第6章 蛋白质生物信息学
- 格式:ppt
- 大小:2.22 MB
- 文档页数:49
⽣物信息学实验报告3(三)蛋⽩质序列分析(三)蛋⽩质序列分析实验⽬的:掌握蛋⽩质序列检索的操作⽅法,熟悉蛋⽩质基本性质分析,了解蛋⽩质结构分析和预测。
实验内容:1、检索SOX-21蛋⽩质序列,利⽤ProParam⼯具进⾏蛋⽩质的氨基酸组成、分⼦质量、等电点、氨基酸组成、原⼦总数及疏⽔性(ProtScale⼯具)等理化性质的分析。
2、利⽤PredictProtein、PROF、HNN等软件预测分析蛋⽩质的⼆级结构;利⽤Scan Prosite软件对蛋⽩质进⾏结构域分析。
3、利⽤TMHMM、TMPRED、SOSUI等⼯具对蛋⽩质进⾏跨膜分析;采⽤PredictNLS进⾏核定位信号分析;利⽤PSORT进⾏蛋⽩质的亚细胞定位预测;利⽤CBS(http://www.cbs.dtu.dk/services/ProtFun/)⽹站⼯具预测蛋⽩的功能,将序列⽤Blocks、SMART、InterProScan、PFSCAN等搜索其保守序列的特征,进⾏motif 的结构分析。
4、利⽤Swiss-Model数据库软件预测该蛋⽩的三级结构,结果⽤蛋⽩质三维图象软件Jmol查看。
CPHmodels 也是利⽤神经⽹络进⾏同源模建预测蛋⽩质结构的⽅法和⽹络服务器I-TASSER预测所选蛋⽩质的空间结构。
5、分析蛋⽩质的翻译后修饰:分析信号肽及其剪切位点: SignalIP http://www.cbs.dtu.dk/services/SignalP/;分析糖链连接点:分析O-连接糖蛋⽩,NetOGlyc,http://www.cbs.dtu.dk/services/NetOGlyc/;分析N-连接糖蛋⽩,NetNGlyc,http://www.cbs.dtu.dk/services/NetNGlyc/。
6、利⽤检索的序列,进⾏同源⽐对,获得并分析⽐对结果。
实验步骤(⼀)1、在NCBI 蛋⽩质数据库中查找SOX-21蛋⽩质序列分别选择⽖蟾(Xenopus laevis)、⼩家⿏[Mus musculus]、猕猴[Macaca mulatt a]的SOX-21蛋⽩质序列,并保存其FASTA格式。
生物信息学在蛋白质组学中的应用生物信息学是一门研究生物大分子信息的学科,通过计算机技术和信息科学的手段,对生物大分子的结构、功能和演化进行分析。
而蛋白质组学则是研究生物体内所有蛋白质的组成、结构和功能的学科。
两者的结合,引领着生命科学的革命。
生物信息学在蛋白质组学中的应用,让我们可以更加全面地了解和掌握蛋白质的结构和功能,而这对于科学研究和医学应用均有巨大的推动作用。
下面,我们将具体探讨生物信息学在蛋白质组学中的应用。
一. 蛋白质结构预测蛋白质的结构形态是其功能的决定因素之一,因此,预测蛋白质的结构形态,是理解其生物学功能的重要前提。
蛋白质结构预测作为生物信息学的一个重要分支,在很大程度上实现了无需实验即可预测蛋白质的结构。
生物信息学中,蛋白质结构预测主要通过构建三维结构预测模型,在预测蛋白的空间结构中发挥重要作用。
例如,alphaFold的发明使得结构预测的准确率大大提高,并促进了新型药物开发的进展。
二. 蛋白质分子演化研究蛋白质分子演化研究可揭示物种的进化历程、适应策略及其生物功能的变化,为研究生物进化提供了强有力的支持。
生物信息学中,通过基础序列、编码序列等方面的比对,可对蛋白质分子的演化进行系统研究。
蛋白质序列比对是生物信息学中的一项重要技术,可通过比对基因组任务与蛋白质的序列,确定蛋白质分子的演化历程。
而在基于比较基因组的全基因组分析上,生物信息技术能够通过分析基因间的各种相互作用、协同作用等,预测和分析蛋白质进化后的功能、异常活性等,为相关分子的研究提供了重要的启示。
三. 靶向药物设计靶向药物设计,是指通过研究靶点的结构、构象及其动态特征,设计新型药物分子以治疗相关疾病。
生物信息学在靶向药物设计中的应用主要包括分子对接、虚拟筛选、药物分子分析等方面。
分子对接技术能够基于生物分子的三维结构,预测其与其他分子之间的相互作用过程,从而验证确保新型药物,合理性以及药效稳定性。
而虚拟筛选是指在筛选化合物的过程中,通过计算机模拟技术进行模型建模,模拟实验与研究,选择出药物阶段,为临床的治疗进展理论基础提供了重要的保障。
蛋白质生物信息学
蛋白质生物信息学是指应用计算机科学和数学方法,研究蛋白质的结构、功能和互作关系,并将这些信息应用于生物学研究中的一门学科。
蛋白质是生命体中最重要的分子之一,具有广泛的生物功能,在疾病诊断、药物研发、食品安全等领域都有着重要的应用价值。
蛋白质生物信息学主要包括蛋白质序列分析、蛋白质结构预测、蛋白质功能预测、蛋白质相互作用网络分析等内容。
其中,蛋白质序列分析是研究蛋白质基本构成和序列特征的方法;蛋白质结构预测则是通过计算方法来预测蛋白质的三维结构;蛋白质功能预测则是根据蛋白质的序列、结构和互作关系等信息预测其功能。
此外,蛋白质相互作用网络分析则是研究蛋白质之间相互作用的方法,可以揭示蛋白质在细胞内的相互作用关系和生物过程的调控机制。
蛋白质生物信息学是一门交叉学科,需要具备生物学、计算机科学和数学等多方面的知识。
随着科技的发展,蛋白质生物信息学在生命科学领域中的应用越来越广泛,为深入了解生命体系、开发新药物和治疗疾病提供了新的思路和方法。
- 1 -。
实验六:生物信息学试验学习总结1使用SWISS-MODEL 进行蛋白质三维结构预测,PyMOL 查看分子结构1.1蛋白质三维结构预测-SWISS-MODEL1.1.1全自动建模以MAP kinase Pmk1 [Schizosaccharomyces pombe] (NP_595289.1)为target 序列,首先收缩模板序列,选择四个模板序列进行同源建模,并对得到的模型进行评估1.1.2比对模式建模模型评估:GMQE(全局模型质量评估)是一种质量评估,它结合了目标-模板对齐和模板搜索方法的属性。
由此产生的GMQE分数表示为0到1之间的数字,反映了用该校准和模板构建的模型的预期精度。
较高的数字表明更高的可靠性。
一旦建立了模型,在这个特定的情况下,GMQE(1)就会得到更新,同时考虑到获得的模型的q 平均值,从而提高质量评估的可靠性。
QMEANQMEAN平均数(Benkert等)是基于不同几何属性的复合得分函数,并提供了全局的(即:对于整个结构)和局部(即每个残余物)绝对质量的估计是基于一个单一模型的。
z分数(2)提供了对模型中观察到的结构特征的“本土程度”的估计,并指出该模型是否具有与实验结构相似的质量。
较高的q均值z分数表明模型结构与相似尺寸的实验结构之间的一致性较好。
得分在0-4.0或以下的是一个质量很低的模型,这一点也可以通过在分数旁边的“拇指向下”符号的变化来突出显示。
QMEAN由四个单独的术语组成。
全球q平均值质量分数的四个单独术语也列在上面。
在巴图的白色区域(数值接近于零)表明这一特性与实验结构中所观察到的相似。
实证值表明,该模型平均得分高于实验结构,负数表明该模型平均得分低于实验结构。
q均值z分数本身显示在顶部。
单独的z分数比较了Cbeta原子之间的相互作用势,所有的原子,溶解势和扭转角度的潜力。
“局部质量”图显示了模型的每一个剩余部分(在x轴上报告),期望与本机结构(y轴)的相似性。