空间直角坐标系教案
- 格式:doc
- 大小:465.50 KB
- 文档页数:11
1.13空间直角坐标系(优质课)教案_教学目标:通过用类比的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法; 通过空间中两点的距离解决问题.教学过程: 一、空间直角坐标系1. 从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了 空间直角坐标系.如右图所示.点O 叫做坐标原点,x 、y 和z 三轴分别叫做横、纵轴和竖轴,通过每 两个轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面. 通常建立的坐标系为右手直角坐标系,即右手拇指指向x 轴的正方向, 食指指向y 轴的正方向,中指指向z 轴的正方向. 2.空间特殊平面与特殊直线:每两条坐标轴分别确定的平面yOz 、xOz 、xOy ,叫做坐标平面.xOy 平面(通过x 轴和y 轴的平面)是坐标形如(x ,y,0)的点构成的点集,其中x ,y 为任意的实数; xOz 平面(通过x 轴和z 轴的平面)是坐标形如(x,0,z )的点构成的点集,其中x ,z 为任意的实数; yOz 平面(通过y 轴和z 轴的平面)是坐标形如(0,y ,z )的点构成的点集,其中y ,z 为任意的实数; x 轴是坐标形如(x,0,0)的点构成的点集,其中x 为任意实数; y 轴是坐标形如(0,y,0)的点构成的点集,其中y 为任意实数; z 轴是坐标形如(0,0,z )的点构成的点集,其中z 为任意实数.3.空间结构:三个坐标平面把空间分为八部分,每一部分称为一个卦限.在坐标平面xOy 上方,分别对应该坐标平面上四个象限的卦限,称为第Ⅰ、第Ⅱ、第Ⅲ、第Ⅳ卦限;在下方的卦限称为第Ⅴ、第Ⅵ、第Ⅶ、第Ⅷ卦限.二、关于一些对称点的坐标求法 1.关于坐标平面对称()()1,, ,,P x y z xOy P x y z −关于坐标平面对称 ()()1,, ,,P x y z yOz P x y z −关于坐标平面对称()()1,, ,,P x y z xOz P x y z −关于坐标平面对称2.关于坐标轴对称()()1,, ,,P x y z x P x y z −−关于轴对称()()1,, ,,y P x y z P x y z −−关于轴对称 ()()1,, ,,P x y z z P x y z −−关于轴对称 三、空间两点间的距离公式一般地,空间中任意两点()()11112222,,,,,P x y z P x y z 间的距离为12PP =特殊地,任一点(),,P x y z 到原点O 的距离为PO =类型一 空间点的坐标例1:已知棱长为2的正方体ABCD -A ′B ′C ′D ′,建立如图所示不同的空间直角坐标系,试分别写出正方体各顶点的坐标.解析:由空间直角坐标系定义求解答案:①对于图一,因为D 是坐标原点,A 、C 、D ′分别在x 轴、y 轴、z 轴的正半轴上,又正方体的棱长为2,所以D (0,0,0)、A (2,0,0)、C (0,2,0)、D ′(0,0,2).因为B 点在xDy 平面上,它在x 轴、y 轴上的射影分别为A 、C ,所以B (2,2,0). 同理,A ′(2,0,2)、C ′(0,2,2).因为B ′在xDy 平面上的射影是B ,在z 轴上的射影是D ′,所以B ′(2,2,2).②对于图二,A 、B 、C 、D 都在xD ′y 平面的下方,所以其z 坐标都是负的,A ′、B ′、C ′、D ′都在xD ′y 平面上,所以其z 坐标都是零.因为D ′是坐标原点,A ′,C ′分别在x 轴、y 轴的正半轴上,D 在z 轴的负半轴上,且正方体的棱长为2,所以D ′(0,0,0)、A ′(2,0,0)、C ′(0,2,0)、D (0,0,-2).同①得B ′(2,2,0)、A (2,0,-2)、C (0,2,-2)、B (2,2,-2).练习1:如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,棱长为1,求E 、F 点的坐标.答案:建立如图所示的空间直角坐标系.E 点在xOy 面上的射影为B (1,1,0),且z 坐标为12,∴E ⎝⎛⎭⎪⎫1,1,12.F 点在xOy 面上的射影为BD 的中点G ,G ⎝⎛⎭⎪⎫12,12,0,且z 坐标为1,∴F ⎝⎛⎭⎪⎫12,12,1. 练习2:点(2,0,3)位于( ) A .y 轴上 B .x 轴上 C .xOz 平面内 D .yOz 平面内 答案:C例2:已知V -ABCD 为正四棱锥,O 为底面中心,AB =2,VO =3,试建立空间直角坐标系,并求出各顶点的坐标.解析:本题中由于所给几何体是正四棱锥,故建系方法比较灵活,除答案所给方案外,也可以正方形ABCD 的任一顶点为原点,以交于这一顶点的两条边所在直线分别为x 轴、y 轴建系.如以A 为顶点AB 、AD 所在直线分别为x 轴、y 轴建系,等等.答案:因为所给几何体为正四棱锥,其底面为正方形,对角线相互垂直,故以O 为原点,互相垂直的对角线AC 、BD 所在直线为x 轴、y 轴,OV 为z 轴建立如图所示坐标系.∵正方形ABCD 边长AB =2,∴AO =OC =OB =OD =2,又VO =3,∴A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),V (0,0,3).练习1:如图所示,棱长为a 的正方体OABC -D ′A ′B ′C ′中,对角线OB ′与BD ′相交于点Q ,顶点O 为坐标原点,OA 、OC 分别在x 轴、y 轴的正半轴上,试写出点Q 的坐标.答案:∵OB ′与BD ′相交于Q 点,∴Q 点在xOy 平面内的投影应为OB 与AC 的交点,∴Q 点坐标为⎝ ⎛⎭⎪⎫12a ,12a ,z . 同理可知Q 点在xOz 平面内的投影也应为AD ′与OA ′的并点, ∴Q 点坐标为⎝ ⎛⎭⎪⎫12a ,12a ,12a . 练习2:(2014·湖北理,5)在如图所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号为①、②、③、④的四个图,则该四面体的正视图和府视图分别为( )A .①和②B .③和①C .④和③D .④和② 答案:D例3:在平面直角坐标系中,点P (x ,y )的几种特殊的对称点的坐标如下: (1)关于原点的对称点是P ′(-x ,-y ), (2)关于x 轴的对称点是P ″(x ,-y ), (3)关于y 轴的对称点是P (-x ,y ),那么,在空间直角坐标系内,点P (x ,y ,z )的几种特殊的对称点坐标: (1)关于原点的对称点是P 1________;(2)关于横轴(x 轴)的对称点是P 2________; (3)关于纵轴(y 轴)的对称点是P 3________; (4)关于竖轴(z 轴)的对称点是P 4________; (5)关于xOy 坐标平面的对称点是P 5________; (6)关于yOz 坐标平面的对称点是P 6________; (7)关于zOx 坐标平面的对称点是P 7________.解析:由空间直角坐标系定义,类比平面直角坐标系得出结论 答案:(1)(-x ,-y ,-z ).(2)(x ,-y ,-z ). (3)(-x ,y ,-z ).(4)(-x ,-y ,z ). (5)(x ,y ,-z ).(6)(-x ,y ,z ). (7)(x ,-y ,z ).练习1:求点A (1,2,-1)关于坐标平面xOy 及x 轴对称的点的坐标.答案:如图所示,过A 作AM ⊥xOy 交平面于M ,并延长到C ,使AM =CM ,则A 与C 关于坐标平面xOy 对称,且C (1,2,1).过A 作AN ⊥x 轴于N 并延长到点B ,使AN =NB , 则A 与B 关于x 轴对称,且B (1,-2,1).∴A (1,2,-1)关于坐标平面xOy 对称的点C (1,2,1); A (1,2,-1)关于x 轴对称的点B (1,-2,1).练习2:点()1,2,3P −关于坐标平面xOz 对称点的坐标是( )A.()1,2,3B.()1,2,3−−C.()1,2,3−−D.()1,2,3−− 答案:B类型二 空间两点间距离公式例4:证明以A (4,3,1)、B (7,1,2)、C (5,2,3)为顶点的△ABC 是等腰三角形. 解析:运用两点间距离公式 答案:由两点间距离公式:|AB |=(7-4)2+(1-3)2+(2-1)2=14, |BC |=(5-7)2+(2-1)2+(3-2)2=6,|AC |=(5-4)2+(2-3)2+(3-1)2=6, ∵|BC |=|AC |,∴△ABC 为等腰三角形.练习1:求下列两点间的距离.(1)A (-1,-2,3)、B (3,0,1); (2)M (0,-1,0)、N (-3,0,4).答案:(1)d (A ,B )=(3+1)2+(0+2)2+(1-3)2=2 6.(2)d (M ,N )=(0+3)2+(-1-0)2+(0-4)2=26. 练习2:2.点P (a ,b ,c )到坐标平面xOy 的距离是( )A .|a |B .|b |C .|c |D .以上都不对答案:C例5:如图所示,在河的一侧有一塔CD =5m ,河宽BC =3m ,另一侧有点A ,AB =4m ,求点A 与塔顶D 的距离AD .解析:建立合适的空间直角坐标系解决问题答案:以塔底C 为坐标原点建立如下图所示的坐标系.则D (0,0,5),A (3,-4,0),∴d (A ,D )=32+(-4)2+52=52,即点A 与塔顶D 的距离为52m.练习1:已知空间三点A (1,2,4)、B (2,4,8)、C (3,6,12),求证A 、B 、C 三点在同一条直线上.答案:d (A ,B )=(2-1)2+(4-2)2+(8-4)2=21,d (B ,C )=(3-2)2+(6-4)2+(12-8)2=21, d (A ,C )=(3-1)2+(6-2)2+(12-4)2=221, ∴AB +BC =AC ,故A 、B 、C 三点共线.练习2:以()()()10,1,6,4,1,9,2,4,3A B C −三点为顶点的三角形是( C )A.直角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形 答案:C例6:求到两点A (2,3,0)、B (5,1,0)距离相等的点P 的坐标满足的条件. 解析:运用两点间距离公式. 答案:设P (x ,y ,z ),则P A =(x -2)2+(y -3)2+z 2, PB =(x -5)2+(y -1)2+z 2. ∵P A =PB ,∴(x -2)2+(y -3)2+z 2=(x -5)2+(y -1)2+z 2.化简得6x -4y -13=0.∴点P 的坐标满足的条件为6x -4y -13=0. 练习1:若点P (x ,y ,z )到A (1,0,1)、B (2,1,0)两点的距离相等,则x ,y ,z 满足的关系式是____________; 答案:2x +2y -2z -3=0练习2:若点A (2,1,4)与点P (x ,y ,z )的距离为5,则x 、y 、z 满足的关系式是____________; 答案:(x -2)2+(y -1)2+(z -4)2=25练习3:已知空间两点A (-3,-1,1)、B (-2,2,3)在Oz 轴上有一点C ,它与A 、B 两点的距离相等,则C 点的坐标是____________.答案:⎝⎛⎭⎫0,0,321.下列说法:①在空间直角坐标系中,在x 轴上的点的坐标一定可记为(0,b ,c );②在空间直角坐标系中,在yOz 平面上的点的坐标一定可记为(0,b ,c ); ③在空间直角坐标系中,在z 轴上的点的坐标一定可记为(0,0,c );④在空间直角坐标系中,在xOz 平面上的点的坐标一定可记为(a,0,c ). 其中正确的个数是( ) A .1 B .2 C .3 D .4 答案:C2.在空间直角坐标系Oxyz 中,点(3,4,-5)关于z 轴对称的点的坐标是( )A .(-3,-4,5)B .(-3,-4,-5)C .(-3,4,5)D .(3,4,5) 答案: B3.设点B 是点A (2,-3,5)关于xOy 坐标平面的对称点,则|AB |等于( )A .10B.10C.38 D .38 答案:A4.已知三点A (-1,0,1)、B (2,4,3)、C (5,8,5),则( )A .三点构成等腰三角形B .三点构成直角三角形C .三点构成等腰直角三角形D .三点构不成三角形 答案:D5.(2014·福建师大附中高一期末测试)点(1,1,-2)关于yOz 平面的对称点的坐标是________.答案:(-1,1,-2) 6.(2014·甘肃庆阳市西峰育才中学高一期末测试)空间直角坐标系中的点A (2,3,5)与B (3,1,4)之间的距离是________.答案:67. 在空间直角坐标系中,点M (-2,4,-3)在xOz 平面上的射影为M ′点,则M ′关于原点对称点的坐标是________.答案:(2,0,3)_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.点P (-1,2,0)位于( )A .y 轴上B .z 轴上C .xOy 平面上D .xOz 平面上 答案:C2.点P (-1,2,3)关于xOy 坐标平面对称点的坐标是( )A .(1,2,3)B .(-1,-2,3)C .(-1,2,-3)D .(1,-2,-3) 答案:C3.已知A (1,0,2)、B (1,-3,1),点M 在z 轴上且到A 、B 两点的距离相等,则M 点坐标为( )A .(-3,0,0)B .(0,-3,0)C .(0,0,-3)D .(0,0,3) 答案:C4.已知正方体的每条棱都平行于坐标轴,两个顶点为A (-6,-6,-6)、B (8,8,8),且两点不在正方体的同一个面上,正方体的对角线长为( )A .143B .314C .542D .425 答案:A5.已知一长方体ABCD -A 1B 1C 1D 1的对称中心在坐标原点O ,交于同一顶点的三个面分别平行于三个坐标平面,其中顶点A 1、B 1、C 1、D 1分别位于第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限,且棱长AA 1=2,AB =6,AD =4.求长方体各顶点的坐标.答案:由题意,可建立如图所示的空间直角坐标系O -xyz ,∴A 1(3,2,1)、B 1(-3,2,1)、C 1(-3,-2,1)、D 1(3,-2,1),A (3,2,-1)、B (-3,2,-1)、 C (-3,-2,-1)、D (3,-2,-1).能力提升6.点A (-3,1,5)、B (4,3,1)的中点坐标是( )A.⎝⎛⎭⎫72,1,-2B.⎝⎛⎭⎫12,2,3 C.()-12,3,5 D.⎝⎛⎭⎫13,43,2答案 B7. 以正方体ABCD -A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1的中点的坐标为( )A.⎝⎛⎭⎫12,1,1B.⎝⎛⎭⎫1,12,1 C.⎝⎛⎭⎫1,1,12 D.⎝⎛⎭⎫12,12,1 答案:C8. 点M (2,-3,5)到x 轴的距离d 等于( )A.38B.34C.13D.29 答案:B9. 如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上且C 1E =3EC .试建立适当的坐标系,写出点B 、C 、E 、A 1的坐标.答案:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的空间直角坐标Dxyz .依题设,B (2,2,0)、C (0,2,0)、E (0,2,1)、A 1(2,0,4).10. 在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=4,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 中点,求M 、N 两点间的距离.答案:建立如图所示空间直角坐标系,据题设条件有:|A 1C 1|=22, ∵|MC 1|=2|A 1M |,∴|A 1M |=232,∴M (23,23,4).又C (2,2,0),D 1(0,2,4),N 为CD 1中点∴N (1,2,2),∴|MN |=(1-23)2+(2-23)2+(2-4)2=533.。
北师大版高中高一数学必修2《空间直角坐标系》教案及教学反思教案设计教学目标•能够理解一般空间直角坐标系的概念。
•能够掌握三维直角坐标系的表示方法。
•能够在三维直角坐标系中进行点、向量及直线的表示,并理解它们之间的关系。
•能够应用直角坐标系求解在空间中的几何问题。
教学重点•理解三维直角坐标系的表示方法。
•掌握点、向量及直线在三维直角坐标系中的表示方法。
•应用直角坐标系求解空间中的几何问题。
教学难点•向量与点的坐标化。
•空间直线的表示及其性质。
教学过程第一步:导入为了让学生更好地理解三维空间直角坐标系,我将引导学生回顾二维空间直角坐标系,并鼓励学生回忆二维空间中点、向量、直线和平面的定义及相关性质。
随着学生的回忆,我会巧妙引导学生理解三维空间坐标系。
第二步:讲解在此步骤中,我将详细解释三维空间坐标系的定义和相关概念。
让学生理解三维空间坐标系由三个相互垂直的坐标轴构成,学生应该能够掌握三维空间中点、向量及直线的表示方法,并理解它们之间的关系。
第三步:练习为了让学生更好地掌握三维空间坐标系的相关概念和求解能力,我会打出一些简单的练习题,让学生掌握三维空间中的点、向量及直线的表示方法,并熟悉它们之间的关系。
此处我会通过练习题,加深学生的印象,让学生更快地运用到实际中去。
第四步:课堂交流在此步骤之中,我将要求学生根据自己的认知和实际经验,来分享一些解题思路、技巧和心得。
此时我将提供充足的时间给学生进行交流和讨论。
这样能让学生相互交流,发现共同点和不同之处,锻炼学生的思维能力和语言表达能力。
第五步:总结在这一步骤中,我会对本节课所讲授的知识进行总结,并强调课程重点,确保学生掌握了本节课程所讲的内容。
同时,我会在总结中提到经常出现的错误或盲点,帮助学生加深印象,从而提高学习效果。
教学反思教学收获首先,本节课程所讲授的知识比较抽象,但是由于是空间三维坐标表示,便可以采取类似于平面几何的手段,通过练习题目,让学生更好地掌握相关知识点。
空间直角坐标系
【教学目标】
1.知识与技能
(1)使学生深刻感受到空间直角坐标系的建立的背景
(2)使学生理解掌握空间中点的坐标表示
2.过程与方法
建立空间直角坐标系的方法与空间点的坐标表示
3.情态与价值观
通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,培养学生类比和数列结合的思想。
【教学重难点】
空间直角坐标系中点的坐标表示。
么是坐标原点,轴以及坐标平面。
坐标系
手直角坐标系。
(3)建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?察图,
唯一确
数组
y
在
标。
有序实数组
z)
间直角
一点呢?
道了空间中任意点的坐标
序实数组
来表示,
点
标系中
M(x
点
做点
叫做点
′在z轴上,且O D
,它的竖坐标是2;它的横坐
今天通过这堂课的学习,你能有什么收获?
备选例题
例1 如图,长方体OABC – D ′A ′B ′C ′中,OA = 3,OC = 4,OD ′= 3,A ′B 与AB ′相交于点P ,分别写出点C 、B ′、P 的坐标。
例2 如图,正方体ABCD – A 1B 1C 1D 1,E 、F 分别是BB1,D 1B 1的中点,棱长为1,求点E 、F 的坐标和B 1关于原点D 的对称点坐标。
空间直角坐标系》教案(人教A版必修)第一章:空间直角坐标系的建立1.1 坐标系的定义与分类让学生理解坐标系的概念,掌握坐标系的分类及特点通过实例让学生了解坐标系在几何图形中的应用1.2 空间直角坐标系的定义与结构让学生理解空间直角坐标系的定义,掌握其结构特点通过实例让学生了解空间直角坐标系在空间几何中的应用第二章:点的坐标2.1 坐标的概念与表示方法让学生理解坐标的概念,掌握坐标的表示方法通过实例让学生了解坐标在空间几何中的应用2.2 点的坐标与坐标轴的关系让学生了解点的坐标与坐标轴的关系,掌握坐标轴上点的坐标特点通过实例让学生了解坐标轴上点的坐标在空间几何中的应用第三章:直线的方程3.1 直线方程的概念与表示方法让学生理解直线方程的概念,掌握直线方程的表示方法通过实例让学生了解直线方程在空间几何中的应用3.2 直线方程的求解方法让学生掌握直线方程的求解方法,能够灵活运用各种方法求解直线方程通过实例让学生了解直线方程的求解方法在空间几何中的应用第四章:平面的方程4.1 平面方程的概念与表示方法让学生理解平面方程的概念,掌握平面方程的表示方法通过实例让学生了解平面方程在空间几何中的应用4.2 平面方程的求解方法让学生掌握平面方程的求解方法,能够灵活运用各种方法求解平面方程通过实例让学生了解平面方程的求解方法在空间几何中的应用第五章:空间几何图形与坐标系5.1 空间几何图形在坐标系中的表示让学生了解空间几何图形在坐标系中的表示方法,掌握坐标系中几何图形的性质通过实例让学生了解空间几何图形在坐标系中的应用5.2 空间几何图形的位置关系与坐标系的变换让学生了解空间几何图形的位置关系,掌握坐标系变换的方法通过实例让学生了解坐标系变换在空间几何中的应用第六章:空间距离与角度6.1 空间两点间的距离让学生理解空间两点间的距离公式,掌握如何计算空间两点间的距离通过实例让学生了解空间两点间距离在几何中的应用6.2 空间角度的计算让学生理解空间角度的计算方法,掌握如何计算空间角度通过实例让学生了解空间角度在几何中的应用第七章:向量及其应用7.1 向量的概念与表示方法让学生理解向量的概念,掌握向量的表示方法通过实例让学生了解向量在空间几何中的应用7.2 向量的运算让学生掌握向量的运算规则,包括加法、减法、数乘和点乘通过实例让学生了解向量运算在空间几何中的应用第八章:空间解析几何8.1 解析几何的基本概念让学生理解解析几何的基本概念,如参数方程、极坐标方程等通过实例让学生了解解析几何在空间几何中的应用8.2 解析几何与坐标系的转换让学生掌握如何将解析几何问题转换为坐标系问题,以及如何利用坐标系解决解析几何问题通过实例让学生了解解析几何与坐标系的转换在空间几何中的应用第九章:空间几何体的性质与判定9.1 空间几何体的性质让学生了解空间几何体的基本性质,如表面积、体积、对称性等通过实例让学生了解空间几何体的性质在几何中的应用9.2 空间几何体的判定让学生掌握如何判定空间几何体的类型,如球、圆柱、锥体等通过实例让学生了解空间几何体的判定在几何中的应用第十章:空间几何的综合应用10.1 空间几何问题的一般解决方法让学生掌握解决空间几何问题的基本方法,如分割、投影、对称等通过实例让学生了解空间几何问题的一般解决方法10.2 空间几何在实际问题中的应用让学生了解空间几何在实际问题中的应用,如建筑设计、物理学中的力学问题等通过实例让学生了解空间几何在实际问题中的应用重点和难点解析重点环节一:坐标系的概念与分类补充和说明:本环节需要重点关注坐标系的定义、各种坐标系的结构特点以及坐标系在几何图形中的应用。
人教版高一数学必修二《空间直角坐标系》教案及教学反思一、课程背景本课程是高一数学必修二的一部分,主要讲解空间直角坐标系的基本知识和应用。
学生需要掌握三维空间中点、向量及其坐标表示、平面与直线的方程以及空间图形的分析方法等内容。
二、教学目标知识目标1.掌握三维空间直角坐标系的概念和基本性质;2.掌握点、向量和坐标表示;3.学习平面和直线的方程;4.了解空间图形的分析方法。
能力目标1.能够在三维空间中确定点、向量以及平面和直线的方程;2.能够对空间图形进行分析和判断。
情感目标1.提高学生的数学思维能力;2.培养学生的空间想象能力;3.培养学生的数学兴趣和探究精神。
三、教学重点和难点教学重点1.点、向量和坐标表示的概念和性质;2.平面和直线的方程的求法;3.空间图形的分析方法。
教学难点1.向量和坐标表示的转换;2.平面和直线的方程的求解;3.空间图形的分析和判断。
四、教学过程1. 导入环节本节课主要讲解空间直角坐标系的基本知识和应用。
教师可以通过提问学生空间直角坐标系的概念和应用,引导学生进入学习状态。
2. 知识讲解(1)点、向量和坐标表示在三维空间中,点和向量是基本的空间对象。
点代表一个位置,向量代表从一个位置移动到另一个位置的方向和长度。
点和向量都可以使用坐标进行表示。
在空间直角坐标系中,我们通常用三个互相垂直的坐标轴来表示一个点或一个向量。
这三个坐标轴分别为x轴、y轴和z轴,三个坐标轴上的数值分别为x、y和z。
因此,一个点或向量可以表示为一个三元组(x,y,z)。
(2)平面和直线的方程在三维空间中,平面和直线有各自的方程。
平面的方程一般有三种,分别为点法式、一般式和截距式。
1.点法式:平面上任意一点M(x0,y0,z0)到法向量$\\bold{n}(A,B,C)$ 的距离等于常数d。
平面的标准式为Ax+By+Cz+D=0,其中A,B,C分别为法向量$\\bold{n}$ 的三个元素,D=−d。
2.一般式:平面的一般式为Ax+By+Cz+D=0,其中A,B,C,D为常数,A,B,C不全为零。
【课题】4.3.1空间直角坐标系【教材】人教A版普通高中数学必修二第134页至136页.【课时安排】1个课时.【教学对象】高二〔上〕学生.【授课教师】***一.教材分析:本节内容主要引入空间直角坐标系的根本概念,是在学生已学过的二维平面直角坐标系的根底上进展推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的根底。
空间直角坐标系的知识是空间解析几何的根底,与平面解析几何的内容共同表达了"用代数方法解决几何问题〞的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形严密结合,提供一个度量几何对象的方法。
其对于沟通高中各局部知识,完善学生的认知构造,起到了很重要的作用。
二.教学目标:✧知识与技能(1)能说出空间直角坐标系的构成与特征;(2)掌握空间点的坐标确实定方法和过程;(3)能初步建立空间直角坐标系。
✧过程与方法(1)结合具体问题引入,诱导学生自主探究;. z.(2)类比学习,循序渐进。
情感态度价值观(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。
(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。
(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。
三.教学重点与难点:教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。
教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。
四.教学方法:启发式教学、引导探究五.教学根本流程:↓. z.六.教学情境设计:. z.〔二〕引导探究,动手实践约6分钟思考:借助于平面直角坐标系,我们就可以用坐标来表示平面上任意一点的位置,则能不能仿照直角坐标系的方式来表示空间上任意一点的位置呢?不妨动手试一试……思路点拨:通过在地面上建立直角坐标系*Oy,则地面上任一点的位置可以用一对有序实数对〔*,y〕确定。
空间直角坐标系一、教学目标:1、知识技能目标:(1)能说出空间直角坐标系的构成,特征。
(2)会自己画出空间直角坐标系。
(3)能够在空间直角坐标系下表示点。
2、过程与方法:尝试自己建立空间直角坐标系,在这一过程中体会空间直角坐标系的特点。
3、情感目标:培养学生严谨的学习态度以及勇于探索的学习精神。
说明:教学目标是在进行了学习者的学习需求分析基础上制定的,分析了学习者的现有状态、想要达到的理想状态、以及当前存在的问题,针对这些制定出学习目标。
教学目标分为认知领域、动作技能领域和情感态度领域三维目标。
在制定具体教学目标时,使用行为动词进行表述,这样才可以使教学目标更具有可操作性。
二、教学任务分析1、学生的起点能力:学生已经掌握平面直角坐标系的知识,又学习了立体几何内容,具备了一定的空间想象能力。
2、学习类型与先决条件:本课属于智力技能中的规则学习,先决条件是规则中的有关要领要先行掌握。
课时安排:1课时说明:任务分析是教学目标设计的一个重要组成部分,它是对学生完成任务所允许的条件进行分析。
因此在进行教学目标设计时,需要见其作为目标设计的一部分。
教学重点和难点重点:空间直角坐标系的建立过程难点:空间任意点的坐标如何表示教学方法:探究式教学手段:实物模型,多媒体教学任务:说明:教学任务的制定采用了“信息加工分析法”将学习过程看作是信息流的流动过程,所以这种方法强调任务分析过程中的连续性。
三、教学过程说明:根据布鲁纳发现学习的教学理论,学习过程分成以下几步:创设问题情境,使学习者在情境中产生矛盾,提出要解决的问题;学习者利用所提供的材料,对问题提出假设,并检验假设,不同观点可以争论;对争论作出总结,得出结论。
这种发现学习的教学顺序,实际上就是从具体到抽象的教学顺序,它有利于激发学习者的智慧潜能,有利于培养学习者的内在动机,学会发现的技巧。
发现学习的结果也有利于记忆和保持。
(一)、课前布置“导学案”,安排学生自己预习。
《空间直角坐标系》(人教)第一章:空间直角坐标系的引入1.1 学习目标(1) 了解空间直角坐标系的定义和意义。
(2) 学会在空间直角坐标系中确定一个点的坐标。
1.2 教学内容(1) 空间直角坐标系的定义:三维空间中的一个参照系统,由三个互相垂直的坐标轴组成。
(2) 坐标轴的表示:通常用x, y, z表示三个坐标轴。
(3) 坐标点表示:一个点在空间直角坐标系中的位置由一对有序实数(x, y, z)表示。
1.3 教学活动(1) 利用实际例子(如地图上的位置表示)引出空间直角坐标系的定义。
(2) 通过图形和模型展示坐标轴的互相垂直关系。
(3) 让学生通过实际操作,学会在空间直角坐标系中表示一个点。
1.4 作业与练习(1) 完成练习题,包括在给定的坐标系中表示不同点的坐标。
(2) 设计一个小项目,要求学生自己创造一个坐标系,并标出一些特定的点。
第二章:坐标系的转换2.1 学习目标(1) 学会在不同坐标系之间进行转换。
(2) 理解坐标系转换的原理和意义。
2.2 教学内容(1) 坐标系之间的转换:通过变换矩阵实现不同坐标系之间的转换。
(2) 变换矩阵的定义和性质:变换矩阵是一个方阵,用于描述坐标系的转换关系。
2.3 教学活动(1) 通过图形和实例解释坐标系转换的原理。
(2) 引导学生学习变换矩阵的定义和性质。
(3) 进行实际操作,让学生学会使用变换矩阵进行坐标系之间的转换。
2.4 作业与练习(1) 完成练习题,包括使用变换矩阵进行坐标系转换。
(2) 设计一个小项目,要求学生自己创建一个坐标系转换问题,并给出解答。
第三章:坐标系的应用3.1 学习目标(1) 学会使用坐标系解决实际问题。
(2) 了解坐标系在各个领域中的应用。
3.2 教学内容(1) 坐标系在几何中的应用:通过坐标系解决几何问题,如计算距离、角度等。
(2) 坐标系在物理学中的应用:描述物体的运动轨迹和速度等。
3.3 教学活动(1) 通过实际例子展示坐标系在几何中的应用。
五年级数学教案:探究空间直角坐标系与三维图形一、教学目标1. 能够了解直角坐标系的基本概念和坐标的表示方法。
2. 能够绘制并应用二维平面直角坐标系。
3. 能够通过观察和构建模型,进一步认识三维图形的特征和性质。
二、教学重点1. 直角坐标系的基本概念。
2. 二维平面直角坐标系的绘制。
3. 三维图形的特征和性质。
三、教学难点1. 能够正确理解坐标系的概念和表示方法。
2. 能够准确地绘制二维平面直角坐标系。
3. 能够通过构建模型,正确理解三维图形的特征和性质。
四、教学过程1. 直角坐标系的概念和表示方法。
直角坐标系是用有序数对来确定平面上任意点位置的一种方法。
通常表示为 (x, y),其中 x 表示横坐标,y 表示纵坐标。
这样的有序数对在平面中具有唯一性,可以用来确定平面上的所有点的位置。
2. 二维平面直角坐标系的绘制。
二维平面直角坐标系是由两条相互垂直的数轴组成,其中一条表示横坐标,另一条表示纵坐标。
数轴原点是两条轴的交点,它的位置即为 (0,0)。
在绘制二维平面直角坐标系时,需要注意以下几点:(1)确定两条轴的方向和位置。
(2)标记出轴上的刻度,通常按照1、2、3、4…的顺序标记,可以根据需要选定合适的刻度范围。
(3)绘制出直角坐标系,保持轴的垂直和原点的位置不变。
(4)在直角坐标系中标注出一些坐标点,例如 (1,2)、(3,4)、(-1,1) 等,以便学生更好地理解和掌握直角坐标系的表示方法。
3. 三维图形的特征和性质。
三维图形指的是具有三个空间坐标轴的物体,例如立方体、圆柱体、球体等。
学生们可以通过观察和构建模型来更好地理解和掌握三维图形的特征和性质。
在探究三维图形时,可以按照以下步骤进行:(1)观察和描述各种形状的三维图形,例如长方体、正方体、圆柱体等,分析其形状和特征。
(2)用纸板和胶水等材料制作三维图形模型,进一步确认其特征和性质。
(3)在三维直角坐标系中表示三维图形的位置和形状,例如确定其坐标轴和边长等。
空间直角坐标系教案教案:空间直角坐标系一、教学目标:1.掌握空间直角坐标系的基本概念和表示方法;2.理解空间直角坐标系在数学和物理中的应用;3.能够熟练使用空间直角坐标系解决相关问题。
二、教学重点:1.空间直角坐标系的概念和表示方法;2.空间直角坐标系的应用。
三、教学难点:1.理解三维空间直角坐标系的三个坐标轴及其方向;2.掌握使用空间直角坐标系表示空间点的方法。
四、教学过程:1.导入:通过实际例子引入空间直角坐标系的概念和应用。
(教师示范:例如,让学生想象一个立方体盒子,盒子内有一只蚂蚁,蚂蚁的位置如何描述?)2.空间直角坐标系的概念及表示方法:(教师介绍)(教师在黑板上画出空间直角坐标系)请注意,这里x、y、z轴是相互垂直的,并且z轴通常是向上的,但在一些特殊的实际问题中,z轴可能指向下方。
(教师示范)例如,假设有一个点P,它在x轴上的坐标是3,y轴上的坐标是-2,z轴上的坐标是5、我们可以用P(3,-2,5)来表示点P在空间直角坐标系中的位置。
3.空间直角坐标系的应用:(教师例举实际例子)4.课堂练习:(教师出题)请同学们根据以下信息,用空间直角坐标系表示出对应的点。
1)点A位于x轴上,其坐标为4;2)点B的y轴坐标为-3,z轴坐标为2;3)点C位于z轴上,其坐标为-6(学生练习)请同学们完成上述题目,并在纸上标出相关坐标。
(教师核对)请同学们将答案说出来,并进行核对。
五、课堂总结:通过本节课的学习,我们了解了空间直角坐标系的基本概念和表示方法,掌握了用坐标轴表示空间点的方法,并了解了空间直角坐标系在数学和物理中的应用。
六、作业布置:1.继续练习在空间直角坐标系中表示点的方法,并举一些实际例子;2.阅读相关教材,进一步了解空间直角坐标系在数学和物理中的应用。
七、教学反思:通过本节课的教学,学生对空间直角坐标系有了初步的了解,并能够熟练使用空间直角坐标系表示点的方法。
但是,部分学生在练习过程中存在困惑,需要进一步梳理和讲解。
【课题】4.3.1空间直角坐标系
【教材】人教A版普通高中数学必修二第134页至136页.
【课时安排】1个课时.
【教学对象】高二(上)学生.【授课教师】***
一.教材分析:
本节内容主要引入空间直角坐标系的基本概念,是在学生已学过的二维平面直角坐标系的基础上进行推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的基础。
空间直角坐标系的知识是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形紧密结合,提供一个度量几何对象的方法。
其对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。
二.教学目标:
✧知识与技能
(1)能说出空间直角坐标系的构成与特征;
(2)掌握空间点的坐标的确定方法和过程;
(3)能初步建立空间直角坐标系。
✧过程与方法
- - 优质资料
(1)结合具体问题引入,诱导学生自主探究;
(2)类比学习,循序渐进。
情感态度价值观
(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。
(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。
(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。
三.教学重点与难点:
教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。
教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。
四.教学方法:启发式教学、引导探究
五.教学基本流程:
↓
↓
↓
↓
- - 优质资料
六.教学情境设计:
- - 优质资料
(二)
引导探究,动手实践约
6分钟思考:
借助于平面直角坐标系,我们就可以用坐标
来表示平面上任意一点的位置,那么能不能
仿照直角坐标系的方式来表示空间上任意一
点的位置呢?不妨动手试一试……
思路点拨:
通过在地面上建立直角坐标系xOy,则地面
上任一点的位置可以用一对有序实数对(x,
y)确定。
那么为了确定不在地面内的物体(如
吊灯)的位置,我们还需要什么(第三个数
表示物体离地面的高度)?怎么来表示?
教师
初步
引导
学生
操作
学生
动手
画图,
思考
与表
达
(1)充分
调动学生的
积极性,组
织学生讨
论、探究,
合作学习,
教师成为学
生学习的促
进者与合作
者。
(2)引导
学生通过合
情的猜想类
比逐步探索
出空间直角
坐标系,达
到使学生掌
握一定的类
比猜想能力
的教学目
标。
概念引入:
如图所示,''''
OABC D A B C
是单位正方体,
以O为原点,分别以射线'
OD
OC
OA、
、
的长为单位长,建立三条数轴:x轴、y轴、
z轴。
这时我们说建立了一个空间直角坐标
系,其中O点叫做坐标原点,x轴、y轴、z
教师
根据
学生
的想
法逐
步引
导学
生类
学生
经过
教师
的指
导,在
探究
中积
极思
(1)在学
生形成模糊
概念时进行
概念引入,
让学生更容
易接受概
念、理解概
念。
- - 优质资料
概念引入:
在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向,则称这个坐标系为右手直角坐标系。
【延伸拓展】右手直角坐标系的其它解释——先把大拇指指向轴正方向,把其余四指指向轴正方向,然后握成拳头,这时四指扫过原平面直角坐标系的第一象限从轴正方向到轴正方向。
思考讨论:
给定空间一点M,类比平面直角坐标系中点的坐标的确定方法,如何确定点M的坐标?
过程解释:教师
引导
讲解
学生
观察
思考
理解
学生
观察
思考
领悟
物理中的右
手定则联系
起来,动态
的解释,使
学生更容易
理解直角坐
标系的结构
特点。
(4)通过
类比平面直
角坐标系,
引导学生探
究空间中点
的坐标确定
过程,让其
自己经历数
学的变化,
从而对新知
识的理解更
加深刻。
X
Y Z
- - 优质资料
- - 优质资料
- - 优质资料
(四) 学以致用 约 8分钟
例一:
如图,在长方体OABC D A B C ''''-中,
3,4,2
OA OC OD '===。
1、写出,,,D C A B '''四点的坐标。
2、若A C ''与B D ''相交于点P ,写出P 的坐标。
3、试找出坐标为(3,2,2)与(0,1,0)的点的位置。
C'
C D'
B'
A B
O
A'
x
y
z P
C'
C
D'
B'
O
B
A A'
x
y z
例二:
结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为0.5的小正方体堆积成的正方体),其中色点(浅色点)代表钠原子,黑点(深色点)代表氯原子.如图,建立空间直角坐标系Oxyz 后,试
教师 引导 分析 讲解 演示
教师
引导 分析, 让学
学生 观察 思考 领悟 学生 理解,独立
(1)通过例题变式和讲解,加深学生对空间直角坐标系的认识,让学生进一步体会空间直角坐标系中点与坐标的一一对应关系,也有利于培养学生的空间想象能力。
(2)在老师的引导下学生独立完成,感受数学与其他学科的联系,以及数学对自然科学研究的工具
性,体现了
写出全部钠原子所在位置的坐标。
生尝
试独
立完
成思考“学有用的
数学”这一
新课程的基
本理念。
(五)
课堂小结约3分钟1.空间直角坐标系及相关概念:右手系、三
要素(原点、坐标轴方向、单位长)、如何
建
2.空间直角坐标系中点与坐标的一一对应关
系:
1)给出具体的点写出它在空间直角坐标系中
的坐标;
2)由具体的点的坐标找出它在空间直角坐标
系中的位置。
3.本节课用到的思想方法:数形结合思想、
类比的思想。
2.我们为什么要学习空间直角坐标系呢,学
了它我们能做什么呢?
在解决某些立体几何问题时,利用空间直
教师
引导
学生
进行
总结
学生
思考
回答,
理解
体会
锻炼学生的
概括总结能
力,使学生
对所学的知
识体系进一
步深化,与
学习目标相
应。
六.板书设计:
- - 优质资料
七.创新之处:
充分发挥了学生的主观能动性,引导学生主动思考,亲自动手,激发了学生对新知的兴趣,培养了学生的问题解决能力与数学探究能力,体现了现代数学教育的价值取向。
通过生活实例并结合已学的二维坐标系知识,帮助学生建构空间直角坐标系的概念,循序渐进引导学生理解其结构特点以及点与坐标的关系,体验数学“升级”的过程,尝试对现实世界蕴涵的一些数学模型进行探索思考,作出判断。
- - 优质资料。