第七章统计相关分析习题
- 格式:doc
- 大小:53.00 KB
- 文档页数:5
第七章思考与练习参考答案1.答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在一定的范围内变化。
2.答:相关和回归都是研究现象及变量之间相互关系的方法。
相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。
3.答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数,样本相关系数。
复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数2R 的正的平方根。
偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。
4.答:回归模型假定总体上因变量Y 与自变量X 之间存在着近似的线性函数关系,可表示为t t t u X Y ++=10ββ,这就是总体回归函数,其中u t 是随机误差项,可以反映未考虑的其他各种因素对Y 的影响。
根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:tt X Y 10ˆˆˆββ+=。
总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。
两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。
第二,总体回归函数中的0β和1β是未知的参数,表现为常数;而样本回归直线中的0ˆβ和1ˆβ是随机变量,其具体数值随所抽取的样本观测值不同而变动。
第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值X围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
12.判断一条回归直线与样本观测值拟合程度好坏的指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。
第七章 相关关系分析法 简答题1.什么是相关关系?相关分析与回归分析的主要内容有哪些?相关关系:指现象之间客观存在的、不确定的数量依存关系。
主要内容:(1)确定变量之间是否相关;(2)确定变量之间的相关类型;关系的密切程度和方向(3)确定变量之间的相关关系的密切程度和方向;(4)建立变量之间的回归方程;(5)给定自变量的值,求因变量的值;(6)测定因变量的估计标准误差。
其中前三个属于相关关系,后三个属于回归关系。
2.什么是相关系数?r 的计算公式中,标准差和协方差分别起的作用是什么? 相关系数:是说明两种现象之间直线相关关系密切程度的统计分析指标。
协方差的作用:显示x 与y 之间相关的性质,即是正相关、负相关; 显示x 与y 之间线性相关关系密切程度的大小。
标准差作用 :消除离差积乘中两个变量原有计量单位的影响;将相关系数的值局限在-1到+1之间。
3.如何利用相关系数来判别现象之间的相关关系?(1)相关系数的取值范围为:-1≤r ≤1 。
(2)r >0,是正相关, r <0,是负相关。
(3)r 越接近0,相关程度越,为不相关。
(4)1=r ,为完全相关,0=r 。
(5)3.0<r , 为不相关或微弱相关低;r 越接近1,相关程度越高。
5.03.0<≤r ,为低度相关; 8.05.0<≤r ,为显著相关; 18.0<≤r , 为高度相关。
4.简述简单直线回归分析的特点。
(1)在两个变量之间必须根据研究的目的确定哪个是自变量,哪个是因变量。
(2)在没有明显因果关系的两个变量中,可配合两个回归方程。
值得注意的是,若两个变量存在明显的因果关系时,只能计算一条回归直线,另一条配合出来也没意义。
(3)回归方程的作用在于给出自变量的数值来估计因变量的可能值。
(4)直线回归方程中,自变量的系数b称为回归系数。
回归系数的符号为正时表示正相关,为负表示负相关。
(5) 回归分析中,因变量是随机的,而把自变量当作研究时可以控制的量。
统计学第七章相关与回归分析试题及答案第七章相关与回归分析(⼆) 单项选择题1、当⾃变量的数值确定后,因变量的数值也随之完全确定,这种关系属于( B )A 、相关关系B 、函数关系C 、回归关系D 、随机关系2、测定变量之间相关密切程度的代表性指标是(C )A 、估计标准误B 、两个变量的协⽅差C 、相关系数D 、两个变量的标准差3、现象之间的相互关系可以归纳为两种类型,即( A )A 、相关关系和函数关系B 、相关关系和因果关系C 、相关关系和随机关系D 、函数关系和因果关系4、相关系数的取值范围是( C )A 、10≤≤γB 、11<<-γC 、11≤≤-γD 、01≤≤-γ5、变量之间的相关程度越低,则相关系数的数值(B )A 、越⼩B 、越接近于0C 、越接近于-1D 、越接近于16、在价格不变的条件下,商品销售额和销售量之间存在着( D )A 、不完全的依存关系B 、不完全的随机关系C 、完全的随机关系D 、完全的依存关系7、下列哪两个变量之间的相关程度⾼( C )A 、商品销售额和商品销售量的相关系数是0.9;B 、商品销售额与商业利润率的相关系数是0.84;C 、平均流通费⽤率与商业利润率的相关系数是-0.94;D 、商品销售价格与销售量的相关系数是-0.918、回归分析中的两个变量(D )A 、都是随机变量B 、关系是对等的C 、都是给定的量D 、⼀个是⾃变量,⼀个是因变量9、每⼀吨铸铁成本(元)倚铸件废品率(%)变动的回归⽅程为:x y c 856+=,这意味着( C )A 、废品率每增加1%,成本每吨增加64元B 、废品率每增加1%,成本每吨增加8%C 、废品率每增加1%,成本每吨增加8元D 、如果废品率增加1%,则每吨成本为56元。
10、某校对学⽣的考试成绩和学习时间的关系进⾏测定,建⽴了考试成绩倚学习时间的直线回归⽅程为:x y c 5180-=,该⽅程明显有错,错误在于( C )A 、a 值的计算有误,b 值是对的B 、b 值的计算有误,a 值是对的C 、a 值和b 值的计算都有误D 、⾃变量和因变量的关系搞错了11、配合回归⽅程对资料的要求是(B )A 、因变量是给定的数值,⾃变量是随机的B 、⾃变量是给定的数值,因变量是随机的C 、⾃变量和因变量都是随机的D 、⾃变量和因变量都不是随机的。
第七部分统计学考点1 统计与统计数据1、统计一词包含三种含义:统计工作、统计数据、统计学2、统计数据的计量尺度:定类尺度(将人口分为男女两类)、定序尺度(将学生成绩分成优、良、中、及格和不及格五类)、定距尺度(某物长10 米,重100 千克等、定比尺度(相对数或平均数,可以进行加、减、乘、除等数学运算)3、统计数据的类型:分类数据、顺序数据、数值型数据(分类数据和顺序数据是定性数据或品质数据,数值型数据是定量数据或数量数据)4、统计中把说明现象某种特征的概念称为变量,变量的具体表现为变量值,统计数据就是统计变量的具体表现。
可分为:分类变量、顺序变量、数值型变量5、数值型变量分为:离散变量和连续变量6、统计指标按其所反映的内容或其数值表现形式,可分为:总量指标、相对指标和平均指标7、总量指标按其所反映的时间状况不同可分为:时期指标和时点指标。
8、统计数据的来源:直接来源,称之为第一手或直接的统计数据;间接来源,称第二手或间接的统计数据。
9、统计数据的直接来源主要有两个渠道:专门组织的调查、科学实验10、实际中常用的统计调查方式主要有:普查、抽样调查、统计报表。
11、普查:为某一特定目的而专门组织的一次性全面调查。
普查的特点:通常是一次性的或周期性的;一般需要规定统一的标准调查时间;数据一般比较准确,规范化程度也较高;使用范围比较狭窄12、抽样调查的特点:经济性、时效性强、适应面广、准确性高,它是实际中应用最广泛的一种调查方式和方法13、抽样调查的集中类型:(1)简单随机抽样(也叫纯随机抽样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的概率相等,样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(2)等距抽样(也叫机械抽样或系统抽样)就是将总体各单位按一定标志或次序排列成为图形或一览表式(也就是通常所说的排队),然后按相等的距离或间隔抽取样本单位。
第七章 相关关系分析法一、填空题1.按相关的程度,相关关系可分为完全相关、 相关和 相关。
2.按相关的方向,直线相关可分为 相关和 相关。
3.回归系数与相关系数的关系为b= 。
4.估计标准误差与相关系数的关系为y s = 。
5.相关系数的取值范围是 。
6.按相关关系涉及变量的多少,可分为 相关和 相关。
7.如果劳动生产率(千元/人)x 和工资的回归方程为:1070c y x =+,这表明劳动生产率每提高1千元/人,工资增加 元。
二、判断题1.家庭的消费支出随着收入的增加而增加,则消费支出与收入之间呈正相关关系。
( )2.当一个变量变动时,另一个变量也相应地发生大致均等的变动,这种相关关系称为非线性相关。
( )3.正相关是两个变量的变动方向一致。
( )4.两个变量之间的相关称为单相关。
( )5.相关系数和估计标准误差的变化方向是相同的。
( )6.相关系数的取值范围为:10≤≤r 。
( )7.当两个变量之间是完全正相关时,则r=1。
( )8.两个变量之间相关的程度越低,相关系数越接近0。
( ) 9.当相关系数等于0时,说明两个变量之间没有相关关系。
( ) 10.当相关系数等于0.8时, 说明两个变量之间是显著相关。
( ) 三、单项选择题1.若变量x 增加时,变量y 的值也增加,那么变量x 和变量y 之间存在着( ) 相关关系。
A.负B.正C.抛物线D.指数曲线2.如果两个变量之间的相关系数为-1,说明两个变量之间是( ) 相关关系。
A.无B.低度C.高度D.完全3.如果两个变量之间的相关系数为0.8,说明两个变量之间是( ) 相关关系。
A.完全B.高度C.显著D.微弱 4.现象之间相互依存关系的程度越低,则相关系数越( )。
A.接近于0B.接近于1C.接近于-1D.趋向于无穷大 5.相关系数的取值范围是( )。
A.01r ≤≤B.10r -≤≤C.r >0D. 11r -≤≤ 6.用最小平方法配合直线方程,必须满足的一个基本条件是( )。
334229.09425053.730.7863334229.0922.0889V425053.73=0.003204 245.4120第七章相关与回归分析习题答案一、填空题1.完全相关、不完全相关、不相关2. —iWrWl3.函数、|r| = l4.无线性相关、完全正相关、完全负相关5.密切程度6.正相关、负相关7.直线相关、曲线相关8.回归系数9.随机的、给定的10.最小二乘法,残差平方和二、 单项选择题I. B 2. B 3. A 4. A 5. B 6. C 7. D 8. B9. A 10. CII. C 12. B 13. D 14. B 15. C三、 多项选择题1. BCD2. ACD3. ABD4. ABCD5. ACE四、 计算题1解:B\=V - p 2x = 549.8 - 0.7863 * 647.88 = 40.37202 _ [£ (匕顼(X,侦)]2 '"£(x,-x )2£(y,-y )20.999834425053.73*262855.25 ;2=(1-产切 _y )2 =43.6340= 2.0889 n — 2(3) H°:”2=0,H I :”2 邳腐 _ 0.7863~S~ ~ 0.003204〃2券(〃-2)=诲(10) = 2.228t 值远大于临界值2.228,故拒绝零假设,说明月在5%的显著性水平下通过了显著性 检验。
(4) Y f =40.3720 + 0.7863*800 = 669.41 (万元)0.0273 S' =S l + 厂 Xf =2.0089」1 + 土 +华°「647・88)2 = 2 1429 所以,Yf 的置信度为 7V n Z (X,-X )2 V 12 425053.73 95 %的预测区间为:Y f ±t a/2(n-2)S ef = 669.41 ±2.228* 1.0667 = 669.41 ±2.3767 所以,区间预测为: 664.64 < Y f <674.182解:A _ £(匕一双%一灭)—N £X ,E —£x,£匕) 乃一 Z (x,一文尸一 (£x )9*803.02-13.54*472 八= ------------------------------------ =0.02739*28158-472*472& = Y-$2X =13.54/9-0.0273 * 472/9 = 0.0727(2)决定系数: , [y (y-F )(x-%)]2 r 2 =¥,_ 盘——;=0.9723Z (x,-x )Na-V )-残差平方和^<=(l-r 2)^(y-y )2 =0.0722 (3)身高与体重的相关系数: r =序=J0.9723 = 0.9861H O :A = A = O ,H 1:A W 2不同时为零厂。
《统计学原理》第七章习题河南电大贾天骐一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的.( )答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
( )答案:√题目3: 只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案: ×题目4:若变量的值增加时,变量的值也增加,说明与之间存在正相关关系;若变量的值减少时,变量的值也减少,说明与之间存在负相关关系。
( )答案: ×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度.()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度.()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度.()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
( )答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
( )答案: ×题目11: 完全相关即是函数关系,其相关系数为±1。
( )答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A。
相关关系 B.函数关系 C.回归关系 D。
随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即( )。
A。
相关关系和函数关系 B。
相关关系和因果关系C。
相关关系和随机关系 D。
函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A。
都是随机的 B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是( )。
第七章 相关与回归分析(一)填空题1、相关关系按其相关的程度不同,可分为 、 和 。
2、相关系数的正负表示相关关系的方向,r 为正值,两变量是 ;r 为负数,两变量是 。
3、r=0,说明两个变量之间 ;r=+1,说明两个变量之间 ;r=-1说明两个变量之间 。
4、一元线性回归方程bx a y+=ˆ 中的参数a 代表 ,数学上称为 ;b 代表 ,数学上称为 。
5、 分析要根据研究的目的确定哪一个为自变量,哪一个为因变量,在这一点与 分析时不同。
6、相关关系按方向不同,可分为 和 。
7、完全线性相关的相关系数r 值等于 。
8、计算回归方程要注意资料中因变量是 的,自变量是 的。
9、回归方程只能用于由 推算 。
(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、相关分析研究的是( )A. 变量之间关系的密切程度B. 变量之间的因果关系C. 变量之间严格的相互依存关系D. 变量之间的线性关系2、相关关系是( )A 、现象间客观存在的依存关系B 、现象间的一种非确定性的数量关系C 、现象间的一种确定性的数量关系D 、现象间存在的函数关系3、下列情形中称为正相关的是( )A. 随着一个变量的增加,另一个变量也增加B. 随着一个变量的减少,另一个变量增加C. 随着一个变量的增加,另一个变量减少D. 两个变量无关4、当自变量x 的值增加,因变量y 的值也随之增加,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关5、相关系数r 的取值范围是( )A. B.C. 6、当自变量x 的值增加,因变量y 的值也随之减少,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关7、相关系数等于零表明两变量( )A. 是严格的函数关系B. 不存在相关关系C. 不存在线性相关关系D. 存在曲线相关关系8、相关系数r 的取值范围是( )A 、从0到1B 、从-1到0C 、从-1到1D 、无范围限制11<<-r 10≤≤r 11≤≤-r9、相关分析对资料的要求是( )A. 两变量均为随机的B. 两变量均不是随机的C. 自变量是随机的,因变量不是随机的D. 自变量不是随机的,因变量是随机的10、相关分析与回归分析相比,对变量的性质要求是不同的,回归分析中要求( )A 、自变量是给定的,因变量是随机的B 、两个变量都是随机的C 、两个变量都是非随机的D 、因变量是给定的,自变量是随机的11、回归方程 中的回归系数b说明自变量变动一个单位时,因变量( )A. 变动b个单位 B. 平均变动b 个单位C.变动a+b 个单位 D. 变动a 个单位12、一般来说,当居民收入减少时,居民储蓄存款也会相应减少,二者之间的关系是( )A 、负相关B 、正相关C 、零相关D 曲线相关13、回归系数与相关系数的符号是一致的,其符号均可判断现象( )A. 线性相关还是非线性相关B. 正相关还是负相关C. 完全相关还是不完全相关D. 简单相关还是复相关14、配合回归方程比较合理的方法是( )A 、移动平均法B 、半数平均法C 、散点法D 、最小平方法15、在相关分析中不能把两个变量区分为确定性的自变量和随机性的因变量,在回归分析中( )A. 也不能区分自变量和因变量B. 必须区分自变量和因变量C. 能区分,但不重要D. 可以区分,也可以不区分16、价格愈低,商品需求量愈大,这两者之间的关系是( )A 、复相关B 、不相关C 、正相关D 、负相关17、按最小平方法估计回归方程 中参数的实质是使( )A. B. C. D. 18、判断现象之间相关关系密切程度的方法是( )A 、作定性分析B 、制作相关图C 、计算相关系数D 、计算回归系数19、在线性相关条件下,自变量的标准差为2,因变量的标准差为5,而相关系数为0.8,其回归系数为( )A. 8B. 12.5C. 0.32D. 2.020、已知某产品产量与生产成本有直线关系,在这条直线上,当产量为1000件时,其生产成本为50000元,其中不随产量变化的成本为12000元,则成本总额对产量的回归方程是( )A 、Y=12000+38XB 、Y=50000+12000XC 、Y=38000+12XD 、Y=12000+50000Xbx a y +=ˆbx a y +=ˆ∑=-最小值2)ˆ(y y21、已知,则相关系数为()A.不能计算 22、相关图又称( )A 、散布表B 、折线图C 、散点图D 、曲线图23、工人的出勤率与产品合格率之间的相关系数如果等于0.85,可以断定两者是( )A 、显著相关B 、高度相关C 、正相关D 、负相关24、相关分析与回归分析的一个重要区别是( )A 、前者研究变量之间的关系程度,后者研究变量间的变动关系,并用方程式表示B 、前者研究变量之间的变动关系,后者研究变量间的密切程度C 、两者都研究变量间的变动关系D 、两者都不研究变量间的变动关系25、当所有观测值都落在回归直线上,则这两个变量之间的相关系数为( )A 、1B 、-1C 、+1或-1D 、大于-1,小于+126、一元线性回归方程y=a+bx 中,b 表示( )A 、自变量x 每增加一个单位,因变量y 增加的数量B 、自变量x 每增加一个单位,因变量y 平均增加或减少的数量C 、自变量x 每减少一个单位,因变量y 减少的数量D 、自变量x 每减少一个单位,因变量y 增加的数量(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、直线回归方程 中,两个变量x 和y ( )A. 前一个是自变量 ,后一个是因变量B. 两个变量都是随机变量C. 两个都是给定的量D. 前一个是给定的量 ,后一个是随机变量E. 前一个随机变量 ,后一个是给定的量2、相关分析( )A 、分析对象是相关关系B 、分析方法是配合回归方程C 、分析方法主要是绘制相关图和计算相关系数D 、分析目的是确定自变量和因变量E 、分析目的是判断现象之间相关的密切程度,并配合相应的回归方程以便进行推算和预测3、相关分析的特点有 ( )A. 两个变量是对等的关系B. 它只反映自变量和因变量的关系C. 可以计算出两个相关系数D. 相关系数的符号都是正的E. 相关的两个变量必须都是随机的4、下列现象中存在相关关系的有( )A 、职工家庭收入不断增长,消费支出也相应增长B 、产量大幅度增加,单位成本相应下降C 、税率一定,纳税额随销售收入增加而增加D 、商品价格一定,销售额随销量增加而增加E 、农作物收获率随着耕作深度的加深而提高bx a y +=ˆ5、相关关系与函数关系的区别在于( )A. 相关关系是变量间存在相互存在依存关系,而且函数关系是因果关系B. 相关关系的变量间是确定不变的,而函数关系值是变化的C. 相关关系是模糊的,函数关系是确定的D. 两种关系没有区别6、商品流通费用率与商品销售额之间的关系是( )A 、相关关系B 、函数关系C 、正相关D 、负相关E 、单相关7、为了揭示变量x 与y 之间的相互关系,可运用( )A. 相关表B. 回归方程C.相关系数D. 散点图8、相关系数( )A 、是测定两个变量间有无相关关系的指标B 、是在线性相关条件下测定两个变量间相关关系密切程度的指标C 、也能表明变量之间相关的方向D 、其数值大小决定有无必要配合回归方程E 、与回归系数密切相关9、可以借助回归系数来确定( )A. 两变量之间的数量因果关系B. 两变量之间的相关方向C. 两变量之间的相关的密切程度D.10、直线回归方程( )A、建立前提条件是现象之间具有较密切的直线相关关系B 、关键在于确定方程中的参数a 和bC 、表明两个相关变量间的数量变动关系D 、可用来根据自变量值推算因变量值,并可进行回归预测E 、回归系数b=0时,相关系数r=011、可用来判断现象相关方向的指标有( )A. 相关系数B. 回归系数C. 回归参数aD. 协方差E. 估计标准误差 12、某种产品的单位成本y (元)与工人劳动生产率x (件/人)之间的回归直线方程Y=50-0.5X ,则( )A 、0.5为回归系数B 、50为回归直线的起点值C 、表明工人劳动生产率每增加1件/人,单位成本平均提高0.5元D 、表明工人劳动生产率每增加1件/人,单位成本平均下降0.5元E 、表明工人劳动生产率每减少1件/人,单位成本平均提高50元13、对于回归系数,下列说法中正确的有( )A. b 是回归直线的斜率B. b 的绝对值介于0-1之间C. bD. bE. b 满足方程组y S ⎪⎩⎪⎨⎧+=+=∑∑∑∑∑2xb x a xy x b na y14、相关关系的特点是()A、现象之间确实存在数量上的依存关系B、现象之间不确定存在数量上的依存关系C、现象之间的数量依存关系值是不确定的D、现象之间的数量依存关系值是确定的E、现象之间不存在数量上的依存关系15、回归方程可用于( )A. 根据自变量预测因变量B. 给定因变量推算自变量C. 给定自变量推算因变量D. 推算时间数列中缺失的数据E. 用于控制因变量16、建立一元线性回归方程是为了()A、说明变量之间的数量变动关系B、通过给定自变量数值来估计因变量的可能值C、确定两个变量间的相关程度D、用两个变量相互推算E、用给定的因变量数值推算自变量的可能值17、在直线回归方程中,两个变量x和y()A、一个是自变量,一个是因变量B、一个是给定的变量,一个是随机变量C、两个都是随机变量D、两个都是给定的变量E、两个是相关的变量18、在直线回归方程中()A、在两个变量中须确定自变量和因变量B、回归系数只能取正值C、回归系数和相关系数的符号是一致的D、要求两个变量都是随机的E、要求因变量是随机的,而自变量是给定的19、现象间的相关关系按相关形式分为()A、正相关B、负相关C、直线相关D、曲线相关E、不相关20、配合一元线性回归方程须具备下列前提条件()A、现象间确实存在数量上的相互依存关系B、现象间的关系是直线关系,这种直线关系可用散点图来表示C、具备一组自变量与因变量的对应资料,且能明确哪个是自变量,哪个是因变量D、两个变量之间不是对等关系E、自变量是随机的,因变量是给定的值21、由直线回归方程y=a+bx所推算出来的y值()A、是一组估计值B、是一组平均值C、是一个等差级数D、可能等于实际值E、与实际值的离差平方和等于0(四)是非题1、判断现象之间是否存在相关关系必须计算相关系数。
第七章相关分析习题
一、单项选择题
1、在相关分析中,要求相关的两个变量()。
A、都是随机变量
B、因变量是随机变量
C、都不是随机变量
D、自变量是随机变量
2、两个变量间的相关关系称为()。
A、单相关
B、复相关
C、无相关
D、负相关
3、相关系数的取值范围是()。
A、r=0
B、-1<r<0
C、0<r<1
D、-1<r<1
4、从变量之间相关的方向看,可分为()。
A、正相关和负相关
B、直线相关和曲线相关
C、单相关和复相关
D、完全相关和无相关
5、从变量之间相关的表现形式看,可分为()。
A、正相关和负相关
B、直线相关和曲线相关
C、单相关和复相关
D、完全相关和无相关
6、两变量之间相关程度越强,则相关系数()。
A、愈趋近1
B、愈趋近0
C、愈大于1
D、愈小于1
7、两变量之间相关程度越弱,则相关系数()。
A、愈趋近1
B、愈趋近0
C、愈大于1
D、愈小于1
8、相关系数r取正值或负值决定于()。
A、L XY
B、L XX
C、L YY
D、L XX L YY
9、物价上涨,销售量下降,则物价与销售量之间属于()。
A、无相关
B、负相关
C、正相关
D、无法判断
10、相关系数()。
A.适用于单相关C、既适用于单相关也适用于复相关
B、适用于复相关D、既不适用于单相关也不适用于复相关
11在回归直线y=a + bx中,b表示()。
A、当X增加一个单位时,Y增加a的数量
B、当Y增加一个单位时,X增加b的数量
C、当X增加一个单位时,Y的平均增加量
D、当Y增加一个单位时,X的平均增加量
12、估计标准误差是反映()。
A、平均数代表性的指标
B、相关关系的指标
C、回归直线的代表性指标
D、序时平均数代表性指标
13、在回归分析中,要求对应的两个变量()。
A、都是随机变量
B、是对等关系
C、不是对等关系
D、都不是随机变量
14、当产量为100件时,其生产成本为300元,其中固定生产成本为600元,则成本总额对产量的回归直线方程是()。
A、y=6000+24x
B、y=600+24x
C、y=24+6000x
D、y=2400+6x
二、多项选择题
1、直线相关分析的特点是()。
A相关系数有正负号B、两个变量是对等关系C、只有一个相关系数
D两个变量均是随机变量E、因变量是随机变量
2、当两变量完全相关时,则相关系数为()。
A、0
B、1
C、-1
D、0.5
E、0.8
3、相关系数的种类()。
A、从相关的方向分为正相关和负相关
B、从相关的表现形式分为直线相关和曲线相关
C、从相关程度分为完全相关、不完全相关、无相关
D、从影响因素多少分为单相关、复相关
E、从数值形式分为相关系数和相关指数
4、简单直线回归分析的特点是()。
A、存在两个回归方程
B、两个变量不是对等关系
C、回归系数有正负号
D、因变量是随机的,自变量是给定的
E、利用一个回归方程,两个变量可相互推算
5、估计标准误差是反映()。
A、因变量的估计值
B、自变量的估计值
C、回归方程代表性的指标
D、因变量估计值可靠程度的指标
E、自变量数列离散程度的指标
6、直线回归方程中的两个变量()。
A、两个都是随机变量
B、两个都是给定的变量
C、一个是自变量。
另一个是因变量
D、一个是给定的变量,另一个是随机变量
E、必须确定哪个是自变量,哪个是因变量
7、直线回归方程中的回归系数()。
A、能表明两变量间的变动程度
B、不能表明两变量间的变动程度
C、能说明两变量间的变动方向
D、不能说明两变量间的变动方向
E、其数值大小不受计量单位的影响
8、下列哪些现象是相关关数()。
A、家庭收入与消费支出
B、时间与距离
C、亩产量与施肥量
D、学号与考试成绩
E、物价水平与商品需求量
9、相关系数与回归系数()。
A、回归系数大于零则相关系数大于零
B、回归系数小于零则相关系数小于零
C、回归系数大于零则相关系数小于零
D、回归系数小于零则相关系数大于零
E、回归系数等于零则相关系数等于零
10、下列关系中属于正相关的有()。
A、物价水平与商品需求量
B、施肥量与亩产量
C、单位产品成本与原材料消耗量
D、商业的劳动效率和流通费用率
E、产品产量与单位产品成本
三、判断题
1、计算相关系数时,首先要确定自变量和因变量。
()
2、若直线回归方程y=-8+2x,则变量X与Y之间属于正相关。
()
3、进行回归分析时,首先要确定自变量和因变量。
()
4、在直线回归方程中,回归系数的大小,取决于变量的计量单位。
()
5、当回归系数大于零时,则正相关,当回归系数小于零时,则负相关。
()
6、相关的两个变量必须都是随机的。
()
7、进行回归分析时,要求两个变量是对等关系。
()
8、相关的两个变量,只能算出一个相关系数。
()
9、进行回归分析时,两个变量之间,只能计算出一个回归系数。
()
10、相关的两个变量之间是对等关系。
()
11、计算回归方程时,要求因变量是随机的,而自变量不是随机的,是给定的数值。
()
12、一种回归线只能作一种推算,不能反过来进行另一种推算。
()
13、估计标准误差是以回归直线为中心,观察值与估计值数之间平均离差程度的大小。
()
14、回归系数的绝对值小于1。
( )
四、填空题
1、从变量之间相互关系的方向来看,可分为()与();从变量之间相互关系的表现形式来看,可分为()和()。
2、完全相关的关系即()关系,其相关系数为()。
3、两个变量之间的相关关系称为 ( )相关,三个以上变量的关系称为( )相关。
4、当变量之间属于正相关则( ),当变量之间属于负相关则 ( ) 。
5、相关系数的绝对值是在( )与 ( )这个闭区间内变化;其绝对值愈趋近于( ) ,两个变量之间的相关程度愈高;愈趋近于 ( ),两个变量之间的相关程度愈低。
6、当变量之间属于正相关则回归系数( );当变量之间属于负相关则回归系数 ( )。
7、进行简单直线回归分析时,要求 ( )是随机的,( )不是随机的,是给定的数值。
8、若利润额(万元)对销售额(万元)的回归方程为y 0=31.6+0.18x ,则表明销售额每增加1万元,利润额平均增加 ( )万元。
五、复习思考题
1、举例说明什么是函数关系、什么是相关关系?相关关系的特点是什么?
2、试述相关分析的主要内容。
3、试述回归分析与相关分析的区别与联系
4、应用相关分析与回归分析应注意哪些问题?
5、试述相关系数r 值的意义。
6、相关关系的种类有那些?
六、计算题
1、根据某农村地区历年农民月人均收入与商品销售额资料计算的有关数据如下:其中x 代表人均收入,y 代表商品销售额。
要求:
(1)建立以商品销售额为因变量的直线回归方程,并解释回归系数的含义;
(2)若2008年月人均收入为400元,试推算商品销售额。
2、某企业连续5年销售额资料如下
∑
∑∑∑=====16918,34362260
,546,92xy x y x n
要求:
(1) 试用最小平方法配合一直线趋势方程
(2) 根据趋势方程,预测2004年企业的销售额
3、已知:279,30268,1481y xy ===∑∑∑∑∑2n=6 ,x=21 , y=426 , x
要求:(1)计算变量x 与变量y 间的相关系数;
(2)建立变量y 倚变量x 变化的直线回归方程。
(要求写出公式和计算过程,结果保留四位小数。
)。