1、曲线拟合及其应用综述;doc
- 格式:doc
- 大小:721.00 KB
- 文档页数:5
曲线拟合在数学建模中的应用曲线拟合是数学建模中广泛应用的一种方法。
它是将一组数据点与一个函数进行比较,以确定两者之间的差异最小化的过程。
通过这种方法,可以得到一个公式来拟合数据,并预测未知数据点的值。
以下是曲线拟合在数学建模中的应用。
一、数据分析曲线拟合在数据分析中应用广泛。
当有大量数据要分析时,拟合数据可以使分析过程更简单和更准确。
例如,当研究人员想要分析消费模式时,他们可以使用曲线拟合来绘制数据点的图形,并查看其中的趋势。
通过拟合数据,他们可以预测未来趋势,做出合适的决策。
二、模式预测曲线拟合也可以应用于模式预测。
通过对历史数据进行曲线拟合,可以预测未来的走势。
例如,当股票市场行情不稳定时,投资者可以使用曲线拟合来预测市场的走势。
他们可以通过拟合过去几年的数据来预测未来的股票价格,并购买或出售相应的股票。
三、信号处理曲线拟合还可以应用于信号处理领域。
当需要处理包含各种噪声的信号时,进行曲线拟合可以消除噪声,提高信号的质量。
例如,在声波信号处理中,曲线拟合可以消除噪声,使得信号更加清晰、准确。
四、工程应用曲线拟合在工程应用中也有广泛的应用。
例如,在机械工程中,预测轴承寿命需要对轴承运行过程中的振动数据进行分析和处理。
这时可以使用曲线拟合,对振动信号进行处理,以预测轴承的寿命。
曲线拟合是数学建模中的重要工具。
它可以用于数据分析、模式预测、信号处理以及工程应用等多个领域,帮助人们处理和分析大量数据,以提高决策的准确性和效率。
曲线拟合和数据分析的方法和应用数据分析在今天的社会中变得日益重要,它是一种广泛使用于各种领域的方法和技术。
曲线拟合是数据分析中一个非常重要的过程。
它的目的是寻找一个数学模型来描述已知数据的关系。
在此基础上,分析师们便能够做出精确的预测,并利用这些预测来制定采取行动的决策。
曲线拟合的意义曲线拟合通常用于解决如下几个问题。
第一,它能帮助分析师找到影响特定数据变量的因素。
举个例子,假设一家公司正在研究他们的销售数据,并希望找到销售量的变化趋势。
曲线拟合可以帮助分析师很轻易地找到这些趋势,通常会得到一条线或者其他函数类似的数学模型,描述销售量随着时间,季节等因素的变化趋势。
其次,曲线拟合可以用来预测未来值,这是非常有用的,可以使分析师作出更好的决策。
例如,一家零售商正在考虑增加产品种类。
通过曲线拟合,他们可以预测新产品的销售量,并评估是否值得加入。
常用的拟合方法常用的曲线拟合方法包括线性回归、多项式回归、非线性回归、指数回归等。
其中最基本的方法是线性回归。
线性回归是一种基于最小二乘法的统计分析方法,它可以用于确定两个变量之间的线性关系。
它的数学原理比较简单,但它通常是在初步探索数据时最先使用的拟合方法。
多项式回归是一种广泛使用的非线性拟合方法,它可以用于描述两个或多个变量之间的非线性关系。
相比于线性回归,多项式回归可以更准确地适应比较复杂的数据拟合任务。
非线性回归是一种更加复杂的回归方法,它可以用于描述不可线性的数据关系。
它常常被用于描述生物学、化学以及工程领域的数据。
应用实例曲线拟合的应用是非常广泛的。
在医学领域,曲线拟合可以用来描述药物治疗对患者身体健康的影响,便于医生做出更精确的诊断和治疗决策。
在环境监测中,曲线拟合可以用来预测二氧化碳浓度或其他污染物质量的数量,并进而制定相关的环境保护政策。
在金融分析中,曲线拟合可以用来预测股票或股票指数的价格,帮助投资者制定投资决策。
此外,在工业生产中,曲线拟合可以用于优化工艺参数,提高生产效率。
曲面拟合及其应用综述摘要:本文首先分析了曲面拟合方法的背景及在各个领域中的应用,介绍了曲面拟合方法的基本原理及实现方法,然后结合两个实例,着重分析了基于曲面拟合的信息融合技术在变压器短路故障的在线监测、大型油浸式变压器故障诊断中的应用,最后对全文内容进行了总结,并对曲线拟合方法的发展进行了思考和展望。
关键词:曲面拟合信息融合技术变压器故障在线监测故障诊断1背景及应用在科学研究中,常常需要根据实际的试验测试结果来分析变量对目标函数的影响。
为了找出目标函数与变量之间的关系,我们可以采用传统的插值法。
但是由于实际问题中我们的测量数据数量很大,往往会造成差值函数次数过高,使得计算量大大增加;同时,由于实际测试中可能出现错误数据,而插值法无法进行识别,这会影响插值函数与实际情况的逼近程度。
随着应用数学学科的不断发展,曲线拟合及曲面拟合的方法得到了充分的研究,在实际中很好地弥补了插值法的不足之处,因而在一段时间内得到了广泛的应用。
通常,曲线拟合法适用于单一变量与目标函数之间的关系分析,而曲面拟合则多用于二维变量与目标函数之间关系的分析。
曲面拟合法可以解决很多实际的工程问题。
我们可以采用曲面拟合法来检测高温区域的边缘,根据获取的目标表面温度图像,进行高温区域检测,进而判断可能存在的热故障隐患[1]。
通过曲面拟合方法,可以求得多燃料混烧机组中机组煤耗量与机组负荷量、掺烧BFG量之间的关系,形成机组耗量特性曲线,用于多燃料多机组电厂能源利用的综合优化[2]。
基于时频曲面拟合方法进行信号分析,并结合自适应技术调整拟合基函数,能够实现对振动信号中的各种非平稳噪声抑制,从而实现更好的信号处理,进行远程故障诊断[3]。
将分形理论与曲面拟合法结合,可以实现存在隔离断面的复杂曲面的拟合,用于土壤勘探研究[4]。
此外,曲面拟合法还可用于雷达天线表面检测[5]、逆向工程中的元件还原[6]、电磁散射的计算[7]、数字图像处理[8]等方面。
先进曲线拟合方法及其应用曲线拟合是数据处理中常见的一种方法,它的目的是找到一条曲线,使其能够最好地刻画数据的特征。
曲线拟合在科学研究、工程设计、经济分析等领域都有着广泛的应用。
近年来,随着计算机技术和数学算法的不断发展,曲线拟合方法得到了许多新的突破,其中先进曲线拟合方法成为了研究的热点之一。
一、先进曲线拟合方法的概念先进曲线拟合方法是指利用机器学习、深度学习等技术,构建更具有灵活性和通用性的曲线拟合模型。
相较于传统的曲线拟合方法,先进曲线拟合方法具有以下优势:1. 支持非线性拟合,能够更好地刻画数据的复杂特征。
2. 可以自适应地调整模型参数,提高拟合效果。
3. 可以处理高维、大数据量的数据集,应用范围更广泛。
二、先进曲线拟合方法的模型目前,主要的先进曲线拟合方法有神经网络、支持向量机、决策树等。
其中,神经网络作为一种非线性映射模型,可以学习并建立输入和输出之间的复杂映射关系,因此特别适用于非线性曲线拟合。
支持向量机作为一种分类和回归的方法,同样具有较强的非线性拟合能力。
决策树则是一种树形结构的分类和回归模型,在建立模型时可以随时剪枝,避免过拟合现象。
三、先进曲线拟合方法的应用1. 图像处理先进曲线拟合方法在图像处理中有着广泛的应用。
例如,可以利用神经网络模型对图像中的边缘进行曲线拟合,达到图像去噪、分割的效果。
2. 生物医学生物医学领域中的数据往往复杂多变,具有高维度和非线性特点,因此先进曲线拟合方法尤其适用。
例如,可以利用支持向量机模型对医学图像中的肿瘤进行拟合,实现肿瘤分析和诊断。
3. 金融分析金融数据往往具有长期依赖性和波动性,传统方法对它们的拟合效果较差。
而先进曲线拟合方法则能够建立更为准确的金融模型,预测股票、汇率等市场走势。
四、先进曲线拟合方法的挑战1. 模型的解释性较差先进曲线拟合方法往往由多个层级组成,其中包含大量的参数,因此难以解释其内部的工作原理。
2. 数据准备的工作难度较高先进曲线拟合方法需要大量的数据来训练模型,但是数据的质量和准备成本都比较高。
曲线拟合的实用方法与原理曲线拟合是一种常用的数据分析方法,它可以通过寻找最佳拟合曲线来描述一组数据的趋势和关系。
在科学研究、工程技术、金融分析等领域中,曲线拟合被广泛应用于数据模型的建立、预测和优化等方面。
本文将介绍曲线拟合的实用方法和原理,帮助读者更好地理解和运用这一分析工具。
一、曲线拟合的基本概念曲线拟合是指通过一组已知数据点,寻找一条函数曲线来逼近这些数据点的过程。
拟合曲线的选择通常基于拟合误差最小化的原则,即找到一条曲线,使得它与实际数据点之间的误差最小。
二、常见的曲线拟合方法1. 最小二乘法最小二乘法是一种常见的曲线拟合方法,它通过最小化拟合曲线与实际数据点之间的残差平方和来确定最佳拟合曲线。
最小二乘法在实际应用中较为简单和灵活,能够拟合各种类型的曲线,如线性曲线、多项式曲线、指数曲线等。
2. 多项式拟合多项式拟合是一种通过多项式函数来拟合数据点的方法。
它可以通过最小二乘法来确定多项式的系数,从而得到最佳拟合曲线。
多项式拟合可以适用于不同阶数的多项式,阶数越高,拟合曲线越复杂,能够更好地逼近实际数据。
3. 曲线拟合工具除了最小二乘法和多项式拟合外,还有一些专门的曲线拟合工具可供使用。
例如,MATLAB和Python中的Scipy库提供了丰富的曲线拟合函数,可以根据实际需求选择合适的拟合方法和工具。
三、曲线拟合的实际应用曲线拟合在各个领域都有广泛的应用。
以下是几个典型的实际应用案例:1. 经济数据分析曲线拟合可以用于分析经济数据的趋势和关系。
例如,通过对历史GDP数据进行曲线拟合,可以预测未来的经济增长趋势,为政策制定和投资决策提供参考。
2. 工程建模在工程领域,曲线拟合可以用于建立物理模型和优化设计。
例如,通过对实验数据进行曲线拟合,可以得到物质的力学性质曲线,从而优化材料的设计和使用。
3. 股票价格预测曲线拟合可以用于股票价格的预测和交易策略的制定。
通过对历史股票价格数据进行曲线拟合,可以找到潜在的趋势和周期性,从而为投资者提供决策依据。
曲线拟合算法及其在图像处理中的应用引言:在图像处理领域,曲线拟合算法是一种重要的数学工具,它可以通过数学模型来描述和预测图像中的曲线特征。
本文将介绍几种常见的曲线拟合算法,并探讨它们在图像处理中的应用。
一、多项式拟合算法多项式拟合算法是一种常见且简单的曲线拟合方法。
它通过使用多项式函数来逼近给定数据点集,从而得到一条平滑的曲线。
多项式拟合算法的优点在于易于理解和实现,但对于复杂的曲线,拟合效果可能不佳。
在图像处理中,多项式拟合算法常用于图像的边缘检测和轮廓提取。
通过将图像中的边缘点作为数据点集,利用多项式拟合算法可以得到边缘曲线的数学模型,从而实现图像的边缘检测和轮廓提取。
二、最小二乘法拟合算法最小二乘法是一种常用的曲线拟合方法,它通过最小化实际观测值与拟合曲线之间的残差平方和,来确定最优的拟合曲线。
最小二乘法可以适用于各种类型的曲线拟合问题,并且具有较好的拟合效果。
在图像处理中,最小二乘法拟合算法常用于图像的直线拟合和曲线拟合。
通过将图像中的直线或曲线上的点作为数据点集,利用最小二乘法拟合算法可以得到直线或曲线的数学模型,从而实现图像中直线和曲线的检测和分析。
三、样条插值算法样条插值算法是一种基于插值原理的曲线拟合方法,它通过在给定数据点集上构造一组分段连续的多项式函数来逼近曲线。
样条插值算法可以保持曲线的光滑性,并且对于复杂的曲线具有较好的拟合效果。
在图像处理中,样条插值算法常用于图像的平滑和重建。
通过将图像中的像素点作为数据点集,利用样条插值算法可以得到图像的平滑曲线或重建曲线,从而实现图像的去噪和图像的重建。
四、非线性拟合算法非线性拟合算法是一种适用于非线性曲线的拟合方法,它通过使用非线性函数来逼近给定数据点集,从而得到一条非线性的曲线。
非线性拟合算法可以处理复杂的曲线特征,并且具有较高的拟合精度。
在图像处理中,非线性拟合算法常用于图像的形状分析和目标跟踪。
通过将图像中的形状特征或目标轨迹作为数据点集,利用非线性拟合算法可以得到形状或轨迹的数学模型,从而实现图像的形状分析和目标跟踪。
曲线拟合方法在数据分析中的应用研究数据分析是一种研究和解释数据的过程,而曲线拟合是数据分析中常用的一种方法。
通过将一条曲线拟合到给定数据点上,我们可以从数据中提取出关键的趋势和模式,帮助我们做出更加准确的预测和决策。
本文将探讨曲线拟合方法在数据分析中的应用研究。
一、曲线拟合的基本概念与原理曲线拟合是基于数学模型的一种数据分析方法。
它的基本思想是找到一条函数曲线,使得它可以最好地描述给定数据点的趋势。
曲线拟合的目标是在已知数据点的基础上预测未知数据点的取值。
常用的曲线拟合方法包括最小二乘法、多项式拟合、非线性拟合等。
其中最小二乘法是一种常见且广泛应用的方法,它通过最小化残差来找到最优的拟合曲线。
多项式拟合则是通过多项式函数来拟合数据,可以适用于不同数据特点的情况。
非线性拟合则适用于无法用线性函数描述的数据。
曲线拟合的基本原理是通过选择合适的函数形式和调整函数参数,使得拟合曲线尽可能地与数据点相符。
选择合适的函数形式可以根据数据的特点来确定,比如可以选择直线、指数函数、对数函数等。
调整函数参数则通过迭代算法来实现,通过不断调整参数值来优化拟合效果。
二、曲线拟合方法在实际应用中的意义曲线拟合方法在数据分析中具有重要的意义。
首先,曲线拟合可以帮助我们发现数据中隐藏的规律和趋势。
通过拟合出的曲线,我们可以对数据的整体变化趋势有更直观的认识,从而做出更加准确的预测和决策。
其次,曲线拟合可以帮助我们处理不完整的数据。
在现实中,我们经常会遇到数据缺失或噪声干扰的情况,这时候可以通过曲线拟合来填补数据空缺或去除干扰。
通过拟合出的曲线,我们可以估计出缺失数据的取值或者去除噪声对数据的影响。
另外,曲线拟合还可以用于预测和模拟。
通过已有数据点的拟合,我们可以预测未来的趋势和变化。
例如,通过对销售数据的拟合,可以预测未来的销售额;通过对气候数据的拟合,可以模拟未来的气候变化。
三、曲线拟合方法的实际应用案例曲线拟合方法在各个领域具有广泛的应用。
曲线拟合算法在数据分析中的优化与应用在数据分析领域中,曲线拟合算法扮演着至关重要的角色。
曲线拟合算法能够通过将实验数据与理论模型进行拟合,从而揭示数据之间的潜在关系,帮助我们更好地了解数据背后的规律和趋势。
本文将探讨曲线拟合算法在数据分析中的优化与应用。
首先,我们需要了解曲线拟合算法常用的方法。
常见的曲线拟合算法包括最小二乘法、非线性最小二乘法和高斯过程回归等。
最小二乘法是最常用的曲线拟合算法,通过最小化实际观测值与拟合值之间的残差平方和,来寻找最佳拟合曲线。
非线性最小二乘法则是对非线性函数进行拟合,通常需要通过非线性优化算法求解。
高斯过程回归是一种非参数的贝叶斯回归方法,通过高斯过程对未知函数进行建模,并通过贝叶斯推断来估计未知函数的后验分布。
在数据分析中,曲线拟合算法的优化非常重要。
优化算法能够提高曲线拟合的准确性和效率。
例如,针对最小二乘法,可以使用一些基于梯度下降的优化算法,如Levenberg-Marquardt算法和共轭梯度算法,来加速参数估计的收敛速度。
对于非线性最小二乘法,可以选择适当的优化算法来处理非线性问题,如拟牛顿方法和遗传算法等。
此外,还可以考虑使用启发式算法来优化曲线拟合的结果,如粒子群优化算法和模拟退火算法等。
除了优化算法,还有一些技术可以辅助曲线拟合算法的应用。
例如,数据预处理和特征工程可以帮助我们提取有效信息并减少噪声对曲线拟合的影响。
另外,交叉验证技术可以帮助我们评估曲线拟合模型的性能,并选择合适的模型复杂度来避免过拟合。
曲线拟合算法在数据分析中有着广泛的应用。
首先,曲线拟合算法可以用于数据的插值和外推。
当数据缺失或需要预测未来趋势时,我们可以通过曲线拟合算法来填充缺失数据或预测未来数据。
其次,曲线拟合算法可以用于噪声数据的平滑和滤波。
通过拟合平滑曲线,可以去除数据中的噪声,并减少误差对分析结果的影响。
此外,曲线拟合算法还可以用于模式识别和图像处理。
通过将实验数据与理论模型进行拟合,我们可以寻找数据中的规律和趋势,进而用于模式识别和图像处理任务。
曲线拟合理论及其在数据分析中的应用数据分析是现代科学研究和工程实践中的重要环节,在大数据时代更是呈现出不可或缺的地位。
而曲线拟合作为一种常用的数据分析方法,通过将实验观测数据拟合到一个数学模型的曲线上,可以帮助我们理解数据的规律,预测趋势,以及进行数据预处理、异常值检测等工作。
本文将介绍曲线拟合的理论基础,并探讨其在数据分析中的广泛应用。
一、曲线拟合的理论基础1. 最小二乘法最小二乘法是计算机科学和统计学中常用的曲线拟合算法,其核心思想是通过最小化实际观测值与模型预测值之间的误差平方和来确定最佳拟合曲线。
最小二乘法的数学推导和求解过程比较复杂,这里不作具体展开,但需要强调的是,最小二乘法是基于对误差的均方最小化原则,能够在一定程度上减小观测误差对拟合结果的影响。
2. 常见的曲线拟合模型常见的曲线拟合模型包括线性拟合、非线性拟合以及高次多项式拟合。
其中线性拟合是最简单的一种模型,假设目标函数为一个线性方程,通过最小二乘法可以得到最佳拟合直线。
非线性拟合则是假设目标函数为非线性方程,可以通过迭代优化方法如牛顿法、拟牛顿法等求解最佳参数。
高次多项式拟合则是通过使用高次多项式函数来逼近实际观测数据,其表达能力更强,但也容易出现过拟合问题。
二、曲线拟合在数据分析中的应用1. 趋势预测曲线拟合在趋势预测中起到重要作用。
通过对历史数据进行曲线拟合,我们可以分析数据的变化趋势,并用拟合曲线来预测未来的发展方向。
例如,在金融领域,我们可以通过拟合股票价格的曲线来预测未来的趋势,从而做出投资决策。
2. 异常值检测曲线拟合可以帮助我们检测和处理异常值。
异常值是指与其他数据点明显不同的观测值,可能由于测量误差、录入错误等原因产生。
通过将数据进行曲线拟合,我们可以判断某些数据点是否偏离拟合曲线较远,从而识别异常值并进行修正。
3. 数据预处理在进行数据分析前,通常需要对数据进行预处理。
曲线拟合可以用于数据平滑和插值处理。
通过对实验数据进行曲线拟合,我们可以消除噪声、填充缺失值,使得数据更加光滑和完整,有利于后续的分析工作。
曲线拟合及其应用综述摘要:本文首先分析了曲线拟合方法的背景及在各个领域中的应用,然后详细介绍了曲线拟合方法的基本原理及实现方法,并结合一个具体实例,分析了曲线拟合方法在柴油机故障诊断中的应用,最后对全文内容进行了总结,并对曲线拟合方法的发展进行了思考和展望。
关键词:曲线拟合最小二乘法故障模式识别柴油机故障诊断1背景及应用在科学技术的许多领域中,常常需要根据实际测试所得到的一系列数据,求出它们的函数关系。
理论上讲,可以根据插值原则构造n 次多项式Pn(x),使得Pn(x)在各测试点的数据正好通过实测点。
可是, 在一般情况下,我们为了尽量反映实际情况而采集了很多样点,造成了插值多项式Pn(x)的次数很高,这不仅增大了计算量,而且影响了函数的逼近程度;再就是由于插值多项式经过每一实测样点,这样就会保留测量误差,从而影响逼近函数的精度,不易反映实际的函数关系。
因此,我们一般根据已知实际测试样点,找出被测试量之间的函数关系,使得找出的近似函数曲线能够充分反映实际测试量之间的关系,这就是曲线拟合。
曲线拟合技术在图像处理、逆向工程、计算机辅助设计以及测试数据的处理显示及故障模式诊断等领域中都得到了广泛的应用。
2 基本原理2.1 曲线拟合的定义解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。
2.2 曲线拟合的方法解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。
2.2.1 有理论模型的曲线拟合有理论模型的曲线拟合适用于处理有一定背景资料、规律性较强的拟合问题。
通过实验或者观测得到的数据对(x i,y i)(i=1,2, …,n),可以用与背景资料规律相适应的解析表达式y=f(x,c)来反映x、y之间的依赖关系,y=f(x,c)称为拟合的理论模型,式中c=c0,c1,…c n是待定参数。
当c在f中线性出现时,称为线性模型,否则称为非线性模型。
有许多衡量拟合优度的标准,最常用的方法是最小二乘法。
2.2.1.1 线性模型的曲线拟合线性模型中与背景资料相适应的解析表达式为:εββ++=xy1(1)式中,β0,β1未知参数,ε服从N(0,σ2)。
将n个实验点分别带入表达式(1)得到:iiixyεββ++=1(2)式中i=1,2,…n,ε1, ε2,…, εn相互独立并且服从N(0,σ2)。
根据最小二乘原理,拟合得到的参数应使曲线与试验点之间的误差的平方和达到最小,也就是使如下的目标函数达到最小:211)(iiniixyJεββ---=∑=(3)将试验点数据点入之后,求目标函数的最大值问题就变成了求取使目标函数对待求参数的偏导数为零时的参数值问题,即:)(211=----=∂∂∑=iiniixyJεβββ(4)0)(21011=----=∂∂∑=i i i ni i x x y Jεβββ (5) 从而,就能唯一地确定参数β0,β1的值,完成了曲线的最小二乘拟合。
2.2.1.2 非线性模型的曲线拟合非线性模型的问题一般比线性问题的处理要复杂,模型也分为两类。
一类是能通过某些数学变换使待求参数以线性形式出现的,一般优先对其进行线性变换将问题转换,这种称为伪线性最小二乘问题;另一类是无法将待求参数线性化的问题,则必须采用较复杂的非线性问题处理方法。
对于第一类问题,其典型代表是多项式模型,设多项式函数为m m x x x x f αααα++++=...)(2210 (6)我们令x m =x m ,则解析式变为m m x x x x f αααα++++=...)(22110 (7)此时试验点数据为(x i1,x i2,…x im , y i ),将试验点数据代入解析式得:im m i i i x x x x f αααα++++=...)(22110 (8) 式中i=1,2,…,n 。
此时的目标函数为2221101)]...([im m i i ni i x x x y J αααα++++-=∑=(9)为使目标函数得到最小值,需使其对各待求参数的偏导数等于零,即0)]...([22211010=++++--=∂∂∑=im m i i ni i x x x y Jααααα0)]...([2221101=++++--=∂∂∑=ij im m i i n i i j x x x x y Jααααα),...,2,1(m j = (10)由此便可求得各参数的唯一值,从而完成了曲线的最小二乘拟合。
类似的可以进行线性化的常用曲线如下表所示:借助求解非线性方程组, 通过最优化方法求得所需参数。
最常用的最优化方法有:单纯形下山法、拟牛顿法以及Marquadst 算法。
另外, 遗传算法(GA )、免疫算法( IA ) 的研究也为曲线拟合中的优化问题提供了新的思路。
2.2.2 无理论模型的曲线拟合无理论模型的曲线拟合通常用于工程当中规律性差、理论模型难以确定或者根本不需要理论模型的问题的处理。
这种情况下一般采用几何方法或神经网络方法实现曲线拟合。
2.2.2.1 曲线拟合的圆弧法圆弧拟合是一种描绘通过观测点(型值点) 的几何拟合方法。
它用分段圆弧代替曲线, 并且使相邻两个圆弧有公共切线。
这种方法归结为以下三种情况:a. 已知圆O 和圆外两点A 1、A 2, 求圆P ,使它通过A 1、A 2,并且与圆O 相切(外切或内切)。
b. 已知圆O 和圆外一点A 2,求圆P,使它通过A 2,并且和圆O 切于点A 1。
c. 已知圆O 1和圆O 2, 求圆P, 使它和圆O 2相切, 且与圆O 1切于定点A 。
根据上述三种情况可以确定圆的圆心坐标、半径以及切点, 从而唯一的确定拟合曲线。
对于常规的已知实验数据点求拟合曲线问题,圆弧拟合法的示意图如图1所示。
分别对试验点连线P 1P 2和P 2P 3做垂直平分线,两条垂直平分线的交点即为第一段圆弧的圆心,第一段圆弧过前三个试验点,以后的每个试验点的圆弧拟合方法以第q 个试验点P q为例进行说明。
先做第q个试验点与第q-1个试验点连线P q-1P q 的垂直平分线,它与第q-1个试验点所在前一段拟合曲线的过第q-1个试验点的半径或者半径的延长线的交点,即为第q个试验点所在拟合圆弧的圆心,确定了圆心,便可作出经过该试验点的拟合圆弧。
依此对每个试验点使用此法,便可实现对所有试验点的圆弧曲线拟合。
图1 可转化为线性式的曲线类型2.2.2.1 曲线拟合的神经网络法如果将人工神经网络的每个结点看成是一个基本函数,则人工神经网络实质上就相当于基本函数族网络(如图2所示),它们在相应的权值ωi作用下,生成网络函数Y,可以将其看成是泛化了的曲线模型。
图2 人工神经网络简图针对曲线拟合的问题,激活函数应该是连续的、非线性的(对非线性拟合问题而言)。
应用最普遍的是Sigmoid 函数, 其表达式为(11)式中,c 为任意常数。
而网络结构的选择一般要根据实验数据的形式确定,前馈型神经网络是最常用的网络结构。
具体地,如果是单条曲线的拟合,网络结构应该是单输入单输出的;如果是多对曲线的并行拟合,还存在单输入多输出与多输入多输出的网络结构。
常用的神经网络拟合模型有BP网络、径基函数(RBF)神经网络等,这里不再详细叙述。
3 曲线拟合的应用3.1 运用曲线拟合法进行故障诊断的方法曲线拟合方法在设备故障诊断方面有着广泛的应用。
在故障诊断中,需要根据已知的测试数据找出相应函数的系数。
对于每一种故障状态,提取所采集的多组信号的多个特征参数,求每组特征参数的平均值,然后分别将不同的特征参数的平均值作为拟合曲线的纵坐标,即:],...,,[21nuuuy=(12)同时取自然数横坐标],...,2,1[nx=(13)然后运用最小二乘法进行多项式曲线拟合,求出拟合系数,这样便可以得到不同故障状态下的多项式拟合系数模式M。
设对于第k个模式Mk对应的多项式拟合系数[a n k,a n-1k,…,a2k,a1k] (n为拟合多项式的阶数),则有:],,...,,[11121111aaaaMnn-=],,...,,[21221222aaaaMnn-=],,...,,[121kkknknkaaaaM-=(14)这样对于每一种模式即可根据采集的大量实验数据求出对应的拟合系数。
对于故障模式的一组信号求出其特征参数的拟合系数[b n,b n-1,…,b2,b1],定义故障模式与已知模式的距离为:21112111211)(...)()(bababadnnnn-++-+-=--21212121222)(...)()(bababadnnnn-++-+-=--2112112)(...)()(b a b a b a d k n k n n k n k -++-+-=-- (15)若d i =min(d 1,d 2,…,d k ),则可以判断待检故障模式属于第i 类故障模式。
3.2 运用曲线拟合法进行故障诊断的实例 由上述理论叙述可以知道,运用曲线拟合方法进行故障诊断可分为建立标准故障模式、分析待检信号、故障判断三个步骤进行。
现以柴油机故障诊断为例进行分析。
3.2.1 建立标准故障模式实验时首先从柴油机表面振动信号中提取各种预设工作状态的时域特征参数,绘制各状态的时域特征参数拟合曲线,计算各状态的拟合多项式系数,建立标准故障模式;对柴油机取六种工作状态,每种工作状态取五个时域特征参数, 建立标准故障模式。
所选状态及参数如表2 所示。
表2 时域中标准故障时各状态特征参数图3 标准故障模式的拟合曲线计算各状态下的拟合多项式系数,计算结果如下:Ma = [ 0.0533 -0.4292 0.6919 3.7650 - 2.5785];用Matlab 绘制故障信号在时域中的拟合曲线如图4所示:图4 故障信号的拟合曲线计算故障信号在时域的多项式拟合系数为: M1= [-0.0916 1.0081 -4.3045 10.9138-6.0745]M2= [-0.1608 1.7929 -7.3646 14.7527-7.7107] 3.2.3 进行故障诊断根据公式求取故障信号与标准故障模式的多项式拟合系数之间的距离,如下表所示:由表可以看出,故障信号1与d 状态的距离最小,可以判断是第一气缸进气门漏气故障;故障信号2与f 状态的距离最小,可以判断是供油提前角提前5-6度故障。