可得出结论;(2)连接BD,根据SAS定理得出△BCD≌△ACE,由全等三角形的性质得出BD=AE,∠CBD=∠CAE,根据O、M、N分别为AB、AD、BE中点,可知OM∥BD且OM=BD,ON∥AE且ON=AE,由三角形内角和定理即可得出结论;(3)连接AE、BD,由(2)同理可证△OMN为等腰直角三角形.故MN=OM.再由OM=BD,可知MN=BD,求出BD,可得四边形ABED的面积为.可求出答案.【解答】解:(1)∵BC=AC,CD=CE,∴BD=AE,∵O、M、N分别为AB、AD、BE中点,∴OM∥BD且OM=BD,ON∥AE且ON=AE,∴OM=ON,∠AOM=∠ABD=45°,∠BON=∠BAE=45°,∴∠MON=180°﹣(∠AOM+∠BON)=180°﹣(45°+45°)=90°∴△OMN是等腰直角三角形.(2)(1)中的结论成⼀.理由如下:如图2,连接BD,∵△CDE顺时针旋转90°,∴∠ACE=∠ACB=90°,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE,∠CBD=∠CAE,∵O、M、N分别为AB、AD、BE中点,∴OM∥BD且OM=BD,ON∥AE且ON=AE,∴OM=ON,∠AOM=∠ABD,∠BON=∠BAE,∴∠MON=180°﹣(∠AOM+∠BON)=180°﹣(∠ABD+∠BAE)=180°﹣(∠ABD+∠CBD+∠BAC)=180°﹣(∠ABC+∠BAC),∵∠ACB=90°,∴∠ABC+∠BAC=180°﹣∠ACB=180°﹣90°=90°,∴∠MON=180°﹣90°=90°,∴△OMN是等腰直角三角形.(3)如图,连接AE、BD,由(2)同理可证△OMN为等腰直角三角形.∴MN=OM.又∵OM=BD,∴MN=BD,BD=MN==2,∵AC=BC,∠BCD=∠ACE,CE=CD,∴△ACE≌△BCD(SAS),∴BD=AE,∠CBD=∠CAE,∵∠BCA=90°,∴∠AHB=90°,∴BD⊥AE,∴四边形ABED的面积为.。
重庆八中2019—2020学年度(下)初三年级第一次月考数学试题一、选择题:1.一个几何体的主视图、左视图和俯视图都是圆,则这个几何体是( ) A. 圆柱 B. 球 C. 圆锥 D. 正方体2.若12x +在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A.B.C.D.3.下列各线段中,能与长为4,6的两线段组成三角形的是( ) A. 2 B. 8 C. 10D. 124.下列命题正确的是( ) A. 若锐角α满足1sin 2α=,则60α=︒ B. 在平面直角坐标系中,点()2,1关于x 轴的对称点为()2,1-C. 两条直线被第三条直线所截,同旁内角互补D. 相似三角形周长之比与面积之比一定相等5.中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内有多僧?三百六十四只碗,恰好用尽不用争,三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x ,则得到的方程是( ) A .34364x x +=B.1136434x x += C.143643x x += D. 133644x x += 6.如果22x y -=,那么代数式224y x yx x x ⎛⎫+-÷ ⎪⎝⎭的值为( ) A. 2-B.2C. 2D. -27.若点()2,A m -,()3,B n 都在二次函数225y ax ax =-+(a 为常数,且0a >)的图象上,则m 和n 的大小关系是( ) A. m n >B. m n =C. m n <D. 以上答案都不对8.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽,赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的小正方形组成的.设直角三角形的两直角边长为,a b ,且满足()223a b +=,若小正方形的面积为11,则大正方形的面积为( ) A. 15B. 17C. 30D. 349.重庆移动为了提升新型冠状肺炎“停课不停学”期间某片区网络信号,保证广大师生网络授课、听课的质量,临时在坡度为1:2.4i =的山坡上加装了信号塔PQ (如图所示),信号塔底端Q 到坡底A 的距离为3.9米.同时为了提醒市民,在距离斜坡底4.4米的水平地面上立了一块警示牌MN .当太阳光线与水平线成53°角时,测得信号塔PQ 落在警示牌上的影子EN 长为3米,则信号塔PQ 的高约为(tan53°≈1.3)( ).A. 10.4B. 11.9C. 11.4D. 13.410.如图,在ABC V 中,2B C ∠=∠,以点A 为圆心,AB 长为半径作弧,交BC 于点D ,交AC 于点G ; 再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线AE 交BC 于点F .若以点G 为圆心,GC 长为半径作两段弧,一段弧过点C ,而另一段弧恰好经过点D ,则此时FAC ∠的度数为( )A. 54°B. 60°C. 66°D. 72° 11.已知,甲、乙两人分别从A B 、两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在A B 、之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地是也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,则下列结论错误的是( )A. A B 、两地相距2480米B. 甲的速度是60米/分钟,乙的速度是80米/分钟C. 乙出发17分钟后,两人在C 地相遇D. 乙到达A 地时,甲与A 地相距的路程是300米.12.若整数a 既使得关于x 的分式方程6211ax xx x --=--有整数解,又使得关于,x y 的方程组1521ax y x y -=⎧⎨-=-⎩ 的解为正数,则符合条件的所有a 的个数为( )A. 1B. 2C. 3D. 4二、填空题:13.11123tan 3022-⎛⎫-︒+-= ⎪⎝⎭__________.14.若正多边形的一个外角是72°,则该正多边形的内角和是__________.15.如图,四边形OABC 的顶点O 为坐标原点,以O 为位似中心,作出四边形111OA B C 与四边形OABC 位似,若()6,0A ,的对应点为()14,0A ,四边形OABC 的面积为27,则四边形111OA B C 的面积为__________.16.如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1则称为“离心三角形”,而如果面积恰好等于1则称为“环绕三角形”.,A B 是网格图形中已知的两个格点,点C 是另一个格点,且满足ABC V 是“离心三角形”,则ABC V 是“环绕三角形”的概率是__________.17.如图,在平面直角坐标系内,O 为坐标原点,点A 为直线21y x =+上一动点,过A 作AC x ⊥轴,交x 轴于点C (点C 在原点右侧),交双曲线1yx=于点B ,且4AC BC +=,则当OAB V 存在时,其面积为__________.18.如图,在Rt ABC V 中,9016ACB AC ∠=︒=,,将Rt ABC V 绕点B 顺时针旋转一定角度后得到111Rt A B C △,连接11CC AA ,,过点A 作AM AC ⊥交11A C 于点D ,若111135CC AA BC C D ==,,且AD BC <,则AD 的长为__________.三、解答题:19.(1)解不等式组:() 3252132xxx x⎧--≥⎪⎨>-⎪⎩;(2)化简:()()223x y x x y---.20.如图,AB为Oe的直径,弦CD AB⊥,垂足为E,45CD=,连接,2,OC OE EB F=为圆上一点,过点F作圆的切线交AB的延长线于点G,连接,BF BF BG=.(1)求Oe的半径;(2)求证:AF FG=;(3)求阴影部分的面积.21.据第四次全国经济普查的数据表明,中国经济已经开始由高速增长转向高质量发展,供给侧结构性改革初见成效.各地产品质量监管部门也严抓质量,整顿生产,促进经济更好发展.某质量监管部门对甲、乙两家工厂生产的同种产品进行检测,分别随机抽取50件产品,并对产品的某项关键质量指标做检测,获得质量指标检测值t,对数据整理分析的部分信息如下:【1】甲、乙两工厂的样本数据频数分布表如下:工厂类别7585t≤<8595t≤<95105t≤<105115t≤<115125t≤<合计甲工厂频数0 a10 3 50频率0.00 0.24 b0.06 1.00乙工厂频数 3 15 13 18 1 50频率0.06 0.30 0.26 0.36 0.02 1.00其中,乙工厂样品质量指标检测值在范围内的数据分别是:100,98,98,99,102,97,95,101,98,100,98,102,104【2】两工厂样本数据的部分统计数据如下:平均数中位数众数方差甲工厂97.3 99.5 96 78.3乙工厂97.3 c107 1354根据以上信息,回答下列问题:(1)表格中,a = ,b = ,c = ;(2)已知质量指标检测值在85115t ≤<内,属于合格产品.若乙工厂某批次产品共1万件,估计该批产品中不合格的有多少件?(3)若质量指标检测值为100时为优秀,偏离100越小,产品质量越高.现有一家公司需大量采购该种产品,根据题目给定的数据,你认为选择哪家工厂的产品更好?请说明理由.22.如图,已知矩形,3,6ABCD AB cm AD cm ==,点M 为线段BC 上一动点,沿线段BC 由B 向C 运动,连接AM ,以AM 为边向右侧作正方形AMNP ,连接,CN DN ,设M 的路程即BM 的长为xcm ,C N 、间的距离为1y cm ,D N 、间的距离为2y cm .数学兴趣小组的小刚根据学习函数的经验,分别对函数12,y y 随自变量x 的变化而变化的规律进行探究,过程如1x /x cm0 1 2 3 4 5 6 1/y cm 32.22a34.115.396.722/y cm4.24 2.81 1.39b2.84 4.26其中,a = , ;(2)在同一平面黄子佼坐标系中,描点()()12,,,x y x y ,并画出12,y y 的函数图像; (3)当CDN △为等腰三角形时,BM 的长度约为 .23.随着人们的生活水平不断提高,人们越来越注重生活品质,注重食物营养.水果罐头在保存鲜度和营养方面得天独厚,仅次于现摘水果,水果罐头不仅果肉好吃,水果的本色本味完全融入到糖水中,罐头水的风味甚至比果汁还要浓郁.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元. (1)求甲、乙两种水果的单价;水果成本之外,其他所有成本是水果成本的57的还要多3元.调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少?(3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?24.如图,抛物线243y ax x c =-+与x 轴交于A B 、 两点,与y 轴交于C 点,连接AC ,已知()1,0B -,且抛物线经过点()2,2D -.(1)求抛物线的解析式;(2)若点E 是抛物线上位于x 轴下方的一点,且12ACE ABC S S =△△,求E 的坐标; (3)若点P 是y 轴上一点,以P A C 、、三点为顶点的三角形是等腰三角形,求P 点的坐标.25.请阅读下列材料:问题:已知方程2+10x x -=,求一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y ,则2y x =,所以2y x =. 把2y x =代入已知方程,得21022y y ⎛⎫+-= ⎪⎝⎭ 化简,得2240y y +-= 故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法...”求新方程(要求:把所求方程化为一般形式). (1)已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为: .(2)已知关于x 的一元二次方程20ax bx c ++=有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数;(3)已知关于x 的方程20x mx n -+=有两个实数根,求一个方程..,使它的根分别是已知方程根的平方.26.在ABC V ,CDE △中,90BAC DEC ∠=∠=︒,连接BD ,F 是BD 中点,连接,AF EF(1)如图1,若,,A C E 三点在同一直线上,45ABC EDC ∠=∠=︒,已知35AB DE ==,,求线段AF 的长;(2)如图2,若45ABC EDC ∠=∠=︒,求证:AEF V 为等腰直角三角形; (3)如图3,若30ABC EDC ∠=∠=︒,请判断AEF V 的形状,并说明理由.(3)由(2)得,()2100056400060000W m =--+= ,解得:7m =或3,但是,降价幅度不超过定价的15%,即m ≤28×15%, 4.2m ∴≤ ,3m ∴= ,∴售价为28325-= ,答:售价为25元时,利润为6万元.24.【解析】(1)将点()1,0B -,点()2,2D -代入243y ax x c =-+ , 可得4+038423a c a c ⎧+=⎪⎪⎨⎪-+=-⎪⎩,解得232a c ⎧=⎪⎨⎪=-⎩ , ∴抛物线解析式:224233y x x =-- ; (2)当0y =时,2242033x x --= , 解方程2242033x x --=,得121,3x x =-= , ()3,0A ∴ ,4AB ∴= ,当0x =时,2y =- ,()0,2C ∴- ,1142422ABC c S AB y ∴=⋅=⨯⨯=△ , 设:Ac l y kx b =+,将点()()3,0,0,2A C -代入y kx b =+ ,得302k b b +=⎧⎨=-⎩,解得232k b ⎧=⎪⎨⎪=-⎩ , 223y x ∴=- , 如图1,过点E 作x 轴的垂线交Ac l 于点F ,设点2,23F a a ⎛⎫- ⎪⎝⎭,点224,233E a a a ⎛⎫-- ⎪⎝⎭,其中13a -<< , 2223,1013222233,03ACE A c a a a S EF x x a a a a a ⎧--<<∴=-=-=⎨-+<<⎩V , 由12ACE ABC S S =△△ , 可得232a a -=或232a a -+= ,解得:13172a +=(舍),234317,1,22a a a -=== , ()1233171178,,1,,2,23E E E ⎛⎫--⎛⎫∴-- ⎪ ⎪ ⎪⎝⎭⎝⎭; (3)情形一:当点A 为等腰PAC V 的顶点时,AC AP =,如图2,,AC AP OA CP =⊥Q ,2CO OP ∴== ,∴点()10,2P ;情形二:当点C 为等腰PAC V 的顶点时,CA CP =,如图3,222313CA CP ==+=Q ,()()230,213,0,213P P ∴-+-- ;情形三:当点P 为等腰PAC V 的顶点时,PA PC =,如图4,过线段AC 的中点D 作垂线交y 轴于点P , 由中点坐标公式可得3,12D ⎛⎫- ⎪⎝⎭, PD AC ∴⊥ ,1AC PD k k ∴⋅=- , 又23AC k =Q , 32PD k ∴=- , 设PD 的解析式为32y x b =-+, 将3,12D ⎛⎫- ⎪⎝⎭代入32y x b =-+可得54b =, 35:24PD l y x ∴=-+ , 当0x =时,54y = ,450,4P ⎛⎫∴ ⎪⎝⎭;综上所述:()10,2P ,(20,2P-+,(30,2P -,450,4P ⎛⎫ ⎪⎝⎭. 25【解析】(1)设所求方程的根为y ,则y x =- ,所以x y =-.把x y =-代入已知方程,得,()()210y y -+--= ,化简,得210y y --= ,故所求方程为210y y --=;(2)设所求方程的根为y ,则()10y x x=≠,于是()10x y y =≠ , 把1x y =代入方程20ax bx c ++=,得2110a b c y y ⎛⎫+⋅+= ⎪⎝⎭, 去分母,得20a by cy ++= ,若0c =,有20ax bx +=,于是方程20ax bx c ++=有一个根为0,不符合题意,0c ∴≠ ,故所求方程为()200cy by a c ++=≠ ; (3)设所求方程的根为y ,则2y x =,所以x =,①当x =x =20n -=,即0y n -=;②当x =x = ((20m n -+=,即0y n +=∴所求方程为0y n -=或0y n +=.26【解析】(1)连接CF ,Q 在,Rt ABC Rt CDE △△中,45ABC EDC ∠=∠=︒ ,45,,ACB ECD AB AC ED CE ∴∠=∠=︒== ,,,A C E Q 三点在同一直线上,90BCD ∴∠=︒ ,F Q 为BD 中点,CF DF BF ∴== ,Q 在ACF V 和ABF V 中,AB AC AF AF BF CF =⎧⎪=⎨⎪=⎩,()ABF ACF SSS ∴△≌△ , 1452CAF CAB∴∠=∠=︒ , 同理:()1,452ECF EDF SSS CEF CED ∠=∠=︒△≌△ , AEF ∴V 等腰直角三角形,3,5AC AB CE DE ====Q ,2228,,2422AE EF AF AE AF AE ∴=+===(2)证明:取BC 中点M ,CD 的中点N ,连接,,,AM MF EN FN ,FQ为BD中点,FM∴为BCDV的一条中位线,1,2FM CD FM CD CN∴==P,∴四边形MCNE为平行四边形,,,CM FN MF CN CMF FNC==∠=∠,Q在Rt ABCV中,M为BC的中点,90,AMC AM CM∴∠=︒=,同理:90,ENC EN CN∠=︒=,,AM FN MF EN∴==,AMF AMC CMF ENC CNF FNE∠=∠+∠=∠+∠=∠,AMFQ△和FNEV中,AM FNAMF FNEMF NE=⎧⎪∠=∠⎨⎪=⎩,()AMF FNE SAS∴△≌△,AF EF∴=13∠=∠,()121803290 AFE MFN FNC ENC∠=∠-∠-∠=︒-∠-∠-∠=∠=︒Q,AEF∴V为等腰直角三角形,(3)证明:取BC的中点M,CD的中点N,连接,,,AM MF EN FN,FQ为BD中点,FM∴为BCDV的一条中位线,1,2FM CD FM CD CN∴==P,∴四边形MCNE为平行四边形,,,CM FN MF CN CMF FNC==∠=∠,Q在Rt ABCV中,M为BC的中点,∠ABC=30°60,AMC AM CM∴∠=︒=,同理:60,ENC EN CN ∠=︒= ,,AM FN MF EN ∴== ,AMF AMC CMF ENC CNF FNE ∠=∠+∠=∠+∠=∠, AMF Q △和FNE V 中,AM FN AMF FNE MF NE =⎧⎪∠=∠⎨⎪=⎩,()AMF FNE SAS ∴△≌△ ,AF EF ∴=,13∠=∠ ,()121803260AFE MFN FNC ENC ∠=∠-∠-∠=︒-∠-∠-∠=∠=︒Q , AEF ∴V 为等边三角形.。
2019-2020学年重庆八中九年级(下)定时练习数学试卷(九)一、选择题(本大题12个小题,每小题4分,共48分)1.(4分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.﹣D.﹣12.(4分)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.(4分)如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°4.(4分)已知分式,当x=2时,分式的值为零;当x=﹣2时,分式没有意义,则分式有意义时,a+b的值为()A.﹣2B.2C.6D.﹣65.(4分)一个空间几何体的主视图和左视图都是边长为4的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.24πB.64πC.32πD.48π6.(4分)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论不一定正确的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 7.(4分)下列命题是假命题的是()A.一个有理数不是整数就是分数B.在三角形内部到三边距离相等的点是三个内角平分线的交点C.菱形的对角线互相垂直平分D.点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)8.(4分)如图,点A、C是⊙O上两点,连接AC并延长交切线BD于点D,连接OB、OC、BC、AB,若∠A=35°,则∠CBD的度数为()A.35°B.45°C.55°D.65°9.(4分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)10.(4分)按如图所示的运算程序,能使运算输出的结果为2的是()A.x=﹣1,y=﹣1B.x=5,y=﹣1C.x=﹣3,y=1D.x=0,y=﹣2 11.(4分)中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.宾馆AB高为129米.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线D 的距离CD为260米,与宾馆AB的水平距离为36米,远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线D的距离ED的长为()米(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.27612.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①abc>0,②4a+2b+c<0,③2a﹣b<0,④b2+8a>4ac,⑤a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算20200+(﹣1)2019﹣|﹣cos60°|=.14.(4分)边形内角和为1260°.15.(4分)分别从0、1、2、3四个数中随机选取两个不同的数,分别记为a,c,则a,c 的取值使得关于x的一元二次方程ax2﹣3x+c=0无实数解的概率为.16.(4分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点,已知点A(0,4),点B是x轴正半轴上的点,记△AOB内部(不包括边界)的整点个数为m,当m=3时,点B的横坐标a的取值范围是.17.(4分)如图,在平面直角坐标系中,O为坐标原点,正比例函数y=x的图象与反比例函数y=(x>0)的图象都经过点A(3,m).点B在x轴上,且OA=BA,反比例函数图象上有一点C,且∠ABC=90°,则点C坐标为.18.(4分)如图,有一直角三角形纸片ABC,∠ACB=90°,∠B=30°,AC=2,CD⊥AB于点D.F,G分别是线段AD,BD上的点,H,I分别是线段AC,BC上的点,沿HF,GI折叠,使点A,B恰好都落在线段CD上的点E处,当FG=EG时,FD的长是.三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(10分)(1)(2)÷(﹣x﹣3)20.(10分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠CBD=30°,求图中阴影部分的面积.21.(10分)距离中考体考时间越来越近,年级想了解初三年级1512名学生周末在家体育锻炼的情况,在初三年级随机抽取了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72统计数据,并制作了如下统计表:时间x0≤x≤3030<x≤6060<x≤9090<x男生2m n4女生1593分析数据:两组数据的极差、平均数、中位数、众数如表所示极差平均数中位数众数方差男生7766.7b70617.3女生a69.770.5c547.2(1)请将上面的表格补充完整:m=,n=,a=,b=,c=;(2)已知该年级男女生人数差不多,根据调查的数据,估计初三年级周末在家锻炼的时间在90分钟以上(不包含90分钟)的同学约有多少人?(3)体育老师看了表格数据后认为初三年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持体育老师观点的理由.22.(10分)小帆同学根据函数的学习经验,对函数y1=进行探究,已知函数过(﹣2,2),(1,2),(2,1).(1)求函数y1解析式;(2)如图,在平面直角坐标系中画y1的图象,根据函数图象,写出函数的一条性质;(3)结合函数图象回答下列问题:①方程y1=x+5的近似解的取值(精确到个位)是;②若一次函数y2=kx+2与y1有且仅有两个交点,则k的取值范围是.23.(10分)某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量y (万件)与销售单价x(元)之间的关系满足如表.销售单价x(元/件)…10121415…每月销售量y(万件)…40363230…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并求出y与x之间的函数关系式;(2)当销售单价为多少元时,该产品每月获得的利润为240万元?(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?24.(10分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=﹣2+bx+c 经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是抛物线上的一动点(不与B,C两点重合),当S△BEC=S△BOC时,求点E的坐标;(3)若点F是抛物线上的一动点,当S△BFC为什么取值范围时,对应的点F有且只有两个?25.(10分)在菱形ABCD中,∠ABC=60°,点M是对角线BD上一动点,将线段CM绕点C顺时针旋转120°到CN,连接DN,连接NM并延长,分别交AB、CD于点P、Q.(1)如图1,若CM⊥BD且PQ=4,求菱形ABCD的面积;(2)如图2,求证:PM=QN.26.(8分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得(a+b)2=2×ab c2,化简得:a2+b2=c2.实例二:欧几里得的《几何原本》记载,关于x的方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=|b|,再在斜边AB上截取BC=,则AD的长就是该方程的一个正根(如实例二图).根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是,乙图要证明的数学公式是,体现的数学思想是;(2)如图2,按照实例二的方式构造Rt△ABC,连接CD,请用含字母a、b的代数式表示AD的长,AD的表达式能和已学的什么知识相联系;(3)如图3,已知⊙O,AB为直径,点C为圆上一点,过点C作CD⊥AB于点D,连接CO,设DA=a,BD=b,求证:≥.2019-2020学年重庆八中九年级(下)定时练习数学试卷(九)参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)1.(4分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.﹣D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵,∴,∴,∴在0,1,﹣,﹣1四个数中,最小的数是﹣1.故选:D.2.(4分)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.(4分)如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°【分析】根据平移的性质得出l1∥l2,进而得出∠2的度数.【解答】解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故选:B.4.(4分)已知分式,当x=2时,分式的值为零;当x=﹣2时,分式没有意义,则分式有意义时,a+b的值为()A.﹣2B.2C.6D.﹣6【分析】根据分式的值为0,即分子等于0,分母不等于0,从而求得b的值;根据分式没有意义,即分母等于0,求得a的值,从而求得a+b的值.【解答】解:∵x=2时,分式的值为零,∴2﹣b=0,解得b=2.∵x=﹣2时,分式没有意义,∴2×(﹣2)+a=0,解得a=4.∴a+b=4+2=6.故选:C.5.(4分)一个空间几何体的主视图和左视图都是边长为4的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.24πB.64πC.32πD.48π【分析】根据已知先判断出该几何体为圆柱,再求出底面半径以及高,最后列式计算即可.【解答】解:根据题意可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为2,高为4,那么它的表面积=4π×2+2π×2×4=24π,故选:A.6.(4分)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论不一定正确的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 【分析】由题意可知:MN为AB的垂直平分线,可以得出AD=BD;CD为直角三角形ABC斜边上的中线,得出CD=BD;利用三角形的内角和得出∠A=∠BED;因为∠A≠60°,得不出AC=AD,无法得出EC=ED,则∠ECD=∠EDC不成立;由此选择答案即可.【解答】解:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选:D.7.(4分)下列命题是假命题的是()A.一个有理数不是整数就是分数B.在三角形内部到三边距离相等的点是三个内角平分线的交点C.菱形的对角线互相垂直平分D.点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)【分析】根据有理数、角平分线的性质、菱形的性质以及关于y轴对称的点的坐标特点判断即可.【解答】解:A、一个有理数不是整数就是分数,是真命题;B、在三角形内部到三边距离相等的点是三个内角平分线的交点,是真命题;C、菱形的对角线互相垂直平分,是真命题;D、点(﹣2,3)关于y轴对称的点的坐标是(2,3),原命题是假命题;故选:D.8.(4分)如图,点A、C是⊙O上两点,连接AC并延长交切线BD于点D,连接OB、OC、BC、AB,若∠A=35°,则∠CBD的度数为()A.35°B.45°C.55°D.65°【分析】根据切线的性质和等腰三角形的性质即可得到结论.【解答】解:∵∠A=35°,∴∠BOC=2∠A=70°,∵BD切⊙O于B,∴∠OBD=90°,∵OB=OC,∴∠OBC=∠OCB=55°,∴∠CBD=90°﹣55°=35°,故选:A.9.(4分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.10.(4分)按如图所示的运算程序,能使运算输出的结果为2的是()A.x=﹣1,y=﹣1B.x=5,y=﹣1C.x=﹣3,y=1D.x=0,y=﹣2【分析】首先比较出x、y的大小,然后按如图所示的运算程序,求出每个算式的值各是多少,判断出能使运算输出的结果为2的是哪个选项即可.【解答】解:∵﹣1=﹣1,∴输出结果是:(﹣1)2﹣(﹣1)=2.∵5>﹣1,∴输出结果是:5+(﹣1)2=6.∵﹣3<1,∴输出结果是:(﹣3)2﹣1=8.∵0>﹣2,∴输出结果是:0+(﹣2)2=4.故选:A.11.(4分)中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.宾馆AB高为129米.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线D 的距离CD为260米,与宾馆AB的水平距离为36米,远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线D的距离ED的长为()米(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.276【分析】如图,延长AB交ED的延长线于G,作CH⊥DG于H,CF⊥BG于F.想办法求出DG,BG,根据tan27°=,构建方程解决问题即可.【解答】解:如图,延长AB交ED的延长线于G,作CH⊥DG于H,CF⊥BG于F.在Rt△CDH中,∵CD=260米,CH:DH=1:2.4,∴CH=100(米),DH=240(米),在Rt△BCF中,∵CF=36米,BF:CF=1:2.4,∴BF=15(米),∵四边形CFGH是矩形,∴HG=CF=36(米),FG=CH=100(米),∴DG=DH+HG=276(米),AG=AB+BF+FG=244(米),∵tan27°==0.5,∴=0.5,∴DE=212(米),故选:B.12.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①abc>0,②4a+2b+c<0,③2a﹣b<0,④b2+8a>4ac,⑤a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线的开口向下,∴a<0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∵0<﹣<1,又∵a<0,∴b>0,∴abc<0,所以①错误;∴b>2a,即2a﹣b<0,所以③正确;∵x=2,y<0,∴4a+2b+c<0,所以②正确;∵>2,而a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,所以④正确;当x=1时,a+b+c=2①.∵a﹣b+c<0②,4a+2b+c<0③,由①+②得到2a+2c<2,由③﹣①×2得到2a﹣c<﹣4,即4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故⑤正确,故选:D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算20200+(﹣1)2019﹣|﹣cos60°|=.【分析】先算特殊角的三角函数值、零指数幂、乘方、绝对值,再算加减法即可求解.【解答】解:20200+(﹣1)2019﹣|﹣cos60°|=1﹣1﹣=.故答案为:﹣.14.(4分)九边形内角和为1260°.【分析】多边形的内角和可以表示成(n﹣2)•180°,列方程可求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=1260°,解得n=9.故答案为:九.15.(4分)分别从0、1、2、3四个数中随机选取两个不同的数,分别记为a,c,则a,c 的取值使得关于x的一元二次方程ax2﹣3x+c=0无实数解的概率为.【分析】根据关于x的一元二次方程ax2﹣3x+c=0无实数根,得出ac的取值范围,再利用列表法表示ac的所有可能出现的结果数,由概率公式进行计算即可.【解答】解:∵关于x的一元二次方程ax2﹣3x+c=0无实数根,∴b2﹣4ac<0且a≠0,即:9﹣4ac<0且a≠0,也就是ac>,且a≠0;从0、1、2、3四个数中随机选取两个不同的数,记为a,c,则ac的所有可能出现的结果如下:共有12种可能出现的结果,其中ac>,且a≠0的情况有4种;∴P(一元二次方程ax2﹣3x+c=0无实数解)=,故答案为:.16.(4分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点,已知点A(0,4),点B是x轴正半轴上的点,记△AOB内部(不包括边界)的整点个数为m,当m=3时,点B的横坐标a的取值范围是.【分析】直接利用已知画出符合题意的三角形进而得出答案.【解答】解:由图可得,点B的横坐标a的取值范围是17.(4分)如图,在平面直角坐标系中,O为坐标原点,正比例函数y=x的图象与反比例函数y=(x>0)的图象都经过点A(3,m).点B在x轴上,且OA=BA,反比例函数图象上有一点C,且∠ABC=90°,则点C坐标为(23,6﹣3).【分析】证明△ADB∽△BEC,则,即,即可求解.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,设点C的坐标为,∵AO=AB,AD⊥x轴,∴OD=BD=3,∴,∵作AD⊥x轴,CE⊥x轴,∠ABC=90°,∴△ADB∽△BEC,∴,∴,解得:(舍去),x 2=2+3,则点C的坐标为,故答案为:.18.(4分)如图,有一直角三角形纸片ABC,∠ACB=90°,∠B=30°,AC=2,CD⊥AB于点D.F,G分别是线段AD,BD上的点,H,I分别是线段AC,BC上的点,沿HF,GI折叠,使点A,B恰好都落在线段CD上的点E处,当FG=EG时,FD的长是.【分析】根据直角三角形的性质得到AB=2AC=4,由勾股定理得到BC=2,求得BD=3,由折叠的性质得到AF=EF,EG=BG,设DF=x,根据勾股定理列方程即可得到结论.【解答】解:∵∠ACB=90°,∠B=30°,AC=2,∴AB=4,,∵CD⊥AB,∴∠CDB=90°,∴BD=3,∴AD=AB﹣BD=1,由折叠的性质得,AF=EF,EG=BG,∵FG=EG,∴FG=BG,设FD=x,∴AF=1﹣x,BF=3+x,∴BG=EG=FG=,∴,∵EF2﹣DF2=EG2﹣DG2=DE2,∴,解得:.∴.故答案为:.三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(10分)(1)(2)÷(﹣x﹣3)【分析】(1)根据不等式组的解法即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)由①得,2x≥﹣2即x≥﹣1由②得,3x<5即故原不等式组的解集为:.(2)原式==.20.(10分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠CBD=30°,求图中阴影部分的面积.【分析】(1)根据圆周角定理得到∠ADB=90°,根据平行线的性质得到∠AEO=∠ADB =90°,即OC⊥AD,于是得到结论;(2)连接CD,OD,根据平行线的性质得到∠OCB=∠CBD=30°,根据等腰三角形的性质得到∠OCB=∠OBC=30°,求得∠AOD=120°,根据扇形和三角形的面积公式即可得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,又∵OC为半径,∴AE=ED,(2)解:连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∵AB=6,∴BD=3,AD=3,∵OA=OB,AE=ED,∴,∴S阴影=S扇形AOD﹣S△AOD=﹣=3π﹣.21.(10分)距离中考体考时间越来越近,年级想了解初三年级1512名学生周末在家体育锻炼的情况,在初三年级随机抽取了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72统计数据,并制作了如下统计表:时间x0≤x≤3030<x≤6060<x≤9090<x男生2m n4女生1593分析数据:两组数据的极差、平均数、中位数、众数如表所示极差平均数中位数众数方差男生7766.7b70617.3女生a69.770.5c547.2(1)请将上面的表格补充完整:m=5,n=7,a=80,b=68.5,c=88和69;(2)已知该年级男女生人数差不多,根据调查的数据,估计初三年级周末在家锻炼的时间在90分钟以上(不包含90分钟)的同学约有多少人?(3)体育老师看了表格数据后认为初三年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持体育老师观点的理由.【分析】(1)根据频数统计方法,可得出各个分组的频数,进而确定m、n的值,通过对女生数据的整理,求出极差,中位数、众数即可;(2)求出男女生锻炼时间超过90分钟的人数所占的百分比,用1512去乘这个百分比即可;(3)通过比较男女生的中位数、平均数得出理由.【解答】解:(1)分别统计男生数据,可得在30<x≤60组的频数m=5,在60<x≤90组的频数n=7;女生数据的极差a=109﹣29=80,将男生数据从小到大排列后,处在第9、10位的两个数的平均数为=68.5,因此中位数b=68.5,女生数据出现次数最多的是69和88,因此众数是69和88,故答案为:5,7,80,68.5,69和88;(2)据表格,可得锻炼时间在90分钟以上的男生有4人,女生有3人,(人),答:初三年级锻炼时间在90分钟以上的同学有294人.(3)理由一:因为69.7>66.7,所以女生锻炼时间的平均时间更长,因此女生周末做得更好.理由二:因为70.5>68.5,所以锻炼时间排序后在中间位置的女生比男生更好,因此女生周末做得更好.22.(10分)小帆同学根据函数的学习经验,对函数y1=进行探究,已知函数过(﹣2,2),(1,2),(2,1).(1)求函数y1解析式;(2)如图,在平面直角坐标系中画y1的图象,根据函数图象,写出函数的一条性质;(3)结合函数图象回答下列问题:①方程y1=x+5的近似解的取值(精确到个位)是﹣3<x<﹣2或﹣1<x<0;②若一次函数y2=kx+2与y1有且仅有两个交点,则k的取值范围是或k>0.【分析】(1)把点(﹣2,2),(1,2)代入,将点(2,1)代入,根据待定系数法即可求得;(2)根据解析式画出图象即可;(3)根据图象即可求得.【解答】(1)将点(﹣2,2),(1,2)代入可得,解得,因此,将点(2,1)代入,可得,解得k=2,因此,所以y1=;(2)如图为所求当时,函数y1有最大值,函数y1无最小值;(3)由图象可知:①方程y1=x+5的近似解﹣3<x<﹣2或﹣1<x<0②或k>023.(10分)某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量y (万件)与销售单价x(元)之间的关系满足如表.销售单价x(元/件)…10121415…每月销售量y(万件)…40363230…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并求出y与x之间的函数关系式;(2)当销售单价为多少元时,该产品每月获得的利润为240万元?(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?【分析】(1)根据表格中的数据,可以判断该函数为一次函数,然后设出函数解析式,再将表格中的两组数据代入,即可得到y与x之间的函数关系式;(2)根据题意,可以得到利润与销售单价的函数关系,然后令利润为240,即可得到相应的单价;(3)根据该产品每月的进货成本不超过160万元,可以得到最大销售量,然后根据二次函数的性质,即可得到当销售单价为多少元时,该产品每月获得的利润最大,最大利润为多少万元.【解答】解:(1)由表格中数据可知,y与x之间的函数关系式为一次函数关系,设y=kx+b(k≠0),,得即y与x之间的函数关系式为y=﹣2x+60;(2)设总利润为w元,由题意得,w=y(x﹣8)=(﹣2x+60)(x﹣8)=﹣2x2+76x﹣480,当w=240时,﹣2x2+76x﹣480=240,解得,x1=18,x2=20,答:当销售单价为18元或20元时,每月获得的利润为240万元;(3)∵进货成本不超过160万元,每件的成本为8元,∴每月的进货量不超过万件,∴y=﹣2x+60≤20,解得,x≥20,∵w=﹣2x2+76x﹣480=﹣2(x﹣19)2+242,∵﹣2<0开口向下,对称轴为x=19,且x≥20,∴x=20时,w取得最大值,此时w为240万元,答:当销售单价为20元时,每月获得的利润最大,最大利润为240万元.24.(10分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=﹣2+bx+c 经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是抛物线上的一动点(不与B,C两点重合),当S△BEC=S△BOC时,求点E的坐标;(3)若点F是抛物线上的一动点,当S△BFC为什么取值范围时,对应的点F有且只有两个?【分析】(1)根据待定系数法求出抛物线的解析式;(2)根据S△BEC=S△BOC,列出代数式即可求出点E的坐标;(3)对F的位置进行分类讨论,当F点在直线BC的下方的抛物线上时,一定有两个对应的F点满足△BCF面积为S,所以当F点在直线BC的上方的抛物线上时,此时无F 点满足△BCF面积为S才符合题意,故只需讨论当点F在直线BC的上方的情况即可求解.【解答】解:(1)由y=﹣x+4知点B(0,4),点C(4,0),将B(0,4),C(4,0)代入,可得,解得,∴;(2)如图,过点E作x轴的垂线交BC于点N,如下图所示,设点,则点N(a,﹣a+4),∴,∵,∴,解得,,,,将x1,x2代入抛物线解析式,可得,,,,∴,,,;(3)由题意得,当F点在直线BC的下方的抛物线上时,一定有两个对应的F点满足△BCF面积为S,所以当F点在直线BC的上方的抛物线上时,此时无F点满足△BCF面积为S才符合题意,故只需讨论当点F在直线BC的上方的情况即可,设点,由(2)同理可得,∴当m=2时S△BFC的最大值为,∴当S△BFC取大于时,无法找到F点,综上所述:当时,对应的点F有且只有两个.答:(1);(2),,,;(3)当时,对应的点F有且只有两个.25.(10分)在菱形ABCD中,∠ABC=60°,点M是对角线BD上一动点,将线段CM绕点C顺时针旋转120°到CN,连接DN,连接NM并延长,分别交AB、CD于点P、Q.(1)如图1,若CM⊥BD且PQ=4,求菱形ABCD的面积;(2)如图2,求证:PM=QN.【分析】(1)连接AC,如图1,根据已知条件得到A、C、M三点共线,求得S菱形ABCD =2S△ABC,,根据线段垂直平分线的性质得到MN⊥CD,得到,根据三角形的面积公式即可得到结论;(2)根据菱形的性质得到BC=DC,AB∥CD,求得∠BCD=180°﹣∠ABC=120°,由旋转的性质得到CM=CN,∠MCN=120°,根据全等三角形的性质得到BM=DN,∠CDN=∠CBM=∠ABD=30°,在CD上取点H,使DH=BP,如图2所示:由△MPB ≌△NHD,得到PM=HN,∠DHN=∠BPM,求得∠QHN=∠HQN,于是得到结论.【解答】解:(1)连接AC,如图1,∵在菱形AC⊥BD中,AC⊥BD,又∵CM⊥BD,∴A、C、M三点共线,∴S菱形ABCD=2S△ABC,,∵∠ABC=60°,AB=BC,∴∠ACB=∠ACD=60°,∵∠ACN=120°,∴∠ACD=∠DCN=60°,∴点M,N关于CD对称,∴MN⊥CD,∵,∴,∴MC=4,∴,∴S菱形ABCD=2×16=32;(2)证明:四边形ABCD是菱形,∴BC=DC,AB∥CD,∴,∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=120°,由旋转的性质得:CM=CN,∠MCN=120°,∴∠MCN=∠BCD,∴∠BCM=∠DCN,在△BCM和△DCN中,,∴△MCB≌△NCD(SAS),∴BM=DN,∠CDN=∠CBM=∠ABD=30°,在CD上取点H,使DH=BP,如图2所示:则,在△BPM和△DHN中,∴△MPB≌△NHD(SAS),∴PM=HN,∠DHN=∠BPM,∵∠BPM=∠CQN,∴∠CQN=∠BPM,∴∠QHN=∠HQN,∴HN=QN=PM,∴QN=PM.26.(8分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得(a+b)2=2×ab c2,化简得:a2+b2=c2.实例二:欧几里得的《几何原本》记载,关于x的方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=|b|,再在斜边AB上截取BC=,则AD的长就是该方程的一个正根(如实例二图).根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是完全平方公式,乙图要证明的数学公式是平方差公式,体现的数学思想是数形结合的思想;(2)如图2,按照实例二的方式构造Rt△ABC,连接CD,请用含字母a、b的代数式表示AD的长,AD的表达式能和已学的什么知识相联系;(3)如图3,已知⊙O,AB为直径,点C为圆上一点,过点C作CD⊥AB于点D,连接CO,设DA=a,BD=b,求证:≥.【分析】(1)利用面积法解决问题即可.(2)如图2中,由勾股定理可求AB的长,即可求AD的长,即可解决问题;(3)如图3中,通过证明△ACD∽△CBD,可得CD2=AD•BD,由勾股定理可求CO2。
重庆八中初2019级初三下入学考试数学答案1-6 DBAADA 7-12 BACDBC13. 333-- 14.18 15.2- 16.2-π 17.7300 18.15 19. (1)5⋅⋅⋅⋅⋅ab 分 (2)522⋅⋅⋅⋅⋅⋅⋅+x 分 20. (1)解:在ABE Rt ∆中,ABBE =≈︒60.031tan ,m EB 6.186.031=⨯=…………4分 (2) 解:延长EF 交GD 于M ,在GDC Rt ∆中,CDGD =︒40tan 在FGM Rt ∆中,FM GM =︒19tan ,⎪⎩⎪⎨⎧-==CD GD CD GD 6.1834.084.0 m CD 2.37=………3分 m GD 2.13= ……3分…………………………8分(2)不能,因为乙的成绩受极端值影响较大…………………2分…………………………4分(2)932+=x y …………………………3分(3)……………3分23. (1)解:设每张苹果手机壳的销售价为x 元,则()102250150500025000-+=+x x , 解得50=x答:每张苹果手机壳的销售价为50元…………………………4分(2)由题意:()()150%150%1250%3519030000⨯-+-⎪⎭⎫ ⎝⎛+=a a a ………3分 01=a (舍去),202=a答:a 的值为20……………………………………………3分24. (1)3…………………………4分(2) 延长GB 至Q ,使得CF BQ =,连接AQ .证BFC ABQ ∆≅∆,QE AQ BC AD ===,所以QGA QAG ∠=∠ 再由等角减等角,得BEA BAE ∠=∠,即可………………………6分25.解:问题1,由阅读2知,1a -=即:4a =时,函数91(1)1y a a a =-+>-的最小值是6=, 答案为4,6;问题2,由阅读2知,2x ==时,周长为42()x x+的最小值是28⨯, 故答案为2,8;(3)22225214(1)4411111m m m m m m m m m m +++++++===++++++,∴当1m +=时,即1m =时,225(1)1m m m m ++>-+最小值是4=.26题(1)3,2P ⎛⎫⎪ ⎪⎝⎭P M M N A N +-最小2=-(2)︒15 ︒5.37︒60 ︒5.127。
重庆八中2019级数学初三下入学考试一、选择题:(每小题4分,共48分)1.下列实数﹣3、、0、π中,无理数是()A.﹣3B.C.0D.π2.如图是两个等直径圆柱构成的“T”形管道,其左视图是()A.B.C.D.3.下列运算正确的是()A.x﹣2x=﹣x B.2x﹣y=﹣xyC.x2+x2=x4D.(x﹣1)2=x2﹣14.要使代数式有意义,则x的取值范围是()A.x>﹣1B.x≥﹣1C.x≠0D.x>﹣1且x≠0 5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°6.已知a为整数,且+2<,则a的值可能为()A.3B.8C.9D.127.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A .B .C .D .8.如图,将△ABC 沿BC 边上的中线AD 平移到△A 'B 'C '的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA '=1,则A 'D 等于( )A .2B .3C .D .9.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A .5B .6C .7D .810.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.201311.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A、B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0).将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°…)当点B第一次落在x轴上时,则点B运动的路径与两坐标轴围成的图形面积是()A.B.+πC.+πD.+π12.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.4二、填空题:(本大题6个小题,每小题4分一共24分)请将每小题的答案直接填在答题卡中对应的横线上13.计算:(3﹣π)0﹣(﹣)﹣2﹣tan30°=.14.已知△ABC与△DEF的相似比为2:3.若△AB C周长为12,则△DEF周长为15.关于x的方程x2﹣(n+2)x+n2﹣1=0有两个相等的实数根,则n=.16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.17.张同学与王同学分别从A,B两地出发参加往直线往返运动,同时出发匀速相向而行;张同学的速度为120米/分,王同学的速度大于张同学:第一次相遇后,王同学在相遇处休息12分钟后以原速接着向A地运动,此时张同学未到达B地;两人分别到达后以原路原速返回,两人之间的距离y(米)与运动时间x(分)之间的关系如图所示,则第分钟时两人第二次相遇.18.某体育彩票投注站推出“英超、西甲、意甲”三大足球联赛的竞猜活动;猜对一场英超奖励3元,猜对一场西甲奖励2元,猜对一场意甲奖励1元;若干名球迷看到此活动后,分成三支小分队参与竞猜活动;第一小分队平均每人能猜对7场英超,5场西甲,3场意甲;第二小分队平均每人能猜对4场英超,4场西甲,2场意甲;第三小分队伍平均每人能猜对9场英超,6场西甲;这三支小分队在此活动中共获得奖励578元,其中通过猜对英超获得的奖励为339元,则第二支小分队的球迷人数为.三、解答题(本大题7个小题,每小题8分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8分)计算:(1)(2a﹣b)2﹣(a﹣b)(4a﹣b)(2)1+÷(﹣x﹣1)20.(10分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小孟测得大门A距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度EB(精确到0.1m)(2)若小孟在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度GD及甲乙两楼之间的距离CD.(精确到0.1m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.7,tan40°≈0.84)21.(10分)在某次训练活动中,甲乙两位射击运动员的射击成绩(环)如表所示:甲:乙:(1)根据上述数据完成下表:(2)根据前面的统计分析,回答下列问题:平均数能较好地反映乙运动员的射击成绩吗?为什么?22.(10分)如图,P是半圆弧AB上一动点,连接P A、PB,过圆心O作OC∥BP交P A于点C,连接CB.已知AB=6cm,设O,C两点间距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究,下面是小东的探究过程,请补充完整:(1)通过取点、画图、冽量,得到了x与y的几组值,如表:说明:补全表格时相关数据取了近似值,保留一位小数(2)y与x的函数关系式为.(0≤x≤3,y>0)(3)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象:23.(10分)华为手机与苹果手机深受消费者喜爱,某商户每周都用25000元购进250张华为手机壳和150张苹果手机壳.(1)商户在第一周销售时,每张华为手机壳的售价比每张苹果手机壳的售价的2倍少10元,且两种手机壳在一周之内全部售完,总盈利为5000元,商户销售苹果手机壳的价格每张多少元?(2)商户在第二周销售时,受到各种因素的影响,每张华为手机壳的售价比第一周每张华为手机壳的售价增加了a%,但华为手机壳的销售量比第一周华为手机壳的销售量下降了a%;每张苹果手机壳的售价比第一周毎张苹果手机壳的售价下降了a%,但苹果手机壳销售量与第一周苹果手机壳销售量相同,结果第二周的总销售额为30000元,求a (a>0)的值.24.(10分)如图,平行四边形ABCD中,BF⊥DC交DC于点F,且BF=AB,E点是BC 边上一点,连接AE交BF于G;(1)若AE平分∠DAB,∠C=60°,BE=3,求BG的长;(2)若AD=BG+FC,求证:AE平分∠DAB.25.(10分)阅读与应用:同学们:你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.∴a2+b2≥2ab(当且仅当a=b时取等号).阅读1:若a、b为实数,且a>0,b>0,∵(﹣)2≥0,∴a﹣2+b≥0∴a+b≥2(当且仅当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2即x+≥2,∴当x=,即x2=m,∴x=(m>0)时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:若函数y=a﹣1+(a>1),则a=时,函数y=a﹣1+(a>1)的最小值为;问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题3:求代数式(m>﹣1)的最小值.四、解答题(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上26.(10分)如图1,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B 右侧),与y轴交于点C,点D是抛物线的顶点,连接AD、BD.(1)如图1,连接AC、BC,若点P是直线AC上方抛物线上一动点,过点P作PE∥BC 交AC于点E,作PQ∥y轴交AC于点Q,当△PQE周长最大时,若点M在y轴上,点N在x轴上,求PM+MN﹣AN的最小值;(2)如图2,点G为x轴正半轴上一点,且OG=OC,连接CG,过点G作GH⊥AC于点H,将△CGH统点O顺时针旋转α(0°<α<180°),记旋转中的△CGH为△C′G′H′,在旋转过程中,直线C′G′,G′H′分别与直线AC交于点M,N,△G′MN能否成为等腰三角形?若能请直接写出所有满足条件的α的值;若不能,请说明理由.参考答案一、选择题1.下列实数﹣3、、0、π中,无理数是()A.﹣3B.C.0D.π【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【解答】解:实数﹣3、、0、π中,无理数只有π,故选:D.【点评】本题主要考查学生对无理数和有理数定义的理解及区分.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.如图是两个等直径圆柱构成的“T”形管道,其左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看如图,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.下列运算正确的是()A.x﹣2x=﹣x B.2x﹣y=﹣xyC.x2+x2=x4D.(x﹣1)2=x2﹣1【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=2x﹣y,故B错误;(C)原式=2x2,故C错误;(D)原式=x2﹣2x+1,故D错误;故选:A.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.要使代数式有意义,则x的取值范围是()A.x>﹣1B.x≥﹣1C.x≠0D.x>﹣1且x≠0【分析】根据二次根式有意义,分式有意义,可得答案.【解答】解:依题意得:x+1>0,解得x>﹣1.故选:A.【点评】本题考查了二次根式有意义的条件,被开方数是非负数,且分式的分母不能为零.5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【解答】解:∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点评】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.6.已知a为整数,且+2<,则a的值可能为()A.3B.8C.9D.12【分析】根据a为整数,且+2<,可以求得a的值,本题得以解决.【解答】解:∵a为整数,且+2<,∴,∴a≤4且a为整数,故选:A.【点评】本题考查算术平均数、估算无理数的大小,解答本题的关键是可以估算出a的取值范围.7.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.故选:B.【点评】本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax ﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8.如图,将△ABC 沿BC 边上的中线AD 平移到△A 'B 'C '的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA '=1,则A 'D 等于( )A .2B .3C .D .【分析】由S △ABC =9、S △A ′EF =4且AD 为BC 边的中线知S △A ′DE =S △A ′EF =2,S △ABD=S △ABC =,根据△DA ′E ∽△DAB 知()2=,据此求解可得.【解答】解:如图,∵S △ABC =9、S △A ′EF =4,且AD 为BC 边的中线,∴S △A ′DE =S △A ′EF =2,S △ABD =S △ABC =,∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB ,则()2=,即()2=,解得A ′D =2或A ′D =﹣(舍),故选:A .【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.9.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A.5B.6C.7D.8【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM ⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=﹣x﹣1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【解答】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,=CE•BM=××4=7;∴S△CEB故选:C.【点评】本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.10.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.2013【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x =673,x =672(舍去),x =672,x =671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×8+7,∴三个数之和为2013.故选:D .【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.11.如图,将含有30°角的直角三角板ABC 放入平面直角坐标系,顶点A 、B 分别落在x 、y 轴的正半轴上,∠OAB =60°,点A 的坐标为(1,0).将三角板ABC 沿x 轴向右作无滑动的滚动(先绕点A 按顺时针方向旋转60°,再绕点C 按顺时针方向旋转90°…)当点B 第一次落在x 轴上时,则点B 运动的路径与两坐标轴围成的图形面积是( )A .B . +πC . +πD . +π【分析】点B 第一次落在x 轴上时,点B 运动的路径与两坐标轴围成的图形面积=S △AOB +S △AC ′B ′+S 扇形ABB ′+S 扇形C ′B ′B ″.【解答】解:在Rt △ABC 中,∵OA =1,∠ABO =30°,∴AB =2,OB =∵∠ABC =30°,∠ACB =90°,∴AC =1,BC =,∴点B 第一次落在x 轴上时,点B 运动的路径与两坐标轴围成的图形面积=S △AOB +S △AC ′B ′+S 扇形ABB ′+S 扇形C ′B ′B ″=++=+π,故选:B.【点评】本题考查轨迹,旋转变换,扇形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.4【分析】根据分式方程的解为正数即可得出a>﹣2且a≠2,根据不等式组有解,即可得:a<,找出所有的整数,a的个数为3.【解答】解:解方程﹣=5,得:x=,∵分式方程的解为正数,∴a+2>0,即a>﹣2,又x≠1,∴≠1,即a≠2,则a>﹣2且a≠2,∵关于y的不等式组有解,∴a﹣1≤y<6﹣2a,即a﹣1<6﹣2a,解得:a<,综上,a的取值范围是﹣2<a<,且a≠2,则符合题意的整数a的值有﹣1、0、1,3个,故选:C.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出﹣2<a<且a≠2是解题的关键.二、填空题:(本大题6个小题,每小题4分一共24分)请将每小题的答案直接填在答题卡中对应的横线上13.计算:(3﹣π)0﹣(﹣)﹣2﹣tan30°=﹣3﹣.【分析】根据零指数幂的性质a0=1(a≠0)和负指数幂的性质(a≠0)及特殊角的三角函数值求解即可.【解答】解:原式=1﹣4﹣,=﹣3﹣,故答案为﹣3﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题的关键.14.已知△ABC与△DEF的相似比为2:3.若△ABC周长为12,则△DEF周长为18【分析】由△ABC与△DEF相似,相似比为2:3,可求得其周长比为:2:3,然后由△ABC的周长是12,求得△DEF的周长.【解答】解:∵△ABC与△DEF相似,相似比为2:3,∴周长比为:2:3,∵△ABC的周长是12,∴△DEF的周长是18.故答案为:18.【点评】此题考查了相似三角形的性质.此题比较简单,注意相似多边形的周长比等于相似比.15.关于x的方程x2﹣(n+2)x+n2﹣1=0有两个相等的实数根,则n=﹣2.【分析】根据“关于x的方程x2﹣(n+2)x+n2﹣1=0有两个相等的实数根”,结合判别式公式,得到△=0,整理得到关于n的一元一次方程,解之即可.【解答】解:根据题意得:△=(n+2)2﹣4(n2﹣1)=0,整理得:4n+8=0,解得:n =﹣2,故答案为:﹣2.【点评】本题考查了根的判别式,正确掌握判别式公式是解题的关键.16.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =4,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为 2 .【分析】如图设DF 交BC 于M ,DE 交AC 于N .由△BDM ≌△CDN (ASA ),推出S △BDM=S △DCN ,可得S 阴=S △ADC ,由此即可解决问题.【解答】解:如图设DF 交BC 于M ,DE 交AC 于N .∵CA =CB ,∠ACB =90°,AD =DB ,∴CD ⊥AB ,CD =DA =DB =2,∠DCN =∠B =45°,∴∠BDC =∠EDF =90°,∴∠BDF ∠CDN ,∴△BDM ≌△CDN (ASA ),∴S △BDM =S △DCN ,∴S 阴=S △ADC =×2×2=2,故答案为2.【点评】本题考查扇形的面积,直角三角形斜边中线的性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.17.张同学与王同学分别从A,B两地出发参加往直线往返运动,同时出发匀速相向而行;张同学的速度为120米/分,王同学的速度大于张同学:第一次相遇后,王同学在相遇处休息12分钟后以原速接着向A地运动,此时张同学未到达B地;两人分别到达后以原路原速返回,两人之间的距离y(米)与运动时间x(分)之间的关系如图所示,则第分钟时两人第二次相遇.【分析】设王同学的速度为a米/分,A、B两地距离为s米,由图象可得方程组,可求a、s的值,由第二次相遇时,两人的路程和为2s,可求解.【解答】解:设王同学的速度为a米/分,A、B两地距离为s米,由图象可得:解得:a=160,s=3360设第x分钟时两人第二次相遇120x+160(x﹣12)=3360×2x=故答案为:【点评】本题考查了一次函数的应用,读懂图象上点的所表示的具体意义是本题的关键.18.某体育彩票投注站推出“英超、西甲、意甲”三大足球联赛的竞猜活动;猜对一场英超奖励3元,猜对一场西甲奖励2元,猜对一场意甲奖励1元;若干名球迷看到此活动后,分成三支小分队参与竞猜活动;第一小分队平均每人能猜对7场英超,5场西甲,3场意甲;第二小分队平均每人能猜对4场英超,4场西甲,2场意甲;第三小分队伍平均每人能猜对9场英超,6场西甲;这三支小分队在此活动中共获得奖励578元,其中通过猜对英超获得的奖励为339元,则第二支小分队的球迷人数为15.【分析】设第一支小分队有x人,第二支小分队有y人,第三支小分队有z人,由这三支小分队在此活动中共获得奖励578元其中通过猜对英超获得的奖励为339元,即可得出关于x,y,z的三元一次方程组,利用②×9﹣①×13可得出33x+42y=795,结合x,y均为正整数即可求出x,y的值,再将其代入方程①中验证z值是否为正整数,此题得解.【解答】解:设第一支小分队有x人,第二支小分队有y人,第三支小分队有z人,依题意,得:,②×9﹣①×13,得:33x+42y=795,即11x+14y=265,∴y=.又∵x,y均为正整数,∴,.将x=5,y=15代入①,得:105+180+27z=339,解得:z=2;将x=19,y=4代入①,得:399+48+27z=339,解得:z=﹣4(不合题意,舍去).故答案为:15.【点评】本题考查了三元一次方程组的应用以及二元一次方程的应用,找准等量关系,正确列出三元一次方程组是解题的关键.三、解答题(本大题7个小题,每小题8分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8分)计算:(1)(2a﹣b)2﹣(a﹣b)(4a﹣b)(2)1+÷(﹣x﹣1)【分析】(1)按照完全平方公式和平方差公式展开合并;(2)按照分式混合运算法则计算.【解答】解:(1)(2a﹣b)2﹣(a﹣b)(4a﹣b)=4a2﹣4ab+b2﹣(4a2﹣ab﹣4ab+b2)=4a2﹣4ab+b2﹣4a2+ab+4ab﹣b2=ab;(2)1+÷(﹣x﹣1)=1+=1+=1﹣=.【点评】本题考查整式运算和分式混合运算,灵活运用乘法公式和分式混合运算法则是解答的关键.20.(10分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小孟测得大门A 距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度EB(精确到0.1m)(2)若小孟在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度GD及甲乙两楼之间的距离CD.(精确到0.1m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.7,tan40°≈0.84)【分析】(1)在直角三角形ABE中,利用锐角三角函数定义求出BE的长即可;(2)过点F作FM⊥GD,交GD于M,在直角三角形GMF中,利用锐角三角函数定义表示出GM与GD,设甲乙两楼之间的距离为xm,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)在Rt△ABE中,BE=AB•tan31°=31•tan31°≈18.6,则甲楼的高度为18.6m;(2)过点F作FM⊥GD,交GD于M,在Rt△GMF中,GM=FM•tan19°,在Rt△GDC中,DG=CD•tan40°,设甲乙两楼之间的距离为xm,FM=CD=x,根据题意得:x tan40°﹣x tan19°=18.60,解得:x=37.20,则乙楼的高度为31.25m,甲乙两楼之间的距离为37.20m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键.21.(10分)在某次训练活动中,甲乙两位射击运动员的射击成绩(环)如表所示:甲:乙:(1)根据上述数据完成下表:(2)根据前面的统计分析,回答下列问题:平均数能较好地反映乙运动员的射击成绩吗?为什么?【分析】(1)按照众数、中位数、平均数、方差的计算方法,即可得出结论;(2)根据乙射击成绩中含有两个极端值,受两个极端值的影响,导致乙射击成绩的方差较大,平均数高于大部分射击的成绩,故平均数不能较好地反映乙运动员的射击成绩.【解答】解:(1)甲射击成绩的平均数为(5×2+6×1+7×3+8×3+9×1)=7,方差为[(5﹣7)2+(5﹣7)2+(6﹣7)2+(7﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(8﹣7)2+(8﹣7)2+(9﹣7)2]=1.2,乙射击成绩的中位数为(6+9)=7.5,众数为10,故答案为:7,1.2,7.5,10;(2)平均数不能较好地反映乙运动员的射击成绩,理由是平均数受到极端数值的影响.【点评】此题主要考查统计的有关知识,解决问题的关键是掌握平均数、中位数、众数、方差的计算方法及意义.22.(10分)如图,P是半圆弧AB上一动点,连接P A、PB,过圆心O作OC∥BP交P A于点C,连接CB.已知AB=6cm,设O,C两点间距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究,下面是小东的探究过程,请补充完整:(1)通过取点、画图、冽量,得到了x与y的几组值,如表:说明:补全表格时相关数据取了近似值,保留一位小数(2)y与x的函数关系式为y=.(0≤x≤3,y>0)(3)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象:【分析】(1)OC∥BP,则OC是△ABP的中位线,则BP=2x,PC=AC==,y==,将x=1或2代入即可求解;(2)由(1)得:y=;(3)描点即可.【解答】解:OC∥BP,则OC是△ABP的中位线,则BP=2x,PC=AC==,y==;(1)当x=1时,y≈3.5,x=2时,y≈4.58≈4.6,故:答案为3.5,4.6;(2)由(1)知,y=(0≤x≤3);答案为:y=;(3)如下图:【点评】本题为圆的综合题,主要考查三角形中位线和勾股定理的应用,难度不大.23.(10分)华为手机与苹果手机深受消费者喜爱,某商户每周都用25000元购进250张华为手机壳和150张苹果手机壳.(1)商户在第一周销售时,每张华为手机壳的售价比每张苹果手机壳的售价的2倍少10元,且两种手机壳在一周之内全部售完,总盈利为5000元,商户销售苹果手机壳的价格每张多少元?(2)商户在第二周销售时,受到各种因素的影响,每张华为手机壳的售价比第一周每张华为手机壳的售价增加了a%,但华为手机壳的销售量比第一周华为手机壳的销售量下降了a%;每张苹果手机壳的售价比第一周毎张苹果手机壳的售价下降了a%,但苹果手机壳销售量与第一周苹果手机壳销售量相同,结果第二周的总销售额为30000元,求a (a>0)的值.【分析】(1)设苹果手机壳的售价为每张x元,华为手机壳的售价为每张y元,根据“每张华为手机壳的售价比每张苹果手机壳的售价的2倍少10元,两种手机壳销售完的总盈利为5000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总销售额=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设苹果手机壳的售价为每张x元,华为手机壳的售价为每张y元,依题意,得:,解得:.答:苹果手机壳的售价为每张50元,华为手机壳的售价为每张90元.(2)依题意,得:90(1+a%)×250(1﹣a%)+50(1﹣a%)×150=30000,整理,得:3.75a2﹣75a=0,解得:a1=0(不合题意,舍去),a2=20.答:a的值为20.【点评】本题考查了一元二次方程的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.24.(10分)如图,平行四边形ABCD中,BF⊥DC交DC于点F,且BF=AB,E点是BC 边上一点,连接AE交BF于G;(1)若AE平分∠DAB,∠C=60°,BE=3,求BG的长;(2)若AD=BG+FC,求证:AE平分∠DAB.【分析】(1)利用等角对等边即可证明BA=BE,在直角△ABG中求的BG和AB的长,根据FG=BF﹣BG即可求解;(2)作CH⊥AB于点H,延长AH到I,使HI=BG,则BI=BG+FC,证明△ABG≌△CHI,得出∠I=∠AGB,∠4=∠2,再证明∠3=∠4,∠1=∠3,即可得出∠1=∠2.【解答】(1)解:∵四边形ABCD是平行四边形,∴AD∥BC,∠C=∠BAD=60°,CD∥AB,∴∠DAE=∠AEB,∵AE平分∠DAB,∴∠DAE=∠BAE=30°,∴∠AEB=∠BAE,∴AB=BE=3,∵BF⊥DC,∴∠DFB=90°,∵CD∥AB,∴∠ABF=90°,∴BG=AB•tan∠BAE=3×=;(2)证明:作CH⊥AB于点H,延长AH到I,使HI=BG.则四边形BFCH是矩形,CF=BH,CH=BF=AB.在△ABG和△CHI中,,∴△ABG≌△CHI(SAS).∴∠I=∠AGB,∠4=∠2,∵∠I=∠AGB=∠3+∠FBC,∠BCI=∠BCH+∠4,∵AD=BG+FC=HI+BH=BI,AD=BC,∴BC=BI,∴∠BCI=∠I,∵BF∥CH,∴∠FBC=∠BCH,∴∠3=∠4.∵AD∥BC,∴∠1=∠3,而∠2=∠4,∴∠1=∠2,∴AE平分∠DAB.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,平行线的判定与性质,等腰三角形的性质等知识,正确作出辅助线是解题的关键.25.(10分)阅读与应用:同学们:你们已经知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.∴a2+b2≥2ab(当且仅当a=b时取等号).阅读1:若a、b为实数,且a>0,b>0,∵(﹣)2≥0,∴a﹣2+b≥0∴a+b≥2(当且仅当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2即x+≥2,∴当x=,即x2=m,∴x=(m>0)时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:若函数y=a﹣1+(a>1),则a=4时,函数y=a﹣1+(a>1)的最小值为6;问题2:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=2时,周长的最小值为8;问题3:求代数式(m>﹣1)的最小值.【分析】(1)由阅读2得到a﹣1=时,函数y=a﹣1+(a>1)取最小值;(2)同(1)方法x=2时周长取到最小值;(3)先将处理成m+1+,同(1)的方法得出结论;【解答】解:问题1,由阅读2知,a﹣1=时,即:a=4时,函数y=a﹣1+(a>1)的最小值是2=6,答案为4,6;问题2,由阅读2知,x==2时,周长为2(x+)的最小值是2×2=8,故答案为2,8;(3)===m+1+,∴当m+1=时,即m=1时,(m>﹣1)最小值是2=4.【点评】此题是反比例函数题,函数极值的确定方法,读懂材料是解本题的关键,难点是理解和运用材料得到的结论解决问题.四、解答题(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上26.(10分)如图1,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B 右侧),与y轴交于点C,点D是抛物线的顶点,连接AD、BD.(1)如图1,连接AC、BC,若点P是直线AC上方抛物线上一动点,过点P作PE∥BC 交AC于点E,作PQ∥y轴交AC于点Q,当△PQE周长最大时,若点M在y轴上,点N在x轴上,求PM+MN﹣AN的最小值;(2)如图2,点G为x轴正半轴上一点,且OG=OC,连接CG,过点G作GH⊥AC于点H,将△CGH统点O顺时针旋转α(0°<α<180°),记旋转中的△CGH为△C′G′H′,在旋转过程中,直线C′G′,G′H′分别与直线AC交于点M,N,△G′MN 能否成为等腰三角形?若能请直接写出所有满足条件的α的值;若不能,请说明理由.【分析】(1)构建二次函数,求出点P坐标,如图2中,作P关于y轴的对称点P'(﹣3,。