高中数学人教A选择性必修一第一章 再练一课(范围:§1.1~§1.4)
- 格式:pptx
- 大小:1.75 MB
- 文档页数:31
再练一课(范围:§1.1~§1.4)1.已知A (1,5, -2),B (2,4,1),C (x ,3,y +2),且A ,B ,C 三点共线,则实数x ,y 的值分别为( ) A .3,-3 B .6,-1 C .3,2 D .-2,1答案 C解析 AB →=(1,-1,3),AC →=(x -1,-2,y +4). ∵A ,B ,C 三点共线,∴x -11=-2-1=y +43,∴x =3,y =2.2.在平面ABCD 中,A (0,1,1),B (1,2,1),C (-1,0,-1),若a =(x ,y ,z ),且a 为平面ABC 的法向量,则y 2等于( ) A .2 B .0 C .1 D .3 答案 C解析 AB →=(1,1,0),AC →=(-1,-1,-2), 由a 为平面ABC 的法向量知 ⎩⎪⎨⎪⎧a ·AB → =0,a ·AC → =0,即⎩⎪⎨⎪⎧x +y =0,-x -y -2z =0,令x =-1,则y =1,∴y 2=1.3.已知a =(1-t ,1-t ,t ),b =(2,t ,t ),则|a -b |的最小值为( ) A.55 B.355 C.555 D.115答案 B解析 因为a -b =(-1-t ,1-2t ,0), 所以|a -b |=(1+t )2+(1-2t )2=5t 2-2t +2, 由配方法可求得最小值为355.4.已知两平面的法向量分别为m =(0,2,0),n =(2,2,2),则两平面的夹角为( ) A .60° B .120° C .30° D .90° 答案 A解析 因为cos 〈m ,n 〉=m ·n |m ||n |=22×22=12,所以〈m ,n 〉=60°.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为( ) A.32 B.1010 C.35 D.25答案 D解析 以D 为坐标原点,分别以DA ,DC ,DD 1为x ,y ,z 轴建立空间直角坐标系, 则D (0,0,0),A (1,0,0),M ⎝⎛⎭⎫1,12,1,C (0,1,0),N ⎝⎛⎭⎫1,1,12, 则AM →=⎝⎛⎭⎫0,12,1,CN →=⎝⎛⎭⎫1,0,12, 因为AM →·CN →=12,|AM →|=52,|CN →|=52,所以cos 〈AM →,CN →〉=25.6.a =(2,3,-1),b =(-2,1,3),则以a ,b 为邻边的平行四边形的面积是________. 答案 6 5解析 cos 〈a ,b 〉=a ·b |a ||b |=-27,得sin 〈a ,b 〉=357, 由公式S =|a ||b |sin 〈a ,b 〉可得结果为6 5.7.如图,在三棱锥S -ABC 中,SA ⊥底面ABC ,AB ⊥BC ,AB =BC =2,SA =22,则 SC 与 AB 所成角的大小为________.答案 60°解析 因为SA ⊥底面ABC ,所以SA ⊥AC ,SA ⊥AB ,所以AS →·AB →=0 , 又AB ⊥BC ,AB =BC =2,所以∠BAC =45°,AC =2 2. 因此AB →·AC →=|AB →||AC →|cos 45°=2×22×22=4.所以SC →·AB →=(AC →-AS →)·AB →=AC →·AB →-AS →·AB →=4, 又SA =2 2 ,所以SC =SA 2+AC 2=4, 因此cos 〈SC →,AB →〉=SC →·AB →|SC →||AB →|=44×2=12,所以SC 与AB 所成角的大小为60° .8.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上,且AM =12MC 1,N 为BB 1的中点,则MN 的长为________. 答案216a 解析 以A 为坐标原点,分别以AB →,AD →,AA 1→为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(图略),则M ⎝⎛⎭⎫a 3,a 3,a 3,N ⎝⎛⎭⎫a ,0,a 2,所以MN →=⎝⎛⎭⎫2a 3,-a 3,a 6, 所以|MN →|=⎝⎛⎭⎫49+19+136a 2=21a 6. 9.如图,已知在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,D 为AB 的中点,AC =BC =BB 1.求证:(1)BC 1⊥AB 1; (2)BC 1∥平面CA 1D .证明 如图,以C 1为原点,分别以C 1A 1,C 1B 1,C 1C 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2). (1)由于BC 1—→=(0,-2,-2), AB 1—→=(-2,2,-2), 因此BC 1—→·AB 1—→=0-4+4=0, 因此BC 1—→⊥AB 1—→, 故BC 1⊥AB 1.(2)取A 1C 的中点E ,连接DE ,由于E (1,0,1), 所以ED →=(0,1,1), 又BC 1—→=(0,-2,-2),所以ED →=-12BC 1—→,又ED 和BC 1不共线,所以ED ∥BC 1, 又DE ⊂平面CA 1D ,BC 1⊄ 平面CA 1D , 故BC 1∥平面CA 1D .10.如图所示,正方体的棱长为1,以正方体的同一顶点上的三条棱所在的直线为坐标轴,建立空间直角坐标系Oxyz ,点P 在正方体的体对角线AB 上,点Q 在正方体的棱CD 上.当点P 为体对角线AB 的中点,点Q 在棱CD 上运动时,求|PQ |的最小值.解 依题意可得P ⎝⎛⎭⎫12,12,12, 设点Q (0,1,z )(0≤z ≤1),则 |PQ →|=⎝⎛⎭⎫122+⎝⎛⎭⎫12-12+⎝⎛⎭⎫12-z 2 =⎝⎛⎭⎫z -122+12, 所以当z =12时,|PQ |min =22,此时Q ⎝⎛⎭⎫0,1,12,Q 恰为CD 的中点. 所以|PQ |的最小值为22.11.在正方体ABCD -A 1B 1C 1D 1中,平面A 1BD 与平面BDC 1夹角的余弦值等于________. 答案 13解析 设正方体棱长为1,以DA →,DC →,DD 1→为单位正交基底建立如图所示的空间直角坐标系Dxyz .求出平面A 1BD 与平面C 1BD 的法向量分别为n 1=(1,-1,-1),n 2=(-1,1,-1). ∴平面A 1BD 与平面BDC 1夹角的余弦值|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=13. 12.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB的距离是________. 答案 3解析 以C 为坐标原点,CA ,CB ,CP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝⎛⎭⎫0,0,95, 所以AB →=(-4,3,0),AP →=⎝⎛⎭⎫-4,0,95. 所以点P 到AB 的距离为|AP →|2-⎝ ⎛⎭⎪⎫|AP →·AB →||AB →|2=3.13.如图,已知四棱锥P -ABCD 的底面是菱形,对角线AC ,BD 交于点O ,OA =4,OB =3,OP =4,OP ⊥底面ABCD .设点M 满足PM →=λMC →(λ>0),当λ=12时,直线P A 与平面BDM 所成角的正弦值是________.答案1010解析 以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则P A →=(4,0,-4),DB →=(0,6,0),AB →=(-4,3,0). 当λ=12时,得M ⎝⎛⎭⎫-43,0,83, 所以MB →=⎝⎛⎭⎫43,3,-83. 设平面DBM 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DB →·n =6y =0,MB →·n =43x +3y -83z =0,解得y =0,令x =2,则z =1,所以n =(2,0,1). 因为cos 〈P A →,n 〉=P A →·n |P A →||n |=442×5=1010,所以直线P A 与平面BDM 所成角的正弦值为1010. 14.正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的长度之和为________. 答案 1解析 如图建立空间直角坐标系,令CE =m ,DF =n ,∴B 1(1,1,0),E (m ,1,1),A (1,0,1),F (0,0,1-n ),B (1,1,1), ∴B 1E →=(m -1,0,1),AF →=(-1,0,-n ),AB →=(0,1,0), ∵B 1E ⊥平面ABF , ∴⎩⎪⎨⎪⎧B 1E →⊥AF →,B 1E →⊥AB →,∴⎩⎪⎨⎪⎧-(m -1)-n =0,0=0, 即m +n =1,∴CE +DF =1.15.如图,过边长为1的正方体ABCD 的顶点A 作线段EA ⊥平面ABCD ,若EA =1,则平面ADE 与平面BCE 夹角的大小是( )A .120°B .45°C .135°D .60°答案 B解析 以A 为原点,分别以AB ,AD ,AE 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则E (0,0,1),B (1,0,0),C (1,1,0),EB →=(1,0,-1),EC →=(1,1,-1). 设平面BCE 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧x -z =0,x +y -z =0,可取n =(1,0,1).又平面EAD 的法向量为AB →=(1,0,0), 所以cos 〈n ,AB →〉=12×1=22, 故平面ADE 与平面BCE 的夹角为45°.16.如图,在四棱锥E -ABCD 中,平面EAD ⊥平面ABCD ,DC ∥AB ,BC ⊥CD ,EA ⊥ED ,AB =4,BC =CD =EA =ED =2.(1)证明:BD ⊥平面AED ;(2)求平面ADE 和平面CDE 夹角的余弦值. (1)证明 因为BC ⊥CD ,BC =CD =2, 所以BD =2 2.又因为EA ⊥ED ,EA =ED =2, 所以AD =2 2.又因为AB =4,由勾股定理知BD ⊥AD . 又因为平面EAD ⊥平面ABCD ,平面EAD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面AED .(2)解 如图,取AD 的中点O ,连接OE ,则OE ⊥AD .因为平面EAD ⊥平面ABCD ,平面EAD ∩平面ABCD =AD , 所以OE ⊥平面ABCD .取AB 的中点F ,连接OF ,则OF ∥BD . 因为BD ⊥AD ,所以OF ⊥AD .以O 为原点,建立如图所示的空间直角坐标系Oxyz , 则D (-2,0,0),C (-22,2,0),E (0,0,2), DC →=(-2,2,0),DE →=(2,0,2). 设平面CDE 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n 1=0,DE →·n 1=0,所以⎩⎪⎨⎪⎧-x +y =0,x +z =0,令x =1,可得平面CDE 的一个法向量n 1=(1,1,-1). 又平面ADE 的一个法向量为n 2=(0,1,0). 因此|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=33. 所以平面ADE 和平面CDE 夹角的余弦值为33.。
【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。
新教材人教A版高中数学必修第一册全册课时练习1.1.1集合的概念 (2)1.1.2集合的表示 (3)1.2集合间的基本关系 (5)1.3.1并集与交集 (7)1.3.2补集及集合运算的综合应用 (8)1.4.1充分条件与必要条件 (11)1.4.2充要条件 (12)1.5.1全称量词与存在量词 (13)1.5.2全称量词命题与存在量词命题的否定 (14)2.1等式性质与不等式性质 (16)2.2.1基本不等式 (17)2.2.2利用基本不等式求最值 (18)2.3.1二次函数与一元二次方程、不等式 (19)2.3.2一元二次不等式的应用 (20)3.1.1.1函数的概念 (21)3.1.1.2函数概念的应用 (22)3.1.2.1函数的表示法 (24)3.1.2.2分段函数 (25)3.2.1.1函数的单调性 (26)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (32)3.3幂函数 (36)3.4函数的应用(一) (37)4.1.1根式 (40)4.1.2指数幂及其运算 (41)4.2.1指数函数及其图象性质 (43)4.2.2指数函数的性质及其应用 (44)4.3.1对数的概念 (47)4.3.2 对数的运算 (48)4.4.1对数函数及其图象 (49)4.2.2对数函数的性质及其应用 (51)4.4.3不同函数增长的差异 (53)4.5.1函数的零点与方程的解 (54)4.5.2用二分法求方程的近似解 (57)4.5.3函数模型的应用 (58)5.1.1任意角 (60)5.1.2弧度制 (61)5.2.1三角函数的概念 (62)5.2.2同角三角函数的基本关系 (64)5.3.1诱导公式二、三、四 (66)5.3.2诱导公式五、六 (67)5.4.1正弦函数、余弦函数的图象 (69)5.4.2.1正弦函数、余弦函数的性质(一) ...................................................................... 71 5.4.2.2正弦函数、余弦函数的性质(二) ...................................................................... 73 5.4.3正切函数的性质与图象 ........................................................................................ 75 5.5.1.1两角差的余弦公式 ............................................................................................. 76 5.5.1.2两角和与差的正弦、余弦公式 ......................................................................... 78 5.5.1.3两角和与差的正切公式 ..................................................................................... 80 5.5.1.4二倍角的正弦、余弦、正切公式 ..................................................................... 81 5.5.2.1简单的三角恒等变换 ......................................................................................... 83 5.5.2.2三角恒等变换的应用 ......................................................................................... 84 5.6.1函数y =A sin(ωx +φ)的图象(一) .......................................................................... 86 5.6.2函数y =A sin(ωx +φ)的图象(二) .......................................................................... 88 5.7三角函数的应用 . (90)1.1.1集合的概念1.已知a ∈R ,且a ∉Q ,则a 可以为( ) A . 2 B .12 C .-2 D .-13[解析]2是无理数,所以2∉Q ,2∈R .[答案] A2.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .a =0 B .a =2019 C .a =1D .a =0或a =2019[解析] 若集合M 中有两个元素,则a 2≠2019a .即a ≠0,且a ≠2019.故选C . [答案] C3.下列各组对象能构成集合的有( )①接近于0的实数;②小于0的实数;③(2019,1)与(1,2019);④1,2,3,1. A .1组 B .2组 C .3组D .4组[解析] ①中“接近于0”不是一个明确的标准,不满足集合中元素的确定性,所以不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(2019,1)与(1,2019)是两个不同的对象,是确定的,能构成集合,注意该集合有两个元素;④中的对象是确定的,可以构成集合,根据集合中元素的互异性,可知构成的集合为{1,2,3}.[答案] C4.若方程ax2+ax+1=0的解构成的集合中只有一个元素,则a为( )A.4 B.2C.0 D.0或4[解析] 当a=0时,方程变为1=0不成立,故a=0不成立;当a≠0时,Δ=a2-4a =0,a=4,故选A.[答案] A5.下列说法正确的是________.①及第书业的全体员工形成一个集合;②2019年高考试卷中的难题形成一个集合;③方程x2-1=0与方程x+1=0所有解组成的集合中共有3个元素;④x,3x3,x2,|x|形成的集合中最多有2个元素.[解析] ①及第书业的全体员工是一个确定的集体,能形成一个集合,正确;②难题没有明确的标准,不能形成集合,错误;③方程x2-1=0的解为x=±1,方程x+1=0的解为x=-1,由集合中元素的互异性知,两方程所有解组成的集合中共有2个元素1,-1,故错误;④x=3x3,x2=|x|,故正确.[答案] ①④1.1.2集合的表示1.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}[解析] ∵x2-2x+1=0,即(x-1)2=0,∴x=1,选B.[答案] B2.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈A B.0∈AC.3∈A D.1∈A[解析] ∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A,选D. [答案] D3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}[解析] 由⎩⎪⎨⎪⎧y =x -3,y =-2x 得⎩⎪⎨⎪⎧x =1,y =-2,∴交点为(1,-2),故选D.[答案] D4.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. [解析] 当t =-2时,x =4; 当t =2时,x =4; 当t =3时,x =9; 当t =4时,x =16; ∴B ={4,9,16}. [答案] {4,9,16}5.选择适当的方法表示下列集合: (1)绝对值不大于2的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图象上所有点组成的集合.[解] (1)绝对值不大于2的整数是-2,-1,0,1,2,共有5个元素,则用列举法表示为{-2,-1,0,1,2}.(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2. (3)一次函数y =x +6图象上有无数个点,用描述法表示为{(x ,y )|y =x +6}.课内拓展 课外探究 集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合: (1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y =x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.下列四个关系式:①{a,b}⊆{b,a};②∅={∅};③∅{0};④0∈{0}.其中正确的个数是( )A.4 B.3C.2 D.1[解析] 对于①,任何集合是其本身的子集,正确;对于②,相对于集合{∅}来说,∅∈{∅},也可以理解为∅⊆{∅},错误;对于③,空集是非空集合的真子集,故∅{0}正确;对于④,0是集合{0}的元素,故0∈{0}正确.[答案] B2.集合A={x|-1≤x<2,x∈N}的真子集的个数为( )A .4B .7C .8D .16[解析] A ={-1,0,1},其真子集为∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},共有22-1=4(个).[答案] A3.已知集合A ={3,-1},集合B ={|x -1|,-1},且A =B ,则实数x 等于( ) A .4 B .-2 C .4或-2D .2[解析] ∵A =B ,∴|x -1|=3,解得x =4或x =-2. [答案] C4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为________.[解析] 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.[答案] 65.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A . (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.[解] (1)当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴(如图),得⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <-2或0≤m ≤52. (2)当x ∈N 时,A ={0,1,2,3,4,5,6}, ∴集合A 的子集的个数为27=128.1.3.1并集与交集1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( ) A .{2} B .{2,3} C .{-1,2,3}D .{1,2,3,4}[解析] 因为A ∩C ={1,2},所以(A ∩C )∪B ={1,2,3,4},选D. [答案] D2.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{x |0≤x ≤3}D .{x |0≤x <3}[解析] 由已知得P ={0,1,2},M ={x |-3≤x ≤3}, 故P ∩M ={0,1,2}. [答案] B3.已知集合A ={x |x >2或x <0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B[解析] ∵A ={x |x >2或x <0},B ={x |-5<x <5},∴A ∩B ={x |-5<x <0或2<x <5},A ∪B =R .故选B.[答案] B4.设集合M ={x |-3≤x <7},N ={x |2x +k ≤0},若M ∩N ≠∅,则实数k 的取值范围为________.[解析] 因为N ={x |2x +k ≤0}=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-k 2,且M ∩N ≠∅,所以-k2≥-3⇒k ≤6.[答案] k ≤65.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}, (1)当m =2时,求M ∩N ,M ∪N . (2)当M ∩N =M 时,求实数m 的值.[解] (1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N . ∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m=0,解得m=2.由(1)知,M∩N={2}=M,适合题意,故m=2.1.3.2补集及集合运算的综合应用1.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析] ∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.[答案] D2.已知三个集合U,A,B之间的关系如图所示,则(∁U B)∩A=( )A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}[解析] 由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.[答案] C3.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁U A)∩(∁U B)=( )A.{1,2,7,8} B.{4,5,6}C.{0,4,5,6} D.{0,3,4,5,6}[解析] ∵U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},∴∁U A={0,2,4,5,6,8},∁U B={0,1,4,5,6,7},∴(∁U A)∩(∁U B)={0,4,5,6}.[答案] C4.全集U={x|0<x<10},A={x|0<x<5},则∁U A=________.[解析] ∁U A={x|5≤x<10},如图所示.[答案] {x|5≤x<10}5.设全集U={2,3,a2+2a-3},A={|2a-1|,2},且∁U A={5},求实数a的值.[解] ∵∁U A={5},∴5∈U,但5∉A,∴a2+2a-3=5,解得a=2或a=-4.当a=2时,|2a-1|=3,这时A={3,2},U={2,3,5}.∴∁U A={5},适合题意.∴a=2.当a=-4时,|2a-1|=9,这时A={9,2},U={2,3,5},A⃘U,∴∁U A无意义,故a =-4应舍去.综上所述,a=2.课内拓展课外探究空集对集合关系的影响空集是不含任何元素的集合,它既不是有限集,也不是无限集.空集就像一个无处不在的幽灵,解题时需处处设防,提高警惕.空集是任何集合的子集,其中“任何集合”当然也包括了∅,故将会出现∅⊆∅.而此时按子集理解不能成立,原因是前面空集中无元素,不符合定义,因此知道这一条是课本“规定”.空集是任何非空集合的真子集,即∅A(而A≠∅).既然A≠∅,即必存在a∈A而a∉∅,∴∅A.由于空集的存在,关于子集定义的下列说法有误,如“A⊆B,即A为B中的部分元素所组成的集合”.因为从“部分元素”的含义无法理解“空集是任何集合的子集”、“A是A 的子集”、“∅⊆∅”等结论.在解决诸如A⊆B或A B类问题时,必须优先考虑A=∅时是否满足题意.【典例1】已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},求满足B⊆A 的a的值组成的集合.[解] 由已知得A={-2,4},B是关于x的一元二次方程x2+ax+a2-12=0(*)的解集.方程(*)根的判别式Δ=a2-4(a2-12)=-3(a2-16).(1)若B=∅,则方程(*)没有实数根,即Δ<0,∴-3(a2-16)<0,解得a <-4或a >4.此时B ⊆A .(2)若B ≠∅,则B ={-2}或{4}或{-2,4}.①若B ={-2},则方程(*)有两个相等的实数根x =-2, ∴(-2)2+(-2)a +a 2-12=0,即a 2-2a -8=0. 解得a =4或a =-2.当a =4时,恰有Δ=0; 当a =-2时,Δ>0,舍去.∴当a =4时,B ⊆A . ②若B ={4},则方程(*)有两个相等的实数根x =4, ∴42+4a +a 2-12=0,解得a =-2,此时Δ>0,舍去.③若B ={-2,4},则方程(*)有两个不相等的实数根x =-2或x =4,由①②知a =-2,此时Δ>0,-2与4恰是方程的两根.∴当a =-2时,B ⊆A .综上所述,满足B ⊆A 的a 值组成的集合是{a |a <-4或a =-2或a ≥4}.[点评] ∅有两个独特的性质,即:(1)对于任意集合A ,皆有A ∩∅=∅;(2)对于任意集合A ,皆有A ∪∅=A .正因如此,如果A ∩B =∅,就要考虑集合A 或B 可能是∅;如果A ∪B =A ,就要考虑集合B 可能是∅.【典例2】 设全集U =R ,集合M ={x |3a -1<x <2a ,a ∈R },N ={x |-1<x <3},若N ⊆(∁UM ),求实数a 的取值集合.[解] 根据题意可知:N ≠∅,又∵N ⊆(∁U M ). ①当M =∅,即3a -1≥2a 时,a ≥1. 此时∁U M =R ,N ⊆(∁U M )显然成立. ②当M ≠∅,即3a -1<2a 时,a <1.由M ={x |3a -1<x <2a },知∁U M ={x |x ≤3a -1或x ≥2a }.又∵N ⊆(∁U M ),∴结合数轴分析可知⎩⎪⎨⎪⎧a <1,3≤3a -1,或⎩⎪⎨⎪⎧a <1,2a ≤-1,得a ≤-12.综上可知,a 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥1或a ≤-12. [点评] 集合的包含关系是集合知识重要的一部分,在后续内容中应用特别广泛,涉及集合包含关系的开放性题目都以子集的有关性质为主,因此需要对相关的性质有深刻的理解.对于有限集,在处理包含关系时可列出所有的元素,然后依条件讨论各种情况,找到符合条件的结果.1.4.1充分条件与必要条件1.若a∈R,则“a=2”是“(a-1)(a-2)=0”的( )A.充分条件B.必要条件C.既不是充分条件,也不是必要条件D.无法判断[解析] 因为a=2⇒(a-1)(a-2)=0,而(a-1)(a-2)=0不能推出a=2,故a=2是(a-1)(a-2)=0的充分条件,应选A.[答案] A2.设x∈R,则x>2的一个必要条件是( )A.x>1 B.x<1C.x>3 D.x<3[解析] 因为x>2⇒x>1,所以选A.[答案] A3.下列命题中,是真命题的是( )A.“x2>0”是“x>0”的充分条件B.“xy=0”是“x=0”的必要条件C.“|a|=|b|”是“a=b”的充分条件D.“|x|>1”是“x2不小于1”的必要条件[解析] A中,x2>0⇒x>0或x<0,不能推出x>0,而x>0⇒x2>0,故x2>0是x>0的必要条件.B中,xy=0⇒x=0或y=0,不能推出x=0,而x=0⇒xy=0,故xy=0是x=0的必要条件.C中,|a|=|b|⇒a=b或a=-b,不能推出a=b,而a=b⇒|a|=|b|,故|a|=|b|是a=b的必要条件.D中,|x|>1⇒x2不小于1,而x2不小于1不能推出|x|>1,故|x|>1是x2不小于1的充分条件,故本题应选B.[答案] B4.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的____________条件.[答案] 不必要(填必要、不必要)5.(1)若“x<m”是“x>2或x<1”的充分条件,求m的取值范围.(2)已知M={x|a-1<x<a+1},N={x|-3<x<8},若N是M的必要条件,求a的取值范围.[解] (1)记A={x|x>2或x<1},B={x|x<m}由题意可得B⊆A,即{x|x<m}⊆{x|x>2或x<1}.所以m ≤1.故m 的取值范围为{m |m ≤1}. (2)因为N 是M 的必要条件,所以M ⊆N .于是⎩⎪⎨⎪⎧a -1≥-3,a +1≤8,从而可得-2≤a ≤7.故a 的取值范围为{a |-2≤a ≤7}.1.4.2充要条件1.设x ∈R ,则“x <-1”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 因为x <-1⇒|x |>1,而|x |>1⇒x <-1或x >1,故“x <-1”是“|x |>1”的充分不必要条件.[答案] A2.“x 2+(y -2)2=0”是“x (y -2)=0”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件[解析] x 2+(y -2)2=0,即x =0且y =2,∴x (y -2)=0.反之,x (y -2)=0,即x =0或y =2,x 2+(y -2)2=0不一定成立.[答案] B3.已知A ,B 是非空集合,命题p :A ∪B =B ,命题q :A B ,则p 是q 的( ) A .充要条件B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件[解析] 由A ∪B =B ,得A B 或A =B ;反之,由A B ,得A ∪B =B ,所以p 是q 的必要不充分条件.[答案] D4.关于x 的不等式|x |>a 的解集为R 的充要条件是________. [解析] 由题意知|x |>a 恒成立,∵|x |≥0,∴a <0. [答案] a <05.已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[证明] 证法一:①充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y.②必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.证法二:1x <1y ⇔1x -1y <0⇔y -xxy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.5.1全称量词与存在量词1.下列命题中,不是全称量词命题的是( ) A .任何一个实数乘0都等于0 B .自然数都是正整数C .对于任意x ∈Z,2x +1是奇数D .一定存在没有最大值的二次函数 [解析] D 选项是存在量词命题. [答案] D2.下列命题中,存在量词命题的个数是( )①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④任意x ∈R ,y ∈R ,都有x 2+|y |>0.A .0B .1C .2D .3[解析] 命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形”,故为全称量词命题;命题③可以叙述为“一切能被6整除的数也能被3整除”,是全称量词命题;命题④是全称量词命题.故有1个存在量词命题.[答案] B3.下列命题是“∀x ∈R ,x 2>3”的另一种表述方法的是( ) A .有一个x ∈R ,使得x 2>3B .对有些x ∈R ,使得x 2>3 C .任选一个x ∈R ,使得x 2>3 D .至少有一个x ∈R ,使得x 2>3[解析] “∀x ∈R ,x 2>3”是全称量词命题,改写时应使用全称量词. [答案] C4.对任意x >8,x >a 恒成立,则实数a 的取值范围是________. [解析] ∵对于任意x >8,x >a 恒成立,∴大于8的数恒大于a ,∴a ≤8. [答案] a ≤85.判断下列命题是全称量词命题还是存在量词命题?并判断其真假. (1)∃x ∈R ,|x |+2≤0;(2)存在一个实数,使等式x 2+x +8=0成立;(3)在平面直角坐标系中,任意有序实数对(x ,y )都对应一点. [解] (1)存在量词命题.∵∀x ∈R ,|x |≥0,∴|x |+2≥2,不存在x ∈R , 使|x |+2≤0.故命题为假命题. (2)存在量词命题.∵x 2+x +8=⎝ ⎛⎭⎪⎫x +122+314>0,∴命题为假命题.(3)在平面直角坐标系中,任意有序实数对(x ,y )与平面直角坐标系中的点是一一对应的,所以该命题是真命题.1.5.2全称量词命题与存在量词命题的否定1.命题“∃x ∈R ,x 2-2x -3≤0”的否定是( ) A .∀x ∈R ,x 2-2x -3≤0 B .∃x ∈R ,x 2-2x -3≥0 C .∃x 0∈R ,x 2-2x -3>0 D .∀x ∈R ,x 2-2x -3>0[解析] 存在量词命题的否定是全称量词命题,一方面要改量词即“∃”改为“∀”;另一方面要否定结论,即“≤”改为“>”.故选D.[答案] D2.已知命题p :∀x >0,x 2≥2,则它的否定为( )A .∀x >0,x 2<2 B .∀x ≤0,x 2<2 C .∃x ≤0,x 2<2 D .∃x >0,x 2<2[答案] D3.全称量词命题“所有能被5整除的整数都是奇数”的否定是( ) A .所有能被5整除的整数都不是奇数 B .所有奇数都不能被5整除C .存在一个能被5整除的整数不是奇数D .存在一个奇数,不能被5整除[解析] 全称量词命题的否定是存在量词命题,而选项A ,B 是全称量词命题,所以选项A ,B 错误.因为“所有能被5整除的整数都是奇数”的否定是“存在一个能被5整除的整数不是奇数”,所以选项D 错误,选项C 正确,故选C.[答案] C4.对下列命题的否定,其中说法错误的是( )A .p :∀x ≥3,x 2-2x -3≥0;p 的否定:∃x ≥3,x 2-2x -3<0B .p :存在一个四边形的四个顶点不共圆;p 的否定:每一个四边形的四个顶点共圆C .p :有的三角形为正三角形;p 的否定:所有的三角形不都是正三角形D .p :∃x ∈R ,x 2+2x +2≤0;p 的否定:∀x ∈R ,x 2+2x +2>0[解析] 若p :有的三角形为正三角形,则p 的否定:所有的三角形都不是正三角形,故C 错误.[答案] C5.写出下列命题的否定,并判断其真假. (1)菱形是平行四边形;(2)与圆只有一个公共点的直线是圆的切线; (3)存在一个三角形,它的内角和大于180°; (4)∃x ∈R ,使得x 2+x +1≤0.[解] (1)题中命题的否定为“存在一个菱形不是平行四边形”,这个命题为假命题. (2)是全称量词命题,省略了全称量词“任意”,即“任意一条与圆只有一个公共点的直线是圆的切线”,否定为:存在一条与圆只有一个公共点的直线不是圆的切线;这个命题为假命题.(3)题中命题的否定为“所有三角形的内角和都小于或等于180°”,这个命题为真命题.(4)题中命题的否定为“∀x ∈R ,x 2+x +1>0”,这个命题为真命题.因为x 2+x +1=x 2+x +14+34=⎝⎛⎭⎪⎫x +122+34>0.2.1等式性质与不等式性质1.下列说法正确的为( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2[解析] ∵1x =1y,且x ≠0,y ≠0,两边同乘以xy ,得x =y .[答案] A2.设a ,b 为非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2B .ab 2<a 2b C .1ab 2<1a 2bD .b a <a b[解析] 用a =-1,b =1,试之,易排除A ,D.再取a =1,b =2,易排除B. [答案] C3.下列命题中正确的个数是( ) ①若a >b ,b ≠0,则a b>1; ②若a >b ,且a +c >b +d ,则c >d ; ③若a >b ,且ac >bd ,则c >d . A .0 B .1 C .2 D .3[解析] ①若a =2,b =-1,则不符合;②取a =10,b =2,c =1,d =3,虽然满足a >b 且a +c >b +d ,但不满足c >d ,故错;③当a =-2,b =-3,取c =-1,d =2,则不成立.[答案] A4.若x ≠2或y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系为________. [解析] ∵x ≠2或y ≠-1,∴M -N =x 2+y 2-4x +2y +5=(x -2)2+(y +1)2>0,∴M >N . [答案] M >N5.若-1≤a ≤3,1≤b ≤2,则a -b 的范围为________. [解析] ∵-1≤a ≤3,-2≤-b ≤-1, ∴-3≤a -b ≤2. [答案] -3≤a -b ≤22.2.1基本不等式1.若ab >0,则下列不等式不一定能成立的是( ) A .a 2+b 2≥2ab B .a 2+b 2≥-2ab C .a +b2≥abD .b a +a b≥2[解析] C 选项由条件可得到a 、b 同号,当a 、b 均为负号时,不成立. [答案] C 2.已知a >1,则a +12,a ,2aa +1三个数的大小顺序是( ) A.a +12<a <2a a +1 B.a <a +12<2aa +1C.2a a +1<a <a +12 D.a <2a a +1≤a +12 [解析] 当a ,b 是正数时,2ab a +b ≤ab ≤a +b2≤a 2+b 22(a ,b ∈R +),令b =1,得2aa +1≤a ≤a +12.又a >1,即a ≠b ,故上式不能取等号,选C.[答案] C3.b a +ab≥2成立的条件是________.[解析] 只要b a 与a b都为正,即a 、b 同号即可. [答案] a 与b 同号4.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. [证明] 因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =bc, 即a =b =c 时,等号成立.所以b +c a +c +a b +a +bc≥6.2.2.2利用基本不等式求最值1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( ) A.13 B.12 C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________. [解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.2.3.1二次函数与一元二次方程、不等式1.不等式-x 2-5x +6≤0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}[解析] 由-x 2-5x +6≤0得x 2+5x -6≥0, 即(x +6)(x -1)≥0, ∴x ≥1或x ≤-6. [答案] D2.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}[解析] 结合二次函数y =ax 2+bx +c (a <0)的图象可得{x |-1≤x ≤2},故选D. [答案] D3.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( ) A .1 B .2 C .3 D .4[解析] 由题可知-7和-1为ax 2+8ax +21=0的两个根,∴-7×(-1)=21a,a =3.[答案] C4.不等式x 2-4x +5≥0的解集为________. [解析] ∵Δ=(-4)2-4×5=-4<0, ∴不等式x 2-4x +5≥0的解集为R . [答案] R5.当a >-1时,关于x 的不等式x 2+(a -1)x -a >0的解集是________. [解析] 原不等式可化为(x +a )(x -1)>0, 方程(x +a )(x -1)=0的两根为-a,1, ∵a >-1,∴-a <1,故不等式的解集为{x |x <-a 或x >1}. [答案] {x |x <-a 或x >1}2.3.2一元二次不等式的应用1.不等式x -2x +3>0的解集是( ) A .{x |-3<x <2} B .{x |x >2} C .{x |x <-3或x >2} D .{x |x <-2或x >3}[解析] 不等式x -2x +3>0⇔(x -2)(x +3)>0的解集是{x |x <-3或x >2},所以C 选项是正确的.[答案] C2.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}[解析] ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}. [答案] B3.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值范围是( )A .m >2B .m <2C .m <0或m >2D .0<m <2[解析] 由题意得Δ=m 2-4×m2<0,即m 2-2m <0,解得0<m <2.[答案] D4.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4D .a <-4或a >4[解析] 依题意应有Δ=a 2-16≤0,解得-4≤a ≤4,故选A. [答案] A5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3000+20x -0.1x 2(0<x <240,x ∈R ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时最低产量是( )A .100台B .120台C .150台D .180台 [解析] 3000+20x -0.1x 2≤25x ⇔x 2+50x -30000≥0,解得x ≤-200(舍去)或x ≥150. [答案] C3.1.1.1函数的概念1.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)[解析] 由题意可知,要使函数有意义,需满足{ x -1≥0,x -2≠0,即x ≥1且x ≠2.[答案] A2.函数y =1-x 2+x 的定义域为( ) A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤-1}D .{x |0≤x ≤1}[解析] 由题意可知⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,解得0≤x ≤1.[答案] D 3.函数f (x )=(x +2)(1-x )x +2的定义域为( )A .{x |-2≤x ≤1}B .{x |-2<x <1}C .{x |-2<x ≤1}D .{x |x ≤1}[解析] 要使函数有意义,需⎩⎪⎨⎪⎧(x +2)(1-x )≥0,x +2≠0,解得-2≤x ≤1,且x ≠-2,所以函数的定义域是{x |-2<x ≤1}.[答案] C4.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. [解析] 结合区间的定义知,用区间表示为[-1,0)∪(1,2]. [答案] [-1,0)∪(1,2]5.已知矩形的周长为1,它的面积S 是其一边长为x 的函数,则其定义域为________(结果用区间表示).[解析] 由实际意义知x >0,又矩形的周长为1,所以x <12,所以定义域为⎝ ⎛⎭⎪⎫0,12.[答案] ⎝ ⎛⎭⎪⎫0,123.1.1.2函数概念的应用1.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (m )=m(m )2[解析] A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.[答案] D2.设f (x )=x 2-1x 2+1,则f (2)f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35 D .-35[解析] f (2)f ⎝ ⎛⎭⎪⎫12=22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1.[答案] B3.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1[解析] y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).[答案] B4.已知函数f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)[解析] 由f (x )的定义域是[0,2]知,{ 0≤2x ≤2,x -1≠0, 解得0≤x <1,所以g (x )=f (2x )x -1的定义域为[0,1). [答案] B5.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. [解析] ∵x ∈{1,2,3,4,5} ∴f (x )=2x -3∈{-1,1,3,5,7}. ∴f (x )的值域为{-1,1,3,5,7}. [答案] {-1,1,3,5,7}3.1.2.1函数的表示法1.y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[解析] 设y =k x ,当x =2时,y =1,所以1=k 2,得k =2.故y =2x.[答案] C2.由下表给出函数y =f (x ),则f [f (1)]等于( )x 1 2 3 4 5 y45321A.1 B .2 C .4 D .[解析] 由题意得f (1)=4,所以f [f (1)]=f (4)=2. [答案] B3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )[解析] 距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.[答案] C4.若3f (x -1)+2f (1-x )=2x ,则f (x )的解析式为__________________. [解析] (换元法)令t =x -1,则x =t +1,t ∈R , 原式变为3f (t )+2f (-t )=2(t +1),①以-t 代替t ,①式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t )得f (t )=2t +25,∴f (x )=2x +25.[答案] f (x )=2x +255.已知f (x )=x +b ,f (ax +1)=3x +2,求a ,b 的值. [解] 由f (x )=x +b ,得f (ax +1)=ax +1+b . ∴ax +1+b =3x +2,∴a =3,b +1=2,即a =3,b =1.3.1.2.2分段函数1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100[解析] ∵f (-7)=10,∴f [f (-7)]=f (10)=10×10=100. [答案] A2.下列图形是函数y =x |x |的图象的是( )[解析] ∵f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.[答案] D3.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3][解析] 当0≤x ≤1时,0≤f (x )≤2,当1<x <2时,f (x )=2,当x ≥2时,f (x )=3.故0≤f (x )≤2或f (x )=3,故选B.[答案] B4.下图中的图象所表示的函数的解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)[解析] 可将原点代入,排除选项A ,C ;再将点⎝ ⎛⎭⎪⎫1,32代入,排除D 项. [答案] B5.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f [f (a )]=2,则a =________.[解析] 当a ≤0时,f (a )=a 2+2a +2>0,f [f (a )]<0,显然不成立;当a >0时,f (a )=-a 2,f [f (a )]=a 4-2a 2+2=2,则a =±2或a =0,故a = 2.[答案] 23.2.1.1函数的单调性1.如图所示,函数y =f (x )在下列哪个区间上是增函数( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 观察题中图象知,函数在[-3,1]上是增函数. [答案] C2.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)2[解析] 选项A ,B 在(-∞,0)上为减函数,选项D 在(-2,0]上为减函数,只有选项C 满足在(-∞,0]内为增函数.故选C.[答案] C3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫-12,+∞ D.⎝⎛⎭⎪⎫-∞,12 [解析] 由一次函数的性质得2a -1<0,即a <12.故选D.[答案] D4.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________.[解析] 因为f (x )在区间[-1,1]上为增函数,且f (x )<f ⎝ ⎛⎭⎪⎫12,所以⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.[答案] ⎣⎢⎡⎭⎪⎫-1,125.已知函数f (x )=x -1x +1,判断f (x )在(0,+∞)上的单调性并用定义证明. [解] f (x )在(0,+∞)上单调递增. 证明如下:任取x 1>x 2>0,f (x 1)-f (x 2)=x 1-1x 1+1-x 2-1x 2+1=2(x 1-x 2)(x 1+1)(x 2+1),由x 1>x 2>0知x 1+1>0,x 2+1>0,x 1-x 2>0,故f (x 1)-f (x 2)>0,即f (x )在(0,+∞)上单调递增.3.2.1.2函数的最大(小)值1.函数f (x )在[-2,+∞)上的图象如图所示,则此函数的最大、最小值分别为( )A .3,0B .3,1C .3,无最小值D .3,-2[解析] 观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.[答案] C2.已知函数f (x )=|x |,x ∈[-1,3],则f (x )的最大值为( ) A .0 B .1 C .2 D .3[解析] 作出函数f (x )=|x |,x ∈[-1,3]的图象,如图所示.根据函数图象可知,f (x )的最大值为3.[答案] D3.下列函数在[1,4]上最大值为3的是( ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x[解析] B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.[答案] A4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).[解析] 设矩形花园的宽为y m ,则x 40=40-y 40, 即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20时,面积最大.[答案] 205.已知二次函数y =x 2-4x +5,分别求下列条件下函数的最小值: (1)x ∈[-1,0];(2)x ∈[a ,a +1].[解] (1)∵二次函数y =x 2-4x +5的对称轴为x =2且开口向上, ∴二次函数在x ∈[-1,0]上是单调递减的. ∴y min =02-4×0+5=5.(2)当a ≥2时,函数在x ∈[a ,a +1]上是单调递增的,y min =a 2-4a +5;当a +1≤2即a ≤1时,函数在[a ,a +1]上是单调递减的,y min =(a +1)2-4(a +1)+5=a 2-2a +2;当a <2<a +1即1<a <2时,y min =22-4×2+5=1.故函数的最小值为⎩⎪⎨⎪⎧a 2-2a +2,a ≤1,1,1<a <2,a 2-4a +5,a ≥2.3.2.2.1函数奇偶性的概念1.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1D .无法确定[解析] 由-1+a =0,得a =1.选C. [答案] C2.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1][解析] A 项中的函数为奇函数;C 、D 选项中的函数定义域不关于原点对称,既不是奇函数,也不是偶函数;B 项中的函数为偶函数.故选B.[答案] B3.函数f (x )=1x-x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称[解析] 函数f (x )=1x-x 的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x=-f (x ),所以f (x )是奇函数,图象关于原点对称.[答案] C4.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.[解析] 由f (x )=(x +a )(x -4)得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.[答案] 45.已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-3,3],且它们在[0,3]上的图象如图所示,求不等式f (x )g (x )<0的解集.[解] 由题知,y =f (x )是偶函数,y =g (x )是奇函数. 根据函数图象的对称性画出y =f (x ),y =g (x )在[-3,0]上的图象如图所示.由图可知f (x )>0⇔0<x <2或-2<x <0,g (x )>0⇔1<x <3或-1<x <0.f (x )g (x )<0⇔⎩⎪⎨⎪⎧f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0,可求得其解集是{x |-2<x <-1或0<x <1或2<x <3}.3.2.2.2函数奇偶性的应用1.函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的解析式为( )A .f (x )=-x +1B .f (x )=-x -1C .f (x )=x +1D .f (x )=x -1[解析] 设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数. ∴f (-x )=-f (x )=x +1, ∴f (x )=-x -1(x <0). [答案] B2.设f (x )是R 上的偶函数,且在[0,+∞)上单凋递增,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (3)>f (-2)>f (-π)D .f (3)>f (-π)>f (-2) [解析] ∵f (x )是R 上的偶函数, ∴f (-2)=f (2),f (-π)=f (π), 又f (x )在[0,+∞)上单调递增,且2<3<π, ∴f (π)>f (3)<f (2), 即f (-π)>f (3)>f (-2). [答案] A3.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 [解析] 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13,即-13<2x -1<13,解得13<x <23.。
再练一课(范围:1.4.1)1.若平面α与β的法向量分别是a =(1,0,-2),b =(-1,0,2),则平面α与β的位置关系是( ) A .平行 B .垂直 C .相交不垂直 D .无法判断答案 A解析 ∵a =(1,0,-2),b =(-1,0,2), ∴a +b =0, 由此可得a ∥b ,∴平面α与β的法向量平行,可得平面α与β互相平行.2.已知直线l 的方向向量a =(-1,2,4),平面α的法向量b =(-2,4,8),则直线l 与平面α的位置关系是( ) A .l ∥α B .l ⊥α C .l ⊂α D .l ∈α 答案 B解析 ∵b =2a ,∴则b 与a 共线,可得,l ⊥α.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行C .在平面内D .平行或在平面内 答案 D解析 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面,则AB 与平面CDE 的位置关系是平行或在平面内.4.(多选)已知点A (1,0,0),B (0,1,0),C (0,0,1),点D 满足条件:DB ⊥AC ,DC ⊥AB ,AD =BC ,则点D 的坐标为( ) A .(1,1,1) B.⎝⎛⎭⎫-13,13,13 C.⎝⎛⎭⎫13,13,13 D.⎝⎛⎭⎫-13,-13,-13 答案 AD解析 设D (x ,y ,z ),则BD →=(x ,y -1,z ),CD →=(x ,y ,z -1),AD →=(x -1,y ,z ),AC →=(-1,0,1), AB →=(-1,1,0),BC →=(0,-1,1). 又DB ⊥AC ⇔-x +z =0,① DC ⊥AB ⇔-x +y =0,② AD =BC ⇔(x -1)2+y 2+z 2=2,③联立①②③得x =y =z =1或x =y =z =-13,所以点D 的坐标为(1,1,1)或⎝⎛⎭⎫-13,-13,-13.故选AD.5.在正方体ABCD -A 1B 1C 1D 1中,E 是上底面A 1B 1C 1D 1的中心,则AC 1与CE 的位置关系是( ) A .重合 B .垂直 C .平行 D .无法确定 答案 B解析 AC 1—→=AB →+AD →+AA 1—→,CE →=CC 1—→+C 1E —→=AA 1—→-12(AB →+AD →).设正方体的棱长为1,于是AC 1—→·CE →=(AB →+AD →+AA 1—→)·⎝⎛⎭⎫AA 1—→-12AB →-12AD → =0-12-0+0-0-12+1-0-0=0,故AC 1—→⊥CE →,即AC 1与CE 垂直.6.如图,在正三棱锥S -ABC 中,点O 是△ABC 的外心,点D 是棱BC 的中点,则平面ABC 的一个法向量可以是________,平面SAD 的一个法向量可以是________.答案 SO → BC →解析 由题意知SO ⊥平面ABC ,BC ⊥平面SAD .因此平面ABC 的一个法向量可以是SO →,平面SAD 的一个法向量可以是BC →.7.若a =(2x ,1,3),b =(1,-2y ,9),且a 与b 为共线向量,则x =________,y =________. 答案 16 -32解析 由题意得2x 1=1-2y =39,∴x =16,y =-32.8.已知空间三点A (-1,1,1),B (0,0,1),C (1,2,-3),若直线AB 上存在一点M ,满足CM ⊥AB ,则点M 的坐标为________. 答案 ⎝⎛⎭⎫-12,12,1 解析 设M (x ,y ,z ),∵AB →=(1,-1,0),BM →=(x ,y ,z -1),CM →=(x -1,y -2,z +3), 由题意,得⎩⎪⎨⎪⎧x -1-(y -2)=0,x =-y ,z -1=0,∴x =-12,y =12,z =1,∴点M 的坐标为⎝⎛⎭⎫-12,12,1. 9.如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,且平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC ,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为坐标原点,OB ,OO 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1—→=(1,2,-3),BA 1—→=(-1,2,3),BD →=(-2,1,0).因为AB 1—→·BA 1—→=1×(-1)+2×2+(-3)×3=0. AB 1—→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1—→⊥BA 1—→,AB 1—→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,BA 1,BD ⊂平面A 1BD , 所以AB 1⊥平面A 1BD .10.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是AD 1,BD 和B 1C 的中点,利用向量法证明:(1)MN ∥平面CC 1D 1D ; (2)平面MNP ∥平面CC 1D 1D .证明 (1)以D 为坐标原点,DA →,DC →,DD 1—→分别为x ,y ,z 轴的正方向,建立空间直角坐标系(图略),并设正方体的棱长为2,则A (2,0,0),D (0,0,0),M (1,0,1),N (1,1,0),P (1,2,1). 由正方体的性质知AD ⊥平面CC 1D 1D ,所以DA →=(2,0,0)为平面CC 1D 1D 的一个法向量. 由于MN →=(0,1,-1),则MN →·DA →=0×2+1×0+(-1)×0=0,所以MN →⊥DA →. 又MN ⊄平面CC 1D 1D ,所以MN ∥平面CC 1D 1D .(2)方法一 由于MP →=(0,2,0),DC →=(0,2,0),所以MP →∥DC →, 即MP ∥DC .由于MP ⊄平面CC 1D 1D ,DC ⊂平面CC 1D 1D , 所以MP ∥平面CC 1D 1D .又由(1),知MN ∥平面CC 1D 1D ,MN ∩MP =M ,MN ,MP ⊂平面CC 1D 1D , 所以由两个平面平行的判定定理,知平面MNP ∥平面CC 1D 1D . 方法二 MN →=(0,1,-1),MP →=(0,2,0), 设平面MNP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·MN →=y -z =0,n ·MP →=2y =0,所以取n =(1,0,0), 因为DA →=2n , 所以DA ∥n ,所以平面MNP ∥CC 1D 1D .11.已知AB →=(-3,1,2),平面α的一个法向量为n =(2,-2,4),点A 不在平面α内,则直线AB 与平面α的位置关系为( ) A .AB ⊥αB .AB ⊂αC .AB 与α相交但不垂直D .AB ∥α答案 D解析 因为n ·AB →=2×(-3)+(-2)×1+4×2=0, 所以n ⊥AB →.又点A 不在平面α内,n 为平面α的一个法向量,12.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC =2,E 是PC 的中点,则CD 与AE 的位置关系________.答案 垂直解析 以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (1,3,0),D ⎝⎛⎭⎫0,433,0,P (0,0,2),E ⎝⎛⎭⎫12,32,1,所以CD →=⎝⎛⎭⎫-1,33,0,AE →=⎝⎛⎭⎫12,32,1,所以CD →·AE →=-1×12+33×32+0×1=0,13.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点,点P 在棱AA 1上,且DP ∥平面B 1AE ,则AP 的长为________.答案 12解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系(图略), 设|AB →|=a ,|AP →|=b ,点P 坐标为(0,0,b ), 则B 1(a ,0,1),D (0,1,0),E ⎝⎛⎭⎫a 2,1,0, AB 1→=(a ,0,1),AE →=⎝⎛⎭⎫a 2,1,0, DP →=(0,-1,b ), ∵DP ∥平面B 1AE ,∴存在实数λ,μ,设DP →=λAB 1→+μAE →, 即(0,-1,b )=λ(a ,0,1)+μ⎝⎛⎭⎫a2,1,0 =⎝⎛⎭⎫λa +μa2,μ,λ, ∴⎩⎪⎨⎪⎧λa +μ2a =0,μ=-1,λ=b ,∴b =λ=12,即AP =12.14.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点E 在棱AA 1上,要使CE ⊥平面B 1DE ,则AE =________.答案 a 或2a解析 建立空间直角坐标系,如图所示,依题意得B 1(0,0,3a ),D ⎝⎛⎭⎫22a ,22a ,3a ,C (0,2a ,0).B 1D —→=⎝⎛⎭⎫22a ,22a ,0,设E (2a ,0,z )(0≤z ≤3a ),则CE →=(2a ,-2a ,z ),B 1E —→=(2a ,0,z -3a ).CE →·B 1D —→=0,要使CE ⊥平面B 1DE ,即B 1E ⊥CE , 得B 1E —→·CE →=2a 2-0+z 2-3az =0, 解得z =a 或2a .15.如图,已知矩形ABCD ,AB =1,BC =a ,P A ⊥平面ABCD ,若在BC 上只有一个点Q 满足PQ ⊥QD ,则a =________.答案 2解析 如图,建立空间直角坐标系Axyz ,则D (0,a ,0),设Q (1,x ,0)(0≤x ≤a ),P (0,0,z ),则PQ →=(1,x ,-z ),QD →=(-1,a -x ,0),由PQ ⊥QD ,得-1+x (a -x )=0,即x 2-ax +1=0,由题意知方程x 2-ax +1=0只有一解.∴Δ=a 2-4=0,a =2,这时x =1∈[0,a ],满足题意.16.如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,且AD ∥BC ,∠ABC =∠P AD =90°,侧面P AD ⊥底面ABCD .若P A =AB =BC =12AD .(1)求证:CD ⊥平面P AC ;(2)侧棱P A 上是否存在点E ,使得BE ∥平面PCD ?若存在,指出点E 的位置并证明;若不存在,请说明理由.(1)证明 因为∠P AD =90°,所以P A ⊥AD .又因为侧面P AD ⊥底面ABCD ,且侧面P AD ∩底面ABCD =AD ,P A ⊂平面P AD , 所以P A ⊥底面ABCD .又因为∠BAD =90°,所以AB ,AD ,AP 两两垂直.以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AD =2,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,1).(1)AP →=(0,0,1),AC →=(1,1,0),CD →=(-1,1,0),可得AP →·CD →=0,AC →·CD →=0,所以AP ⊥CD ,AC ⊥CD .又因为AP ∩AC =A ,AP ,AC ⊂平面P AC ,所以CD ⊥平面P AC .(2)解 设侧棱P A 的中点是E ,则E ⎝⎛⎭⎫0,0,12,BE →=⎝⎛⎭⎫-1,0,12. 设平面PCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD →=0,n ·PD →=0,因为CD →=(-1,1,0),PD →=(0,2,-1),所以⎩⎪⎨⎪⎧ -x +y =0,2y -z =0,取x =1,则y =1,z =2, 所以平面PCD 的一个法向量为n =(1,1,2).所以n ·BE →=(1,1,2)·⎝⎛⎭⎫-1,0,12=0,所以n ⊥BE →. 因为BE ⊄平面PCD ,所以BE ∥平面PCD .综上所述,当E 为P A 的中点时,BE ∥平面PCD .。
【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,⋯⋯;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30的非负实数③直角坐标平面的横坐标与纵坐标相等的点④π的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A的元素,或者不是集合A的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.(4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(b)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A例如:A表示方程x2=1 的解.2∉A,1∈A(5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列表法.如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;思考2,引入描述法答案:(1)1~9内所有偶数组成的集合(2)不能,因为集合中元素的个数是无穷多个.说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序.(b)描述法:用集合所含元素的共同特征表示集合的方法称为描述法.具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;思考3:描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z.(6)常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.如果写{实数}是正确的.说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.(7)集合的分类问题2:我们看这样一个集合:{ x |x 2+x +1=0},它有什么特征?显然这个集合没有元素.我们把这样的集合叫做空集,记作∅.练习:(1) 0 ∅ (填∈或∉)(2){ 0 } ∅ (填=或≠)集合的分类:(1)按元素多少分类:有限集、无限集;(2)按元素种类分类:数集、点集等(三)例题讲解例1.用集合表示:①x 2-3=0的解集;②所有大于0小于10的奇数;③不等式2x -1>3的解.例2.已知集合S 满足:1S ∉,且当a S ∈时11S a ∈-,若2S ∈,试判断12是否属于S ,说明你的理由.例3.设由4的整数倍加2的所有实数构成的集合为A ,由4的整数倍再加3的所有实数构成的集合为B ,若,x A y B ∈∈,试推断x +y 和x -y 与集合B 的关系.(四)归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法.1.2《集合间的基本关系》教案教材分析类比实数的大小关系引入集合的包含与相等关系,了解空集的含义.本节内容是在学习了集合的概念、元素与集合的从属关系以及集合的表示方法的基础上,进一步学习集合与集合之间的关系,同时也为下一节学习集合的基本运算打好基础.因此本节内容起着承上启下的重要作用.教学目标【知识与能力目标】1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.【过程与方法目标】让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.【情感态度价值观目标】感受集合语言在描述客观现实和数学问题中的意义.教学重难点【教学重点】集合间的包含与相等关系,子集与真子集的概念.【教学难点】属于关系与包含关系的区别.课前准备学生通过预习,观察、类比、思考、交流、讨论,发现集合间的基本关系.教学过程(一)创设情景,揭示课题复习回顾:1.集合有哪两种表示方法?2.元素与集合有哪几种关系?问题提出:集合与集合之间又存在哪些关系?(二)研探新知问题1:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断.而是继续引导学生;欲知谁正确,让我们一起来观察、研探.投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗? (1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为国兴中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.组织学生充分讨论、交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 含于B (或B 包含A ).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解.并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图.如图1和图2分别是表示问题2中实例1和实例3的Venn 图.图1 图2投影问题3:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出什么结论?教师引导学生通过类比,思考得出结论: 若,,A B B A A B ⊆⊆=且则. 问题4:请同学们举出几个具有包含关系、相等关系的集合实例,并用Venn 图表示.学生主动发言,教师给予评价.(三)学生自主学习,阅读理解然后教师引导学生阅读教材的相关内容,并思考回答下例问题:(1)集合A 是集合B 的真子集的含义是什么?什么叫空集?(2)集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别? (3)0,{0}与∅三者之间有什么关系?(4)包含关系{}a A ⊆与属于关系a A ∈之间有什么区别?试结合实例作出解释.(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?(6)能否说任何一人集合是它本身的子集,即A A ⊆?(7)对于集合A ,B ,C ,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系? 教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法.(四)巩固深化,发展思维1.学生在教师的引导启发下完成下列两道例题:例1.某工厂生产的产品在质量和长度上都合格时,该产品才合格.若用A表示合格产品,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则下列包含关系哪些成立?,,,A B B A A C C A ⊆⊆⊆⊆试用Venn 图表示这三个集合的关系.例2.写出集合{0,1,2)的所有子集,并指出哪些是它的真子集.2.学生做教材习题,教师及时检查反馈.强调能确定是真子集关系的最好写真子集,而不写子集.(五)归纳整理,整体认识1. 请学生回顾本节课所学过的知识内容有建些,所涉及到的主要数学思想方法又那些.2.在本节课的学习过程中,还有那些不太明白的地方,请向老师提出.1.3《集合的基本运算》教案教材分析集合的基本运算是人教版普通高中课程标准实验教科书,数学必修1第一章第三节的内容. 在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础. 本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用. 本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点.教学目标与核心素养课程目标1. 理解两个集合的并集与交集的含义,能求两个集合的并集与交集;2. 理解全集和补集的含义,能求给定集合的补集;3. 能使用Venn图表达集合的基本关系与基本运算.数学学科素养1.数学抽象:并集、交集、全集、补集含义的理解;2.逻辑推理:并集、交集及补集的性质的推导;3.数学运算:求两个集合的并集、交集及补集,已知并集、交集及补集的性质求参数(参数的范围);4.数据分析:通过并集、交集及补集的性质列不等式组,此过程中重点关注端点是否含“=”及∅问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其线性运算P5练习1.举出一些表示三个不同在一个平面内的向量的实例.【答案】在三棱锥P ABC -中,PA →,PB →,PC →不同在一个平面内;长方体ABCD A B C D ''''-中,从一个顶点A 引出的三个向量AB →,AD →,AA →'不同在一个平面内.2.如图,E ,F 分别是长方体ABCD A B C D ''''-的棱AB ,CD 的中点、化简下列表达式,并在图中标出化简结果的向量:(1)AA CB '- ;(2)AA AB BC '++ ;(3)AB AD B D ''-+ ;(4)AB CF + .【答案】(1)AA CB AA BC AA A D AD ''''''-=+=+=;(2)AA AB B C AA A B B C AC '''''''++=++''= ;(3)0AB AD B D AB AD BD DB BD -+=-+=+''= ;(4)AB CF AB BE AE +=+= .3.在图中,用AB ,AD ,AA ' 表示A C ' ,BD ' 及DB '.【答案】()A C A A AC AA AB AD AB AD AA =+=-''++=-''+,()()BD BD DD BA BC DD AB AD AA AA AD AB =+=++=-++=+-''''' ,()()DB DB BB DA DC BB AD AB AA AA AB AD =+=++=-++''''=-'+ .4.如图,已知四面体ABCD ,E ,F 分别是BC ,CD 的中点,化简下列表达式,并在图中标出化简结果的向量;(1)AB BC CD ++;(2)()12AB BD BC ++ ;(3)()12AF AB AC -+ .【答案】(1)AB BC CD AC CD AD ++=+=;5.如图,已知正方体ABCD A B C D ''''-,E ,F 分别是上底面A C ''和侧面CD '的中心,求下列各式中x ,y 的值:(1)AC x AB BC CC →→→→⎛⎫''=++ ⎪⎝⎭(2)AE AA x AB y AD →→→→'=++(3)AF AD x AB y AA →→→→'=++【答案】(1)+AC AB AD AA AB BC CC →→→→→→→'''=+=++,所以1x =;(2)1111111()()2222222AE AA AC AA AC AA AA AB AD AA AB AD→→→→→→→→→→→→'''''''=+=+=+++=++,所以12x y ==;(3)111111()222222AF AD AC AD AB AA AD AD AB →→→→→→→→→→'''=+=+++=++,所以12x y ==.1.1.2空间向量的数量积运算P8练习6.如图,在正三棱柱111ABC A B C -中,若1AB =,则1AB 与1BC 所成角的大小为()A.60︒B.90︒C.105︒D.75︒【答案】在正三棱柱111ABC A B C -中,向量1,,BA BC BB 不共面,11AB BB BA =-,11BC BC BB =+,于是得11112111()()AB BC BB BA BC BB BB BC BB BA BC BA BB ⋅=-⋅+=⋅+-⋅-⋅因此,11AB BC ⊥ ,所以1AB 与1BC 所成角的大小为90︒.故选:B2.如图,正方体ABCD A B C D ''''-的棱长为1,设AB a = ,AD b = ,AA c '=,求:(1)()a b c ⋅+ ;(2)()a a b c ⋅++ ;(3)()()a b b c ⋅++ .【答案】(1)在正方体中,AB AA ⊥',AB AD⊥故()0a b c a b a c →→→→→→→⋅+=⋅+⋅=(2)由(1)知,()()1a a b c a a a b c →→→→→→→→→⋅++=⋅+⋅+=(3)由(1)及AD AA '⊥知,2()()()1a b b c a b c b b c →→→→→→→→→→++=⋅+++⋅=3.如图,在平行六面体ABCD A B C D ''''-中,4AB =,3AD =,5AA '=,90BAD ∠=︒,BAA '∠=60DAA '∠=︒.求:(1)AA AB '⋅;(2)AB '的长;(3)AC '的长.()()222222252101661AB AA A B AA ABAA AA AB AB '''''''∴=+=+=+⋅+=+⨯+= ,(3) AC AC CC AB AD AA '''=+=++,4.如图,线段AB ,BD 在平面α内,BD AB ⊥,AC α⊥,且AB a =,BD b =,AC c =.求C ,D 两点间的距离.【答案】连接AD ,BD AB ⊥ ,22222AD AB BD a b ∴=+=+,AC α⊥,AD α⊂,AC AD ∴⊥,222222CD AD AC a b c ∴=+=++,222CD a b c ∴=++,即C ,D 两点间的距离为222a b c ++.习题1.1P9复习巩固1.如图,在长方体ABCD A B C D ''''-中,E 、F 分别为棱AA '、AB 的中点.(1)写出与向量BC相等的向量;(2)写出与向量BC相反的向量;(3)写出与向量EF平行的向量.【答案】(1),,AD A D B C '''' ;(2),,,DA CB C B D A '''' ;(3),,,,D C CD A B BA FE''''2.如图,已知平行六面体ABCD A B C D ''''-,化简下列表达式,并在图中标出化简结果的向量:(1)AB BC + ;(2)AB AD AA '++ ;(3)12AB AD CC '++ ;(4)()13AB AD AA '++.【答案】(1)AC →;(2)AC →';(3)AE →;(4)AF →;3.证明:如果向量a ,b 共线,那么向量2a b + 与a共线.【答案】如果向量a ,b共线,则存在唯一实数λ,使得b a λ= ,则()222a b a a a λλ+=+=+,所以向量2a b + 与a共线.4.如图,已知四面体ABCD 的所有棱长都等于a ,E ,F ,G 分别是棱AB ,AD ,DC 的中点.求:(1)AB AC ⋅uu u r uuu r ;(2)AD DB ⋅ ;(3)GF AC ⋅ ;(4)EF BC ⋅uu u r uu u r ;(5)FG BA ⋅ ;(6)GE GF ⋅ .【答案】四面体ABCD 的所有棱长都等于a ,∴任意两条棱所在直线的夹角为3π, E ,F ,G 分别是棱AB ,AD ,DC 的中点,//,//,||||2aEF BD FG AC EF FG ∴==,(1)2cos 32a AB AC a a π⋅=⨯⨯= ;(4)//EF BD ,则直线BD 与直线BC 所成角就是直线EF 与直线BC 所成角,(5)//FG AC ,则直线AC 与直线AB 所成角就是直线FG 与直线BA 所成角,(6)取BD 中点M ,连接AM ,CM ,则,AM BD CM BD ⊥⊥,AM CM M ⋂= ,BD ∴⊥平面ACM ,又AC ⊂平面ACM ,BD AC ∴⊥,//EF BD ,EF AC ∴⊥,又//AC FG ,EF FG ∴⊥,0EF FG ⋅=,P10综合运用5.如图,在平行六面体1111ABCD A B C D -中,AC 与BD 的交点为M .设11111,,,===A B a A D b A A c ,则下列向量中与1B M 相等的向量是()A.1122a b c --+B.1122a b c -++C.1122a b c -+ D.1122a b c ++ 【答案】()1111112222=+=+=++=-++B M B B BM c BD c BA BC a b c uuuu r uuu r uuu r r uu u r r uu r uu u r r r r 故选:B.6.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量法证明:E ,F ,G ,H 四点共面.【答案】如图,E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,12EH FG BD == ,于是得:EG EF FG EF EH =+=+,即,,EG EF EH 共面,它们有公共点E ,所以E ,F ,G ,H 四点共面.7.如图,正方体ABCD A B C D ''''-(1)求A B '和B C '的夹角;(2)求证A A B C ''⊥.【答案】(1)联结CD ',B D '',则A B CD '' ,A B '和B C '的夹角即CD '和B C '的夹角B CD ''∠,又B C ''⊥平面ABB A '',A B '⊂平面ABB A '',则B C A B '''⊥,又B C AB B ''''⋂=故A B '⊥平面AB C '',又AC '⊂平面AB C '',所以A A B C ''⊥8.用向量方法证明:在平面内的一条直线,如果与这个平面的一条斜线在这个平面上的射影垂直,那么它也与这条直线垂直(三垂线)【答案】如图所示,在平面α内,OB →是OA →在面内的投影向量,则BA CD →→⊥,由题知,CD OB →→⊥,则()0CD OA CD OB BA CD OB CD BA →→→→→→→→→⋅=⋅+=⋅+⋅=,故CD OA →→⊥,所以CD OA ⊥,即证得结论.P10拓广探索9.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.【答案】试题分析:利用三个不共面的向量OA OB OC ,,作为基底,利用空间向量的数量积为0,证明向量垂直,即线线垂直.试题解析:∵OA BC ⊥,∴OA OB ⊥ .∵0OA OB ⋅= ,∴()0⋅-= OA OC OB .∴0⋅-=⋅ OA OC OA OB (1)同理:由OB AC ⊥得0⋅-=⋅ OC OB OA OB (2)由(1)-(2)得0⋅-=⋅ OA OC OC OB ∴()0⋅=- OA OB OC ,∴0OC BA ⋅= ,∴OC BA ⊥u u u r u u u r ,∴OC AB ⊥.10.如图,在四面体OABC 中,OA OB =,CA CB =,E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.求证:四边形EFGH 是矩形.【答案】取AB 的中点D ,联结OD ,CD ,由OA OB =,CA CB =知,⊥OD AB ,CD AB ⊥,又OD CD D ⋂=,故AB ⊥平面ODC ,又OC ⊂平面ODC ,因此AB OC ⊥又E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.则EF AD = ,GH AD =,故EF GH =,四边形EFGH 是平行四边形同理EH GF =,且EH OC ,又AB OC ⊥所以EH EF ⊥,四边形EFGH 是矩形第一章空间向量与立体几何1.2空间向量基本定理P12练习1.已知向量{},,a b c 是空间的一个基底,从a ,b ,c 中选哪一个向量,一定可以与向量p a b =+ ,q a b =- 构成空间的另一个基底?【答案】因为p a b =+ ,q a b =- ,所以a 与,p q 不可以构成空间的一个基底,b 与,p q 不可以构成空间的一个基底,而c 与,p q 不共面,所以c 与,p q 可以构成空间的一个基底.故答案为:c .2.已知O ,A ,B ,C 为空间的四个点,且向量OA ,OB ,OC 不构成空间的一个基底,那么点O ,A ,B ,C 是否共面?【答案】因为向量OA ,OB ,OC 不构成空间的一个基底,所以向量OA ,OB ,OC 共面,由向量OA ,OB ,OC 有公共点O ,所以O ,A ,B ,C 四点共面.3.如图,已知平行六面体OABC O A B C ''''-,点G 是侧面BB C C ''的中心,且OA a = , O C b = ,OO c '= .(1){},,a b c 是否构成空间的一个基底?(2)如果{},,a b c 构成空间的一个基底,那么用它表示下列向量:OB ' ,BA ' ,CA ' ,OG .【答案】(1) OA , O C ,OO ' 不在同一平面内,且不为零向量,∴{},,a b c 能构成空间的一个基底;(2)OB OB BB OC OA OO a b c =+=++'+'=+' ,BA BA AA CO OO c b =+=+''-'= ,CA CO OA AA CO OA OO a c b =++=++='-'+' ,()111222OG OC CG OC CB OC OA OC OA OO ''=+=+++'=+= 11112222OC OA OO b a c '=++=++ .P14练习1.已知四面体OABC ,OB OC =,AOB AOC θ∠=∠=.求证:OA BC ⊥.【答案】因为BC OC OB =-,所以()cos cos OA BC OA OC OB OA OC OA OB OA OC OA OB θθ=-=-=- ,因为OB OC =,AOB AOC θ∠=∠=,所以OA BC ⊥ ,即OA BC ⊥.2.如图,在平行六面体ABCD A B C D ''''-中,2AB =,2AD =,3AA '=,BAD BAA DAA ''∠=∠=∠60=︒.求BC '与CA '所成角的余弦值.【答案】取基底{,,}AB AD AA ' ,BC BC BB AD AA '''=+=+ ,CA CA AA CB CD AA AD AB AA ''''=+=++=--+ ,所以()()BC CA AD AA AD AB AA ''''⋅=+⋅--+ 22()()AD AD AB AD AA AD AA AB AA AA ''''=--⋅+⋅-⋅-⋅+ 4239=---+0=.所以BC '与CA '所成角的余弦值为0.3.如图,已知正方体ABCD A B C D ''''-,CD '和DC '相交于点O ,连接AO ,求证AO CD '⊥.【答案】在正方体ABCD A B C D ''''-,可建立如图所示空间直角坐标系,设正方体棱长为2,则()()()()0,0,0,1,2,1,2,2,0,0,2,2A O C D ',所以()()1,2,1,2,0,2AO CD '==- ,()1220120AO CD '⋅=⨯-+⨯+⨯= ,所以AO CD '⊥ 即AO CD '⊥.习题1.2P15复习巩固1.如果向量a ,b 与任何向量都不能构成空间的一个基底,那么a ,b间应有什么关系?【答案】因为向量a ,b 与任何向量都不能构成空间的一个基底,所以a ,b 一定共线.2.若{},,a b c 构成空间的一个基底,则下列向量共面的是()A.b c +r r ,b ,b c -r rB.a ,a b + ,a b -C.a b + ,a b - ,cD.a b + ,a b c ++ ,c对于C ,若a b + ,a b - ,c 共面,则存在实数,λμ,使得:,()()()()c a b a b a b λμλμλμ=++-=++- ,故,,a b c 共面,这与{},,a b c 构成空间的一个基底矛盾,故选:ABD 3.在空间四边形OABC 中,已知点M 、N 分别是OA 、BC 的中点,且OA a = ,OB b = ,OC c= ,试用向量a 、b 、c 表示向量MN .【答案】解:如下图所示:222 所以,.4.如图,在三棱柱ABC A B C '''-中,已知AA a '= ,AB b = ,AC c = ,点M ,N 分别是BC ',B C ''的中点,试用基底{},,a b c 表示向量AM ,AN .【答案】解:连接A N '所以()1122AM AB BC AB BC CC ''=+=++ 1122AB BC CC '=++ ()1122AB AC AB AA '=+-+ 111222AB AC AA '=++uu u r uuu r uuu r ()11112222a b c a b c =++=++ ()()11112222AN AA A N AA A B A C AA AB AC a b c ''''''''=+=++=++=++ P15综合运用5.如图,在长方体1111ABCD A B C D -中,M 是AC 与BD 的交点.若112D A =,112D C =,13D D =,求1B M 的长.【答案】以D 1为原点,11111,,D A D C D D 为x 、y 、z 轴正方向建立空间直角坐标系,则()()()()()110,0,0,2,2,0,0,0,3,2,2,3,1,1,3,D B D B M6.如图,平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且1160C CB C CD BCD ∠=∠=∠= ,1CD CC =,求证:1CA ⊥平面1C BD .【答案】设CB a = ,CD b = ,1CC c =,所以,()()2210CA BD a b c b a b a c b c a ⋅=++⋅-=-+⋅-⋅= ,所以,1CA BD ⊥,同理可证11CA BC ⊥,因为1BD BC B = ,因此,1CA ⊥平面1C BD .P15拓广探索7.如图,在棱长为1的正方体1111ABCD A B C D -中,E ,F 分别为1DD ,BD 的中点,点G 在CD 上,且14CG CD =.(1)求证:1EF B C ⊥;(2)求EF 与CG 所成角的余弦值.【答案】(1)建立以D 点为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则1(0,0,)2E ,1(F 则111(,,222EF =-uu u r 所以112EF B C ⋅=⨯所以1EF B C ⊥.8.已知四面体中三组相对棱的中点间的距离都相等,求证:这个四面体相对的棱两两垂直.【答案】已知:四面体SABC 中,E 、F 、G 、H 、M 、N 分别是对应各棱的中点,且EF GH MN ==.求证:SA BC ⊥,SB AC ⊥,SC AB ⊥.证明:设SA a = ,SB b = ,SC c = ,所以()()22b c a a b c +-=+- ,由此可得()()()2204b c a a b c b c a =+--+-=⋅- ,所以()0b c a ⋅-= ,即0SB AC ⋅= .所以SB AC ⊥ ,即SB AC ⊥,同理可证SA BC ⊥,SC AB ⊥.故若四面体中三组相对棱的中点间的距离都相等,则这个四面体相对的棱两两垂直.第一章空间向量与立体几何1.3空间向量及其运算的坐标表示1.3.1空间直角坐标系练习1.在空间直角坐标系中标出下列各点:(0,2,4)A ,(1,0,5)B ,(0,2,0)C ,(1,3,4)D .【答案】建立如下图如示的空间直角坐标系,根据每一个点的特点标注如下图.2.在空间直角坐标系Oxyz 中,(1)哪个坐标平面与x 轴垂直?哪个坐标平面与y 轴垂直?哪个坐标平面与z 轴垂直?(2)写出点()2,3,4P 在三个坐标平面内的射影的坐标.(3)写出点()1,3,5P 关于原点成中心对称的点的坐标.【答案】(1)平面yoz 与x 轴垂直,平面xoz 与y 轴垂直,平面xoy 与z 轴垂直;(2)点()2,3,4P 在平面yoz 的射影的坐标()0,3,4P '.点()2,3,4P 在平面xoy 的射影的坐标()2,3,0P '.点()2,3,4P 在平面xoz 的射影的坐标()2,0,4P '.(3)点()1,3,5P 关于原点成中心对称的点的坐标是()1,3,5P '---.3.在长方体OABC D A B C ''''-中.3OA =,4OC =,3OD '=,A C ''与B D ''相交于点P ,建立如图所示的空间直角坐标系Oxyz .(1)写出点C ,B ',P 的坐标;(2)写出向量BB ' ,A C '' 的坐标.【答案】(1)因为3OA =,4OC =,3OD '=,(2)因为()0,0,3D '=,()3,0,0A ()0,0,3BB OD ''== ,()3,4,0A C AC ''==- 4.已知点B 是点()3,4,5A 在坐标平面Oxy 内的射影,求OB .【答案】因为点()3,4,5A 在坐标平面Oxy 内的射影是()3,4,0B ,1.3.2空间向量运算的坐标表示P21练习1.已知()3,2,5=-r a ,()1,5,1b =- ,求:(1)a b + ;(2)6a ;(3)3a b - ;(4)a b ⋅ ,【答案】(1)()2,7,4-,(2)()18,12,30-,(3)()10,1,16-,(4)2.2.已知()2,1,3a →=-,()4,2,b x →=-,且a b →→⊥,求x 的值.【答案】因为a b →→⊥,所以0a b →→= ,所以2(x ⨯⨯-4)+(-1)2+3=0,3.在z 轴上求一点M ,使点M 到点()1,0,2A 与点()1,3,1B -的距离相等.【答案】解:设点(0,0,)M m ,因为M 到点()1,0,2A 与点()1,3,1B -的距离相等,所以点M 的坐标为(0,0,3)-4.如图,正方体OABC D A B C ''''-的棱长为a 、点N ,M 分别在AC ,BC '上,2AN CN =,2BM MC '=,求MN 的长.【答案】因为正方体OABC D A B C ''''-的棱长为a 、点N ,M 分别在AC ,BC '上,2AN CN =,2BM MC '=,5.如图,在正方体1111ABCD A B C D -中,M 是AB 的中点,求1DB 与CM 所成角的余弦值.【答案】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,如图,设正方体1111ABCD A B C D -的棱长为2,则()2,1,0M ,()0,2,0C ,()0,0,0D ,()12,2,2B ,()12,2,2DB = ,()2,1,0CM =- ,习题1.3P22复习巩固1.在空间直角坐标系Oxyz 中,三个非零向量a ,b ,c分别平行于x 轴、y 轴、z 轴,它们的坐标各有什么特点?【答案】向量a ,b ,c 分别平行于x 轴,y 轴,z 轴,所以向量a 的横坐标不为0,纵坐标为0,竖坐标为0;向量b 的横坐标为0,纵坐标不为0,竖坐标为0;向量c的横坐标为0,纵坐标为0,竖坐标不为0;2.(),,M x y z 是空间直角坐标系Oxyz 中的一点,写出满足下列条件的点的坐标;(1)与点M 关于x 轴对称的点;(2)与点M 关于y 轴对称的点;(3)与点M 关于z 轴对称的点;(4)与点M 关于原点对称的点.【答案】(1)(),,x y z --,(2)(),,x y z --,(3)(),,x y z --,(4)(),,x y z ---.3.如图,正方体OABC D A B C ''''-的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C D '',D A '',A A ',AB ,BC ,CC '的中点,写出正六边形EFGHIJ 各顶点的坐标.4.先在空间直角坐标系中标出A ,B 两点,再求它们之间的距离:(1)()2,3,5A ,()3,1,4B ;(2)()6,0,1A ,()3,5,7B .由空间两点间距离公式可得:由空间两点间距离公式可得:5.已知(2,3,1)a =- ,(2,0,3)b = ,(0,0,2)c = .求:(1)()a b c ⋅+ ;(2)68a b c +- .【答案】解:(1)因为(2,0,3)b = ,(0,0,2)c = ,所以(2,0,5)b c += ,因为(2,3,1)a =- ,所以()22(3)0159a b c ⋅+=⨯+-⨯+⨯= ,(2)因为(2,3,1)a =- ,(2,0,3)b = ,(0,0,2)c = ,所以68(2,3,1)6(2,0,3)8(0,0,2)a b c +-=-+- (2,3,1)(12,0,18)(0,0,16)=-+-(14,3,3)=-P22综合运用6.求证:以A (4,1,9),B (10,–1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.【答案】A (4,1,9),B (10,–1,6),C (2,4,3),∴△ABC 为等腰直角三角形.7.已知()3,5,7A -,()2,4,3B -,求AB ,BA ,线段AB 的中点坐标及线段AB 的长.【答案】因为()3,5,7A -,()2,4,3B -,所以()5,1,10AB =-- ,()5,1,10BA =-8.如图,在正方体1111ABCD A B C D -中,M ,N 分别为棱1A A 和1B B 的中点,求CM 和1D N 所成角的余弦值.【答案】以D 为原点,1,,DA DC DD 为x 、y 、z 轴正方向建立空间直角坐标系,不妨设正方体边长为2,则()()()()()10,0,0,0,0,2,2,2,1,0,2,0,2,0,1,D D N C M 所以()()12,2,1,2,2,1CM D N =-=- ,设CM 和1D N 所成角为θ,则9.{},,a b c 是空间的一个单位正交基底,向量23p a b c =++ ,{},,a b a b c +- 是空间的另一个基底,用基底{},,a b a b c +- 表示向量p .【答案】设2)()3(a b y a b zc p a b c x ++-+=++= ,即有23()()a a b c x x b z y y c +++=-++ ,因为{},,a b c 是空间的一个单位正交基底,第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线、平面的位置关系P29练习1.空间中点、直线和平面的向量表示1.判断下列命题是否正确,正确的在括号内打“√”,错误的打“×”(1)零向量不能作为直线的方向向量和平面的法向量;()(2)若v 是直线l 的方向向量,则()v λλ∈R 也是直线l 的方向向量;()(3)在空间直角坐标系中,()0,0,1j =是坐标平面Oxy 的一个法向量.()【答案】(1)零向量的方向不确定,所以不能作为直线的方向向量和平面的法向量,正确;(2)当0λ=时,0v λ=,所以()v λλ∈R不一定是直线l 的方向向量,不正确;(3)在空间直角坐标系中,()0,0,1j = ,j ⊥平面Oxy ,所以()0,0,1j = 是坐标平面Oxy 的一个法向量,正确.2.在平行六面体1111ABCD A B C D -中,AB a = ,AD b = ,1AA c =,O 是1BD 与1B D的交点.以{},,a b c为空间的一个基底,求直线OA 的一个方向向量.【答案】解:因为AB a = ,AD b =,1AA c = ,如图112OA OB BA D B BA =+=+ ()11112D A A A AB BA =+++因为11D A AD b =-=- ,11A A AA c =-=- ,所以()11112222OA b c a a a b c=--+-=--- 所以直线OA 的一个方向向量为111222a b c---3.在长方体1111ABCD A B C D -中,4AB =,3BC =,12CC =.以D 为原点,以1111,,342DA DC DD ⎧⎫⎨⎬⎩⎭为空间的一个单位正交基底,建立空间直角坐标系Oxyz ,求平面1ACD 的一个法向量.【答案】由题可得()()()10,4,0,3,0,0,0,0,2C A D ,则()()13,4,0,3,0,2AC AD =-=-,设平面1ACD 的一个法向量为(,,)m x y z =,则1340320m AC x y m AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令4x =,得3,6y z ==,则平面1ACD 的一个法向量为()4,3,6.2.空间中直线、平面的平行P31练习1.用向量方法证明“直线与平面平行的判定定理”:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.【答案】已知:直线,a b ,平面α,,a b αα⊄⊂,//a b .求证://a α.证明:设直线,a b 的方向向量分别为,u v ,平面α的一个法向量为n ,因为//a b ,所以u v λ= ,由于n v ⊥ ,所以0n v ⋅= ,即有0n u n v λ⋅=⋅= ,亦即n u ⊥.因为a α⊄,所以//a α.2.如图,在四面体ABCD 中,E 是BC 的中点.直线AD 上是否存在点F ,使得//AE CF?【答案】假设直线AD 上存在点F 使//AE CF ,设()01AF AD λλ=≤≤,3.如图,在正方体1111ABCD A B C D -中,E ,F 分别是面1AB ,面11A C 的中心.求证://EF 平面1ACD .【答案】如图,以D 为原点建立空间直角坐标系,设正方体棱长为2,则()()()()()12,0,0,0,2,0,0,0,2,2,1,1,1,1,2A C D E F ,则()()()12,2,0,2,0,2,1,0,1AC AD EF =-=-=-,设平面1ACD 的一个法向量为(),,n x y z =,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩ ,即220220x y x z -+=⎧⎨-+=⎩,令1x =,则可得()1,1,1n = ,0EF n ⋅= ,EF n ∴⊥ ,EF ⊄平面1ACD ,∴//EF 平面1ACD .3.空间中直线、平面的垂直P33练习1.已知(3,,)(,)u a b a b a b =+-∈R 是直线l 的方向向量,()1,2,3n =是平面α的法向量.(1)若//l α,求a ,b 的关系式;(2)若l α⊥,求a ,b 的值.【答案】(1)由//l α得u n ⊥ ,所以0u n ⋅=,即31()2()30a b a b ⨯++⨯+-⨯=,整理得530a b -+=;2.已知正方体1111ABCD A B C D -的棱长为1,以D 为原点,{}1,,DA DC DD为单位正交基底建立空间直角坐标系.求证:11A C BC ⊥.【答案】由题意,111AC DC DA DC DA DD =-=--,111BC DC DB DD DA =-=-,所以221111110A C BC DC DD DD DA DD DA DC DA DA DD ⋅=⋅-⋅--⋅++⋅=所以11A C BC ⊥.3.如图,在长方体1111ABCD A B C D -中,2AB =,11BC CC ==,E 是CD 的中点,F 是BC 的中点.求证:平面1EAD ⊥平面1EFD.【答案】解:如图建立空间直角坐标系,则()0,1,0E ,()1,0,0A ,()10,0,1D ,为(),,n x y z = ,则1·0·0n AE n ED ⎧=⎪⎨=⎪⎩ ,即00x y y z -+=⎧⎨-+=⎩,令1x =,则1y z ==,所以()1,1,1n = ;1y z ==-,所以()2,1,1m =--;因为()()2111110n m =⨯+⨯-+⨯-= ,所以n m ⊥ 所以平面1EAD ⊥平面1EFD .1.4.2用空间向量研究距离、夹角问题P35练习1.在棱长为1的正方体1111ABCD A B C D -中,点A 到平面1B C 的距离等于__________;直线DC 到平面1AB 的距离等于_________;平面1DA 到平面1CB 的距离等于__________.【答案】解:在棱长为1的正方体1111ABCD A B C D -中,AB ⊥面1B C ,所以AB 即为点A 到平面1B C 的距离,故点A 到平面1B C 的距离为1,因为//DC AB ,AB Ì面1B A ,DC ⊄面1B A ,所以//DC 面1B A ,所以AD 即为直线DC 到平面1AB 的距离,故直线DC 到平面1AB 的距离为1,又平面1//DA 平面1CB ,所以平面1DA 到平面1CB 的距离为1故答案为:1,1,12.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,F 为线段1BB 的中点.(1)求点1A 到直线1B E 的距离;(2)求直线1FC 到直线AE 的距离;(3)求点1A 到平面1AB E 的距离;(4)求直线1FC 到平面1AB E 的距离.【答案】建立如图所示的空间直角坐标系,(3)设平面1AB E 的一个法向量为(),,n x y z =,令2z =,则2,1y x =-=,即(1,2,2)n =-.设点1A 到平面1AB E 的距离为d ,所以直线1FC 到平面1AB E 的距离等于1C 到平面1AB E 的距离.()111,0,0C B = ,由(3)得平面1AB E 的一个法向量为(1,2,2)n =-,3.如图,在棱长为1的正方体1111ABCD A B C D -中,求平面1A DB 与平面11D CB 的距离.【答案】如图所示建立空间直角坐标系,1(1,0,1),(1,1,0),(0,0,0),(0,1,0)A B D C ,1(1,0,1),(1,1,0),(0,1,0)DA DB DC ===设平面1A DB 的法向量为(,,)n x y z =,则100n DA x z n DB x y ⎧⋅=+=⎨⋅=+=⎩,不妨令1x =,则1,1y z =-=-,所以(1,1,1)n =--,P38练习1.在直三棱柱A 1B 1C 1-ABC 中,∠BCA =90°,D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是()A.3010B.12C.3015 D.1510【答案】如图建立空间直角坐标系,设BC =CA =CC 1=1,则A (1,0,1),∴1BD =11,,22⎛- ⎝∴|cos<11BD AF ,故选:A.2.PA ,PB ,PC 是从点P 出发的三条射线,每两条射线的夹角均为60︒,那么直线PC 与平面PAB 所成角的余弦值是().A.12B.22 C.3D.3【答案】解:在PC 上任取一点D 并作DO ⊥平面APB ,则∠DPO 就是直线PC 与平面PAB 所成的角.过点O 作OE ⊥PA ,OF ⊥PB ,因为DO ⊥平面APB ,则DE ⊥PA ,DF ⊥PB .△DEP ≌△DFP ,∴EP =FP ,∴△OEP ≌△OFP ,因为∠APC =∠BPC =60°,所以点O 在∠APB 的平分线上,即∠OPE =30°.在直角△PED 中,∠DPE =60°,PE =1,则PD =2.故选:C3.如图,正三棱柱111ABC A B C -的所有棱长都为2,求平面1AA B 与平面11A BC 夹角的余弦值.【答案】因为正三棱柱111ABC A B C -的所有棱长均为2,取BC 的中点O ,则AO BC ⊥所以AO ⊥平面11BB C C .取11B C 的中点H ,所以AO ,BO ,OH 两两垂直,以O 为原点,建立如图所示的空间直角坐标系.4.如图,ABC 和DBC △所在平面垂直,且AB BC BD ==,120CBA DBC =∠=∠︒.求:(1)直线AD与直线BC所成角的大小;(2)直线AD与平面BCD所成角的大小;(3)平面ABD和平面BDC的夹角的余弦值.【答案】解:设1AB=,作AO⊥BC于点O,连DO,以点O为原点,OD,OC,OA的方向分别为x轴、y轴、z轴方向,建立坐标系,得下列坐标:∴,直线AD与平面BCD所成角的大小45︒P41练习1.如图,二面角l αβ--的棱上有两个点A ,B ,线段BD 与AC 分别在这个二面角的两个面内,并且都垂直于棱l .若4AB =,6AC =,8BD =,17CD =,求平面α与平面β的夹角.【答案】设平面α与平面β的夹角为θ,由CD CA AB BD =++可得()22222222CD CA AB BDCA AB BD CA AB AB BD CA BD=++=+++⋅+⋅+⋅ 3616642cos ,CA BD CA BD=+++11696cos θ=-所以1cos 2θ=,即平面α与平面β的夹角为3π.2.如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,M ,N 分别是AD ,BC 的中点.求异面直线AN ,CM 所成角的余弦值.【答案】连结ND ,取ND 的中点E ,连结ME ,则//ME AN ,EMC ∴∠是异面直线AN ,CM 所成的角,3.如图,在三棱锥O ABC -中,OA ,OB ,OC 两两垂直,3OA OC ==,2OB =.求直线OB 与平面ABC 所成角的正弦值.【答案】构建以O 为原点,,,OB OC OA为x 、y 、z 轴的正方向的空间直角坐标系,如下图示,∴(0,0,3)A ,(2,0,0)B ,(0,3,0)C ,则(2,0,3)AB =- ,(0,3,3)AC =- ,(2,0,0)OB =,习题1.4P41复习巩固1.如图,在三棱锥A BCD -中,E 是CD 的中点,点F 在AE 上,且2EF FA =.设BC a = ,BD b = ,BA c = ,求直线AE ,BF的方向向量.【答案】在△BAD 中,BD b = ,BA c =,则AD BD BA b c =-=- ,在△BAC 中,BC a = ,BA c =,则AC BC BA a c =-=- ,∵在△DAC 中,E 是CD 的中点,2.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,1AB AC ==,12AA =.以A为原点,建立如图所示空间直角坐标系.(1)求平面11BCC B 的一个法向量;(2)求平面1A BC 的一个法向量.【答案】易知()1,0,0B ,()0,1,0C ,()11,0,2B ,()10,0,2A .(1)()1,1,0BC =-uu u r ,()10,0,2BB =uuu r,设面11BCC B 的法向量为()111,,n x y z = ,则100n BC n BB ⎧⋅=⎪⎨⋅=⎪⎩ ,即111020x y z -+=⎧⎨=⎩,取1111,0x y z ===,则()1,1,0n = ,所以平面11BCC B 的一个法向量为()1,1,0n =;(2)()1,1,0BC =-uu u r,()11,0,2BA =- ,设面1A BC 的法向量为()222,,m x y z = ,则100m BC m BA ⎧⋅=⎪⎨⋅=⎪⎩ ,即2222020x y x z -+=⎧⎨-+=⎩,取2222,1x y z ===,则()2,2,1m = ,所以平面1A BC 的一个法向量为()2,2,1m =3.如图,在平行六面体1111ABCD A B C D -中,E 是AB 的中点,F 是11C D 的中点.求证:1//A E CF .【答案】取11A B 的中点为G ,则根据平行六面体的特征可得11//B G C F ,11B G C F =,所以四边形11B GFC 为平行四边形,则11//B C GF ,11B C GF =,又因为11//B C BC ,11B C BC =,所以//GF BC ,GF BC =,所以四边形GFCB 为平行四边形,所以//BG CF ,又因为11//,A G EB A G EB =,所以四边形1A EBG 为平行四边形.所以1//A E BG ,进而1//A E CF .4.如图,在四面体ABCD 中,AD ⊥平面BCD ,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =.求证://PQ 平面BCD .【答案】证明:如图所示,取BD 中点O ,且P 是BM 中点,∴PO //MD 且PO 12=MD ,取CD 的四等分点H ,使DH =3CH ,且AQ =3QC ,∴PO //QH 且PO =QH ,∴四边形OPQH 为平行四边形,∴PQ //OH ,PQ 在平面BCD 外,且OH ⊂平面BCD ,∴PQ //平面BCD .5.如图,在正方体1111ABCD A B C D -中,点E 在BD 上,且13BE BD =;点F 在1CB 上,且113CF CB =.求证:(1)EF BD ⊥;(2)1EF CB ⊥.【答案】解:(1)如图建立空间直角坐标系,令正方体的棱长为3,则()0,0,0D ,()1,3,1F ,所以()1,1,1EF =- ,()3,3,0DB = ,所以1313100DB EF =-⨯+⨯+⨯=,所以EF BD⊥(2)由(1)可知()13,0,3CB = ,所以11313100CB EF =-⨯+⨯+⨯=,所以1EF CB ⊥6.如图,在棱长为1的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,求点O 到直线1A E的距离.【答案】建立如图所示的空间直角坐标系,则1111(1,0,1),(,1,0),(1,,)222A E O ,因为1111122(,1,1),(,,)2333||A E A E u A E =--==--,111(0,,)22OA =- 所以123OA u ⋅=- .所以点O 到直线1A E 的距离为2211142()296OA OA u -⋅=-=.7.如图,四面体OABC 的所有棱长都是1,D ,E 分别是边OA ,BC 的中点,连接DE.(1)计算DE 的长;(2)求点O 到平面ABC 的距离.【答案】(1)因为四面体OABC 的所有棱长都是1,所以该四面体为正四面体,(2)因为四面体OABC 为正四面体,所以点O 在平面ABC 的射影O '为ABC 的中心,。
地下水污染治理技术的研究与实践地下水是人类重要的饮用水来源之一,但随着人口的增长和工业化进程的加速,地下水污染已成为不可忽视的环境问题。
尤其是在城市和工业园区,许多地下水资源已受到不同程度污染。
因此,研究和实践地下水污染治理技术对于保护地下水环境,维护人类健康和社会进步至关重要。
一、地下水污染的危害1.水质差地下水污染导致水质变差,变成不利于人体健康的水源。
比如含有有毒有害的物质,如有机溶剂、重金属、微生物菌毒等,这些物质的长期接触和摄入将导致人体受到不同程度的损害。
2.水量减少地下水是重要的饮用水来源之一,它提供了人类生存所必需的水资源。
但随着污染的增加,地下水位下降、水资源减少,这导致一些地区出现水荒现象。
3.土地沉降随着地下水位下降,地下空洞的形成也会导致土地沉降,这将对土地的利用产生负面影响。
比如,会导致房屋建筑物结构不稳定,甚至会引发地震等自然灾害。
二、地下水污染治理技术一些先进、简单、经济并且环保的地下水污染治理技术已经被广泛研究和发展。
本文将提到其中几种技术。
1.生物修复生物修复是一种环保、自然的地下水治理方式。
该方法是利用天然或制造的微生物,将污染物分解成可分解的有害化学物质,使其成为无害物质。
通过这种方式可以实现对长期污染、多种污染物、高浓度和面积较大的地下水治理。
生物修复技术不会对地下水造成新的污染,而且成本较其他技术较低,对环境的影响较小。
2.厌氧氧化还原厌氧氧化还原是一种高效、低成本的地下水污染治理技术。
其基本原理是利用厌氧菌,在无氧的条件下将有机物分解成二氧化碳、水和硫酸盐等物质。
这里的有机物可以是工厂废水、污水或有害化学物质等。
然后微生物可以将有害物质形成的硫酸盐还原成硫化氢。
此时再由另一组微生物性质利用硫化氢,将其转化成硫酸盐或溶解态。
由于厌氧氧化还原技术无需能量补偿,所以其成本低廉,且处理效果较好。
这种技术已被广泛用于废水、污水和地下水污染治理中。
3.强化生物固化固化技术始终是研究和新技术的重点。
人教A版高中数学选择性必修第一册全册学案第一章空间向量与立体几何........................................................................................................ - 2 -1.1空间向量及其运算......................................................................................................... - 2 -1.1.1空间向量及其线性运算...................................................................................... - 2 -1.1.2空间向量的数量积运算.................................................................................... - 16 -1.2空间向量基本定理....................................................................................................... - 29 -1.3空间向量及其运算的坐标表示................................................................................... - 38 -1.3.1空间直角坐标系................................................................................................ - 38 -1.3.2空间运算的坐标表示........................................................................................ - 46 -1.4空间向量的应用 .......................................................................................................... - 59 -1.4.1用空间向量研究直线、平面的位置关系........................................................ - 59 -第1课时空间向量与平行关系........................................................................ - 59 -第2课时空间向量与垂直关系........................................................................ - 69 -1.4.2用空量研究距离、夹角问题............................................................................ - 79 -章末总结 ............................................................................................................................... - 97 - 第二章直线和圆的方程............................................................................................................ - 113 -2.1直线的倾斜角与斜率................................................................................................. - 113 -2.1.1倾斜角与斜率 ................................................................................................. - 113 -2.1.2两条直线平行和垂直的判定.......................................................................... - 121 -2.2直线的方程 ................................................................................................................ - 131 -2.2.1直线点斜式方程.............................................................................................. - 131 -2.2.2直线的两点式方程.......................................................................................... - 137 -2.2.3直线的一般式方程.......................................................................................... - 145 -2.3直线的交点坐标与距离公式..................................................................................... - 154 -2.3.1两条直线的交点坐标...................................................................................... - 154 -2.3.2两点间的距离公式.......................................................................................... - 154 -2.3.3点到直线的距离公式...................................................................................... - 163 -2.3.4两条平行直线间的距离.................................................................................. - 163 -2.4圆的方程 .................................................................................................................... - 171 -2.4.1圆的标准方程 ................................................................................................. - 171 -2.4.2圆的一般方程 ................................................................................................. - 180 -2.5直线与圆、圆与圆的位置关系................................................................................. - 188 -2.5.1直线与圆的位置关系...................................................................................... - 188 -2.5.2圆与圆的位置关系.......................................................................................... - 199 -章末复习 ............................................................................................................................. - 208 - 第三章圆锥曲线的方程............................................................................................................ - 222 -3.1椭圆 ............................................................................................................................ - 222 -3.1.1椭圆及其标准方程.......................................................................................... - 222 -3.1.2椭圆的简单几何性质...................................................................................... - 234 -第1课时椭圆的简单几何性质...................................................................... - 234 -第2课时椭圆的标准方程及性质的应用...................................................... - 244 -3.2双曲线 ........................................................................................................................ - 256 -3.2.1双曲线及其标准方程...................................................................................... - 256 -3.2.2双曲线的简单几何性质.................................................................................. - 267 -3.3抛物线 ........................................................................................................................ - 281 -3.3.1抛物线及其标准方程...................................................................................... - 281 -3.3.2抛物线的简单几何性质.................................................................................. - 291 -章末复习 ............................................................................................................................. - 303 - 全书复习 ..................................................................................................................................... - 316 -第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其线性运算学习目标核心素养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点) 1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1图2如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称方向 模 记法 零向量任意 0 0 单位向量任意 1 相反向量相反 相等 a 的相反向量:-a AB →的相反向量:BA → 相等向量 相同 相等 a =b3.(1)向量的加法、减法空间向量的运算 加法 OB →=OA →+OC →=a +b减法 CA →=OA →-OC →=a -b 加法运算律 ①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算.当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍.②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .思考:向量运算的结果与向量起点的选择有关系吗?[提示] 没有关系.4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. (2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量. (2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”)(1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c .( ) (2)相等向量一定是共线向量.( ) (3)三个空间向量一定是共面向量.( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行.(2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD -A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________. -53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.]4.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD→+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |;③在正方体ABCD -A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→ [(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确;对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确;对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向.(2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. [跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( )①长度相等、方向相同的两个向量是相等向量;②平行且模相等的两个向量是相等向量;③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算 1111为向量AC 1→的有( )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P -ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zP A →;②P A →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解.(1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→;对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.](2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(P A →+PC →)=PQ →-12PC →-12P A →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点,∴P A →+PC →=2PO →,PC →+PD →=2PQ →,∴P A →=2PO →-PC →,PC →=2PQ →-PD →,∴P A →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质. [跟进训练] 2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB → B .3MG →C .3GM →D .2MG →B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB →=MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎨⎧ λ=7λk =k +6,解得k =1.] (2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM →=2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线.(1)存在实数λ,使P A →=λPB →成立.(2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ).(3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →, 所以A 1E →=23A 1D 1→,A 1F →=25A 1C →, 所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c .又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c , 所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如P A →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+ y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c .因为a ,b ,c 不共面,所以⎩⎨⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示,即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P 是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →),∴3CP →=P A →+2PB →,即P A →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面.[解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则 OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →, ∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎨⎧1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断? [解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1. ∴点P 与点A 、B 、C 不共面.解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( ) A .OM →=2OA →-OB →-OC → B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0 D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.] 2.已知正方体ABCD -A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB→-nAA 1→,则m ,n 的值分别为( )A .12,-12 B .-12,-12 C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .] 4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a ,b 满足|a |>|b |且a ,b 同向,则a >b ; ③不相等的两个空间向量的模必不相等; ④对于任何向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________.④ [对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,求k 的值. [解] ∵两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,∴k e 1+e 2=t (e 1+k e 2),则(k -t )e 1+(1-tk )e 2=0.∵非零向量e 1,e 2不共线,∴k -t =0,1-kt =0,解得k =±1.1.1.2 空间向量的数量积运算学习 目 标核心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2. ③cos 〈a ,b 〉=a ·b|a ||b |. (3)数量积的运算律(2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a|a |.(2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =k a ,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等. ( ) (2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC -A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos 〈AB 1,BC 1〉=122×2=14.故选B.]3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4 A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c 的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算【例1】 (1)如图,三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC=60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →) =OA →+13[(OB →-OA →)+(OC →-OA →)] =13OB →+13OC →+13OA →.∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2 =13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. (3)根据向量的方向,正确求出向量的夹角及向量的模. (4)代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系=OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ,又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →) =12⎣⎢⎡⎦⎥⎤12OA →+12(OB →+OC →) =14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b ) =14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0. ∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:P A ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又P A →=PD →+DA →,∴P A →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即P A ⊥BD .夹角问题夹角〈a ,b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4; 由余弦定理,得:cos ∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14, 又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos 〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3. 即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2 注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC →+2BA →·CD →+2AC →·CD →=3+2×1×1×cos 〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角α-AB -β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角α-AB -β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC 的中点,则FG →·AB →=( )A .34B .14C .12D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.]2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b|a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________. 0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →) =AB →·(CD →-CA →)+AD →·(BC →+CA →) =AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角α-AB -β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →, ∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116, ∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线; (2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值. [解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°. (1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB → =12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0 ∴MN ⊥AB ,同理可证MN ⊥CD . ∴MN 为AB 与CD 的公垂线. (2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22]=14×2a 2=a 22.∴|MN →|=22a , ∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p , ∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a 24+a 22-a 24=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ=32a·32a ·cos θ=a 22. ∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23. 从而异面直线AN 与MC 所成角的余弦值为23.1.2 空间向量基本定理学 习 目 标核 心 素 养1.了解空间向量基本定理及其意义.2.掌握空间向量的正交分解.(难点)3.掌握在简单问题中运用空间三个不共面的向量作为基底表示其他向量的方法.(重点)1.通过基底概念的学习,培养学生数学抽象的核心素养.2.借助基底的判断及应用,提升逻辑推理、直观想象及数学运算的核心素养.(1)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对(x ,y ),使得p =x a +y b .(2)共面向量定理的推论:空间一点P 在平面MAB 内的充要条件是存在有序实数对(x ,y ),使得MP →=xMA →+yMB →,或对于空间任意一定点O ,有OP →=xOM →+yOA →+zOB →(x +y +z =1).今天我们将对平面向量基本定理加以推广,应用上面的几个公式我们可以解决与四点共面有关的问题,得出空间向量基本定理.1.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .。
习题课充分条件与必要条件的综合应用A级必备知识基础练1.下列四个条件中,使a>b成立的充分不必要条件是( )A.a>b-1B.a>b+1C.a2>b2D.a>2b2.已知集合A={x|a-2<x<a+2},B={x|x≤-2,或x≥4},则A∩B=⌀的充要条件是( ) A.0≤a≤2 B.-2<a<2C.0<a≤2D.0<a<23.已知p:x-a>0,q:x>1,若p是q的充分条件,则实数a的取值范围为( )A.{a|a<1}B.{a|a≤1}C.{a|a>1}D.{a|a≥1}4.(河北邢台高一期中)若a>b>c,则( )A.“x>b”是“x>a”的充分不必要条件B.“x>a”是“x>c”的充要条件C.“x>c”是“x>a”的必要不充分条件D.“x>b”是“x>c”的既不充分也不必要条件5.(山东单县高一月考)方程x2-2x+a=0有实根的充要条件是,方程x2-2x+a=0有实根的一个充分不必要条件可以是.7.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,则实数a的取值范围是.8.已知条件p:x2+的值.B级关键能力提升练9.一次函数y=-mn x+1n的图象同时经过第一、三、四象限的必要不充分条件是( )A.m>1,且n<1B.mn<0C.m>0,且n<0D.m<0,且n<010.(多选题)(山东五莲教学研究室高一期中)一元二次方程ax2+4x+3=0(a≠0)有一个正根和一个负根的充分不必要条件是( ) A.a<0 B.a<-2C.a<-1D.a<111.(多选题)(河北张家口高二期中)若不等式x-2<a成立的充分条件是0<x<3,则实数a的取值范围可以是( )A.{a|a≥2}B.{a|a≥1}C.{a|3<a≤5}D.{a|a≤2}12.(江苏南通高一期末改编)已知集合P={x|1≤,使得x∈P是,求出m的取值范围;若不存在,请说明理由.请从如下三个条件选择一个条件补充到上面的横线上:①充分不必要;②必要不充分;③充要.C级学科素养创新练13.(多选题)设计如图所示的四个电路图,若p:开关S闭合,q:灯泡L亮,则符合p是q的充要条件的电路图是( )习题课 充分条件与必要条件的综合应用1.B 因为a>b+1⇒a-b>1⇒a-b>0⇒a>b,所以a>b+1是a>b 的充分条件.又因为a>b ⇒a-b>0a>b+1,所以a>b+1不是a>b 的必要条件,故a>b+1是a>b 成立的充分不必要条件.2.A 由A∩B=⌀,得{a -2≥-2,a +2≤4,故0≤a≤2. 3.D 已知p:x-a>0,x>a,q:x>1,若p 是q 的充分条件,则{x|x>a}⊆{x|x>1},所以a≥1.4.C 由于x>b x>a,x>a ⇒x>b,则“x>b”是“x>a”的必要不充分条件,A 错误;由于x>a ⇒x>c,x>c x>a,则“x>a”是“x>c”的充分不必要条件,B 错误; 由于x>c x>a,x>a ⇒x>c,则“x>c”是“x>a”的必要不充分条件,C 正确; 由于x>b ⇒x>c,x>c x>b,则“x>b”是“x>c”的充分不必要条件,D 错误.故选C.5.a≤1 a=1(答案不唯一) 因为方程x 2-2x+a=0有实根,所以Δ≥0,即(-2)2-4a≥0,解得a≤1.反之,当a≤1时,Δ≥0,则方程x 2-2x+a=0有实根,所以a≤1是方程x 2-2x+a=0有实根的充要条件.当a=1时,方程x 2-2x+1=0有实根x=1,而当方程x 2-2x+a=0有实根时不一定是a=1,所以a=1是方程x 2-2x+a=0有实根的一个充分不必要条件.6.{a|a≤2} {a|a≥3} p:-a<x<a,q:-2<x<3,若p 是q 的充分条件,则{x|-a<x<a}⊆{x|-2<x<3},所以{-a ≥-2,a ≤3,故a≤2.若p 是q 的必要条件,则{x|-2<x<3}⊆{x|-a<x<a},所以{-a ≤-2,a ≥3,则a≥3. 7.{a|-1≤a≤5} 因为“x∈P”是“x∈Q”的必要条件,所以Q ⊆P.所以{a -4≤1,a +4≥3,解得-1≤a≤5, 即a 的取值范围是{a|-1≤a≤5}.8.解设p,q 表示的值分别为集合A,B.由条件p 可解得x=2或x=-3,则A={x|≠0时,解得≠0).若q 是p 的充分不必要条件,则需-1m =2或-1m =-3,当-1m =2时,m=-12;当-1m =-3时,m=13.故m=-12或m=13或m=0. 9.B 因为y=-m n x+1n 经过第一、三、四象限,故-m n >0,1n <0,即m>0,n<0,但此为充要条件,因此,观察各选项知其必要不充分条件为mn<0,故选B.10.BC 若方程ax 2+4x+3=0(a≠0)有一个正根和一个负根,则{Δ=16-12a >0,3a<0,解得a<0,则充分不必要条件应为集合{a|a<0}的真子集,故选BC.11.ABC 不等式x-2<a 成立的充分条件是0<x<3,设x-2<a 的解集为A,则{x|0<x<3}是集合A 的真子集,∵A={x|x<2+a},∴2+a≥3,解得a≥1,则A,B,C 均正确.故选ABC.12.解若选择①,即x ∈P 是≤1+m 且{1-m ≤1,1+m ≥4(两个等号不同时成立), 解得m≥3,故实数m 的取值范围是{m|m≥3}.若选择②,即≤1+m 且{1-m ≥1,1+m ≤4(两个等号不同时成立),解得m=0. 综上,实数m 的取值范围是{m|m≤0}.若选择③,即x ∈P 是x ∈S 的充要条件,则P=S,即{1-m =1,1+m =4,此方程组无解, 则不存在实数m,使x ∈P 是x ∈S 的充要条件.13.BD A 中电路图,开关S 闭合则灯泡L 亮,而灯泡L 亮时开关S 不一定闭合,故A 中p 是q 的充分不必要条件;B 中电路图,开关S 闭合则灯泡L 亮,灯泡L 亮则开关S 一定闭合,故B 中p 是q 的充要条件;C 中电路图,开关S 闭合时灯泡L 不一定亮,灯泡L 亮则开关S 一定闭合,故C 中p 是q 的必要不充分条件;D 中电路图,开关S 闭合则灯泡L 亮,灯泡L 亮则开关S 一定闭合,故D 中p 是q 的充要条件,故选BD.。