电网谐波溯源及治理研究
- 格式:pdf
- 大小:406.00 KB
- 文档页数:5
电网中主要谐波源及其治理措施【摘要】大功率传动装置所产生的谐波对电网的危害很大,是电网谐波的一个主要来源。
尤其是大功率的变频调速系统,谐波问题越来越突出,电能质量下降,给各种用电设备和仪表带来了很大的危害,必须抑制这些谐波,所以谐波的检测显得越来越重要。
国内外对此进行了很长时间的研究,通过学者的不懈努力,也取得了丰硕的成果。
【关键词】电网;谐波;治理一、交流传动所产生的谐波问题大功率传动装置所产生的谐波对电网的危害很大,尤其是大功率的变频调速系统,谐波问题越来越突出,电能质量下降,给各种用电设备和仪表带来了很大的危害。
我们希望交流传动变换器输出只含基波的正弦波,但实际应用的逆变器总含有谐波,这些畸变的电流和电压可能造成很多危害,如会让工业生产被干扰中断,受此影响,装配线可能经常停工,产生大量废品,造成很大的经济损失。
虽然控制装置的调制控制方法能够在产生所需的基波的同时,应尽可能的优化其他的高次谐波。
但是谐波不可避免的产生,这就要求对这些谐波进行监测、分析后,确定治理方案。
达到最大程度的消除特定谐波或最小化总谐波(TDH)畸变率,进而使由谐波产生的电力电子设备的功率损耗达到最小。
另外变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。
变频器的逆变电路多采用PWM 技术要用到IGBT 大功率管。
当控制电路根据需要给出相应的频率和幅值的开关脉冲,IGBT 大功率管工作时,其输出的电压和电流波形中带有与开关频率相应的高次谐波群。
我们知道高载波频率和场控开关器件高速切换的dv/d t 可达1kv/Ls 以上所以引起的辐射干扰问题是相当突出。
当然,变频调速电路除了通过辐射向外部发射产生干扰外,也可以通过阻抗耦合或接地回路耦合将干扰带入电源电路形成传导形干扰。
经查证资料,交流传动所产生的谐波基本上是5次,7次,9次和13次谐波,其他次数的谐波比较少。
二、谐波的一些治理措施采取一些措施来消除这些对各种电子设备和电网造成很大危害的谐波,下面简单介绍一下消除谐波的方法和措施。
浅谈电网谐波来源及其治理方法刘文彪摘要:谐波的危害表现为干扰通信线路的正常工作;引起电机、变压器和电容器等电气设备附加损耗和发热,使设备温度升高,效率降低;绝缘加速老化,缩短使用寿命,本文对海上电网谐波来源进行介绍,并提出治理方法。
关键词:海上;电网谐波;来源;治理方法;1电网谐波危害分析1.1对继电保护和自动装置的危害谐波对电力系统中以负序(基波)量为基础的继电保护和自动装置的影响严重,这是由于这些按负序量整定的保护装置整定值小、灵敏度高。
如果在负序基础上再叠加上谐波的干扰则会引起发电机负序电流保护误动,变电站主变的复合电压启动过电流保护装置负序电压元件误动,母线差动保护的负序电压闭锁元件误动以及线路各种型号的距离保护、高频保护、故障录波器装置等发生误动,威胁电力系统的安全运行。
1.2对输电线路的影响输电线路阻抗的频率特性使线路电阻随着频率的升高而增加。
在集肤效应的作用下,谐波电流使输电线路的附加损耗增加,而供电电网的损耗大部分为变压器和输电线路的损耗,所以谐波使电网损耗增大。
谐波还使三相供电系统中的中性线的电流增大,导致中性线过载。
输电线路的分布电感和对地电容与产生谐波的设备组成串联或并联回路在一定的参数配合条件下,会发生串联谐振或并联谐振。
一般情况下,并联谐波谐振所产生的谐波过电压和过电流对相关设备的危害性较大。
当注入电网的谐波频率处于在网络谐振点附近时,会激励电感、电容产生部分谐振,形成谐波放大。
谐波电压、电流放大会引起继电保护装置误动甚至损坏,同时产生相当大的谐波网损。
对于电力电缆线路,因其对地电容比架空线路约大10~20倍,而感抗仅为1/2~1/3,故更易激励出较大的谐波谐振和放大,造成绝缘击穿的事故。
1.3对测量和计量仪器的危害由于电力计量装置都是按频率为50Hz标准的正弦波设计,当供电电压或负荷电流中有谐波成分时,会影响感应式电能表的正常工作。
在有谐波源的情况下,谐波源用户处的电能表记录该用户吸收的基波电能并扣除小部分谐波电能,造成谐波源虽然污染了电网,反而减少了电费;与此同时,在线性负荷用户处,电能表记录的是该用户吸收的基波电能及部分的谐波电能,这部分谐波电能不但使线性负荷性能变差,而且增加了电费。
电力系统中的谐波分析与治理研究引言:电力系统中的谐波分析与治理是当今电力工程领域的重要研究方向之一。
随着电力负荷的不断增长和电力设备的复杂化,电力系统中的谐波问题日益突出。
谐波对电力系统的稳定运行和设备的正常使用都会产生不良影响。
因此,深入研究电力系统中的谐波分析与治理对于确保电力系统的安全稳定运行具有重要意义。
第一部分:电力系统谐波的基本概念与特征1.1 谐波的定义与分类谐波是电力系统中特定频率的电压或电流成分,其频率是基波频率的倍数。
根据频率的不同,谐波可分为低次谐波、中次谐波和高次谐波。
1.2 谐波的产生原因电力系统中的谐波主要来源于非线性负载设备,如电力电子设备、电弧炉等。
这些设备存在非线性特性,使得电流和电压不再是正弦波形,从而产生谐波。
1.3 谐波对电力系统的影响谐波会引起电力系统中的电压和电流失真,导致设备故障、功率损耗增加,甚至对周围环境产生干扰。
因此,谐波对电力系统的分析与治理是非常必要的。
第二部分:电力系统谐波分析的方法与工具2.1 谐波分析的数学模型电力系统谐波分析一般采用复数分析法,将电流和电压分解为基波和各次谐波分量,并通过频域或时域分析得到波形和频谱信息。
2.2 谐波分析的工具和软件目前,谐波分析的工具和软件很多,如MATLAB、PSCAD等。
这些工具提供了各种算法和方法,能够对电力系统中的谐波进行分析和计算。
第三部分:电力系统谐波治理的方法与措施3.1 谐波治理的目标和原则电力系统谐波治理的目标是减小和控制系统中的谐波,以确保系统的稳定运行。
治理应遵循经济性、可行性和可靠性原则。
3.2 谐波治理的方法谐波治理的方法主要包括:减小负载对谐波电压的污染、改进设备的电磁兼容性、采用滤波器等被动措施。
3.3 谐波治理的设备与技术治理设备包括各种谐波滤波器、逆变器、电抗器等。
而谐波治理技术主要包括主动滤波技术、谐波电流抑制技术等。
第四部分:电力系统谐波研究的案例和进展4.1 谐波问题在电力系统中的案例以往的研究中,谐波问题的案例主要集中在工业用电和大型电力站。
电力系统谐波的研究与治理摘要:文章对电力系统谐波产生的原因及其危害进行了总结,为了防止电网受到电力供电设备产生谐波的危害,讨论了谐波相关参数理论计算方法和检测谐波的手段,并针对其提出了治理谐波的有效方案。
关键词:方案;抑制;工程;危害;谐波由于电力机车、电弧炉、电子装置等非线性设备越来越多地应用于人们的生产生活中,但是,电力电子装置、设备的广泛应用也因电网谐波污染问题而影响了供电质量。
电力系统的三大公害分别为功率因数降低、电磁干扰、谐波。
谐波对电力系统造成了污染,系统电流、电压波形产生畸变,增加了电力元件的损耗,对仪表正常的工作状态造成了影响。
高次谐波污染不但对整个电力系统的安全运行造成了威胁,而且成为电力电子技术的发展的障碍。
所以,电力系统谐波的治理问题刻不容缓。
谐波的产生与影响周期电气量的正弦波分量频率是基波频率的整数倍为谐波。
谐波电流源产生了谐波,当非线性设备被施加了正弦基波电压时,设备所施加的电压波形与吸收的电流不同,因此,电流产生了畸变,电网与负荷相连,当电网中被注入谐波电流时,设备成为电力系统的谐波源。
通常,电流、电压波形的畸变也源于电力系统谐波问题。
非线性设备产生谐波,非线性设备就是谐波的谐波源,作为非线性设备的谐波源分为2类,⑴现代电力电子非线性设备,随着科学、经济的高速发展,大大提高了电力系统运行的自动化程度,大量电力电子技术和装置也被广泛应用,人们在生产生活中大量接触、使用到的如电视机、计算机、家用电器等,以及电力电子装置,都属于谐波源。
这些电器与电力电子装置及其二极管整流电路、晶闸管相控整流电路、开关电源等会造成大量的谐波电流产生。
⑵电弧炉、旋转电机、变压器等传统非线性设备,变压器和旋转电机是整个电力系统产生谐波的关键所在,作为感性负荷其使用最为最广泛。
电机设备处于暂态扰动时,会产生大量的谐波,这时的设备正处于非正常运行以及负荷发生剧烈变化的状态下;在线槽中,陷入了旋转电机的绕组,不能达到按正弦分布的线槽产生了畸变的磁动势;作为主要的谐波源,谐波含量取决于变压器励磁电流的铁心饱和程度。
电力系统谐波检测与治理的研究电力系统谐波检测与治理的研究1、谐波的定义供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的力量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。
电网中有时也存在非整数倍谐波,称为非谐波或分数谐波。
谐波实际上是一种干扰量,使电网受到“污染”。
2、谐波的危害电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。
电力系统中谐波的危害是多方面的,概括起来有以下几个方面:2.1 对供配电线路的危害2.1.1 影响线路的稳定运行供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。
但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下,不能全面有效地起到保护作用。
晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。
这样,谐波将严重威胁供配电系统的稳定与安全运行。
2.1.2影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。
如民用电配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较低,可达40%;三相配电线路中,相线上的3的整数倍谐波,在中性线上会叠加,使中性线的电流值可能超过相线上的电流。
另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
2.2 对电力设备的危害2.2.1对电力容器的危害当电网存在谐波时,投入电容器后,其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。
对于膜低复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器,允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。
电力网的谐波防护与治理的研发谐波治理是一个综合治理的过程,是改善供电质量的重要手段之一,应加强监督管理,提高防护技术,加大治理力度,防止谐波危害发生,以适应高效用电和高质量用电的要求。
1 谐波的种类电力电子装置成为最大的谐波源。
在各种电力电子装置中,整流装置所占的比例最大。
目前,常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式整流电路为最多。
直流侧采用电容滤波的二极管整流电路也是严重的谐波污染源。
这种电路输人电流的基波分量相位与电源电压相位大体相同,因而基波功率因数接近1。
但其输人电流的谐波分量却很大,给电网造成严重污染,也使得总的功率因数很低。
另外,采用相控方式的交流电力调整电路及周波变流器等电力电子装置也会在输人侧产生大量的谐波电流。
在电网中,向电网注人谐波电流的,主要有三大谐波源。
1)半导体型:含半导体的谐波源是电力系统中的主要谐波源。
2)铁心型:变压器、电抗器、各种旋转电机都含有铁心,铁心具有磁饱和性,铁心饱和后是非线性的。
变压器铁心常工作在磁通密度较高的区段,磁化曲线更陡,更易产生谐波。
旋转电机也由于磁极、绕组不平衡,定、转子开槽及铁心饱和等原因产生一些谐波,但较小。
3)电弧型:电弧电阻的非线性和电弧游动等因素,使电弧电流畸变,特别在初炼期注人电网的奇偶次谐波很大,且持续时问长,对电网的影响-卜分严重。
2 谐波的危害2.1 谐波对输电线路的影响谐波电流通过架空线路时要产生有功功率损耗、集肤效应,使谐波电阻增加,由谐波引起的附加线路损耗增大,降低用电效率。
大量的三次谐波流过中性线时,还会过载甚至发生火灾。
在采用单相自动重合闸来提高电力系统暂态稳定性的超高压(330kV或更高)长距离输电线路中,接有并联电抗器,其中性点还加装接地电抗器,并根据线路工频参数调谐,用以加速潜供电流的熄灭,以缩短单相重合闸的重合时间。
较大的高次谐波电流(数十安培或更大),能显著地延缓潜供电流的熄灭,导致单相重合闸的失败,或不能采用较短的自动重合闸时间。
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统性能的一个重要因素。
谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。
一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。
在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。
2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。
3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。
二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。
2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。
3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。
4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。
常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。
通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。
2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。
电力系统谐波的产生及抑制方法探讨当前电网运行过程中,谐波、功率因数下降及电磁干扰作为三大公害对电力系统的正常运行产生了较大的影响,严重时还会对电气设备的正常运行带来较大的威胁。
这三大公害的存在严重影响着电力系统运行的可靠性。
特别是近年来谐波的影响在不断加剧,因此需要对谐波及其来源进行分析,明确谐波可能对电力系统带来的危害,从而提出切实可行的措施来抑制谐波的产生。
标签:电力系统;谐波;来源;危害;抑制方法前言近年来电力电子技术得以广泛的应用,无论是家用电器还是变流装置在应用过程中都会导致供电系统非线性负载大幅度增加,从而导致电网产生大量的高次谐波。
这些谐波在电力系统中存在,当运行时间较长时,则会导致能量损耗、变压器过热及绝缘老化等现象发生,从而使电力系统处于不安全的运行状态,因此需要针对电力系统运行过程中谐波的来源及危害,从而对谐波采取有效的抑制方法,确保电网能够安全、稳定的运行。
1 谐波定义及特征1.1 供电系统谐波的定义当对供电系统运行过程中的周期性非正弦电量进行分解时,所得到的分量一部分与电网基波频率相同,另一部分分量大于电网基波频率,因此将这部分电量称为谐波。
谐波次数则是谐波频率与基波频率的比值。
在电网运行过程中,也存在着一些非整数倍谐波,即非谐波或是分数谐波。
谐波对于电网运行过程中的干扰因素,会对正常运行的电力系统带来一定的干扰,影响电力系统运行的安全性和稳定性。
1.2 电力谐波的特征在电力系统运行过程中,在理想状态下,三相交流发电机所发出来的电压波形为正弦波形,即在只有线性元件的简单电路里其电流和电压则会呈现为正比例的关系,而所流运的电流也是正弦波。
但在供电系统实际运行过程中,非线性负荷的存在具有不可避免性,这也就导致电流和电压无法呈现出线性关系,从而导致非正弦电流产生,而负荷图形也都属于非对称性。
在负荷不断变化下,负荷图形的斜率也会随之而发生改变。
而且对于任何坝基性的波形来讲,都可以将其进行分解,会得到一个基频正弦和许多谐波频率的正弦。
谐波原理及治理方法一、1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。
“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
谐波研究的意义,道理是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
浅析电网谐波源讨论和研究方法[摘要]谐波源负荷形成的谐波可能对于供电网络产生很大污染,影响供电网络设施的有效运转,增大设施损坏,并且造成计算失误,容易影响电力单位经营利益。
本文通过对谐波源的危害和治理过程中存在的困难分析,探讨了电网谐波源治理的技术和管理措施,以供参考。
【关键词】电网谐波源;治理技术;管理措施一、谐波源的害处讨论纳入公共供电网络的谐波电流源对供电网络加入高次谐波电流,它们在供电设施的阻抗中形成高次谐波电压降,让供电网络电压的正弦波形产生变化,变化之后的电压也将让线状耗电负荷纳入高次谐波电流,传送与增加谐波污染。
谐波污染对于公共供电网络的基本影响为:(1)谐波电流让供电路线、供电设备、用电设备、变压设备形成额外耗损、度数增大,造成网络损耗增加,并且让供电设备、用电设备、变压设备共振与杂音增多。
(2)让异步用电设备的转矩外形产生很大变化,无法实现规定速度运转,造成客户的异步用电设备大量破坏。
(3)谐波将造成电容设备振动,导致谐波电流变大,设施无法开始运转;增大材质部分耗损,让电容设备度数增大,造成电容设备热击破;造成或者增大材质之内的部分供电,推动电容设备破坏,根据研究因为受到谐波影响因而破坏的机电设施里,电容设备大概占据41%。
(4)谐波影响电力计算仪器计算的精确程度,造成失误增多。
(5)谐波电流将针对电信、继电维护设备、机动管控设备造成影响,容易造成继电维护设备的失误等。
二、谐波源管理出现的问题讨论目前在谐波源管理的现实操作里,基本出现下面几个情况与难题:(1)因为谐波管理科目技术的缺少,一些谐波源用户滤波设备的知识架构不完善,出现滤波效用不良的状况。
(2)谐波源用户很多,检测业务数量过多,电力单位无法布局人力针对谐波用户开始定期检测业务。
另外电力单位无法随时了解谐波源用户的运转状况,针对刚产生的谐波超额不能随时督察整理。
(3)有些谐波源用户发觉谐波可以导致计算设备计算不对,可以少计算供电数量,有意不加入消谐设备,以躲避电力费用。
电力谐波的治理及方法研究文献综述随着非线性负荷的普遍增加,电力系统中的谐波成分也日趋增多,严重影响着用电设备的效率和安全运行,严重时甚至会引起事故。
同时,精密制造业对各种微电子装置的广泛应用,也使得对电能质量要求的显著提高。
所以,对于电力谐波的检测是解决其他谐波问题的基础,对于有效抑制谐波具有非常重要的意义。
1.谐波危害(1)谐波对供配电线路产生的危害。
电力系统中的电力谐波会使电网中的电压和电流发生变化。
民用配电系统中的中性线会产生大量奇次谐波。
在三相配电线路中,相线上的3的整数倍谐波在中线上会产生叠加,导致中线上的电流值存在超过相线上电流的可能。
[1](2)谐波对电力设备的危害。
当谐波作用于电容器、电缆等电力设备时,会使电容器的功耗增加,温度升高,绝缘老化甚至损坏。
[2]电缆中在一定数值下电容与电感都有发生谐振的可能。
另外,由于谐波频率较高,趋肤效应则越明显,使得交流电阻变大,通过的电流变小。
对于一些低压开关设备,由于发热会使配电断路器产生误动作。
2.谐波检测(1)模拟电路检测法:该检测方法在国内较常用,但造价昂贵,对频率和温度的反应较敏感,容易产生较大误差。
(2)基于傅里叶变换:根据国内电力系统谐波的现状,现阶段主要采用傅里叶转换方法进行检测,且主要适用于数字领域。
缺点是采样信号长度有一定限制,无法对无限长度信号进行采样。
(3)小波变换检测:小波变换相对于以上两种方法应用更为广泛,尤其在信号分析、图像处与分析、语音识别与合成及自动控制等领域等到了应用。
小波变换弥补了傅里叶变换的不足,精确度高,可自动调焦,还能追踪一些较为复杂的信号。
3.谐波的治理通常电网中的谐波一半来自三个方面:[3](1)输送电力系统产生的谐波;(2)发电源质量低产生谐波;(3)用电设备产生谐波。
其中主要是用电设备产生的谐波比较多。
3.1 提高电能质量治理谐波一方面,要了解现阶段已有的谐波源用户设备,加强谐波治理的宣传工作。
浅析电力系统谐波研究与治理1 概述随着我国电网建设的日益发展,非线性、冲击性和不平衡的用电特性,对供电质量造成严重污染,如配电网中整流器、变频调速装置、电弧炉、电气化铁路等。
而且,现代复杂、精密的电气设备对电能质量提出了更高的要求。
但是在配电网系统中,不可避免地存在谐波,对供电系统的稳定性和安全性产生诸多不利影响。
目前对电网谐波主要的抑制措施是通过有源电力滤波器,对不同大小和不同频率的谐波进行快速跟踪补偿,使得各次谐波和无功有效分离,可抵消负载中的相应电流,实现动态跟踪补偿,且补偿特性不受电网阻抗的影响。
目前,国内外学者对谐波的研究表明,谐波对电网系统的危害主要表现在以下四个方面:(1)谐波可能会引起谐振,使得谐波畸变进一步放大;(2)谐波可能通过在变电网中产生附加谐波损耗而引起用户电气设备故障;(3)在变压器位置,谐波电流会引起变压器固件发热,会使固件局部过热,固件运行噪声增大,甚至引起变电器设备故障,影响供电网供电可靠度;(4)在供电网中产生的谐波,会对电力电子设备产生严重干扰,可能会引发电力电子设备无法正常运行而造成重大事故。
目前,国内外对谐波的抑制方法主要可以概括为两种途径,其核心都是考虑从源头控制,以供电系统的电力电子设备等装置为出发点,从源头减小谐波的产生。
目前这两种途径可简单改为主动型和被动型。
其中主动型是通过在装置中设置不产生谐波的变流器,从而减小谐波的产生,而被动型则是通过在供电系统中外加装置如滤波器或有源滤波装置等,吸收系统在供电过程中产生的谐波,从而降低谐波。
因而在既有运行的供电系统中,只有通过添加外加装置才能实现谐波的有效控制。
由于被动型谐波控制措施具有操作性更强、可靠性程度更高等优点,目前在各大电力系统中应用广泛。
2 有源滤波器2.1 有源滤波器概述谐波抑制手段主要有无源滤波和有源滤波两种。
目前最常见无源滤波器的波器结构是将电容器和电感器串联而成,对其所调谐的谐波起一个低阻抗“陷阱”的作用。
电力系统中电流谐波监测与治理技术在当今的电力系统中,电流谐波问题日益凸显,对电力设备的正常运行、电能质量以及电力系统的稳定性都带来了诸多挑战。
因此,深入研究电流谐波的监测与治理技术显得尤为重要。
电流谐波是指电流中频率为基波整数倍的分量。
它的产生主要源于电力电子设备的广泛应用,如变频器、整流器、不间断电源等。
这些设备在工作时会使电流发生畸变,从而产生谐波。
电流谐波的存在会带来一系列不良影响。
首先,它会增加电力设备的损耗,缩短设备的使用寿命。
例如,谐波会使变压器产生额外的铜损和铁损,导致变压器发热增加,降低其效率和可靠性。
其次,谐波会干扰通信系统,影响通信质量。
再者,它还可能引起继电保护装置的误动作,危及电力系统的安全稳定运行。
为了有效地应对电流谐波问题,准确的监测是关键的第一步。
目前,常用的电流谐波监测方法主要包括基于傅里叶变换的方法、基于小波变换的方法以及基于瞬时无功功率理论的方法等。
傅里叶变换是一种经典的谐波分析方法,它能够将时域信号转换为频域信号,从而清晰地展现出各次谐波的含量。
然而,傅里叶变换存在着一定的局限性,比如在处理非平稳信号时效果不佳。
小波变换则具有良好的时频局部化特性,能够更有效地分析非平稳的谐波信号。
它可以在不同的尺度上对信号进行分解,从而准确地捕捉到谐波的瞬态变化。
瞬时无功功率理论则为实时监测电流谐波提供了一种有效的途径。
通过计算瞬时有功功率和瞬时无功功率,可以快速准确地获取谐波信息。
在电流谐波监测设备方面,有便携式谐波分析仪和在线式谐波监测系统。
便携式谐波分析仪适用于临时检测和故障排查,具有操作简便、灵活性高的特点。
在线式谐波监测系统则能够实现对电力系统的长期实时监测,及时发现谐波的异常变化。
在了解了电流谐波的监测方法后,接下来探讨一下治理技术。
常见的电流谐波治理技术主要包括无源滤波技术、有源滤波技术以及混合型滤波技术。
无源滤波技术是通过电感、电容等无源元件组成滤波器,对特定次谐波形成低阻抗通路,从而实现滤波的目的。
探析供电系统谐波产生的原因以及治理对策摘要:本文主要分析了谐波产生的原因及危害;对供电系统谐波防护提出相应治理对策。
关键词:谐波;原因;危害;治理;0引言近年来,随着电力电子技术的发展,非线性负载得到了广泛应用,非线性负载的负载带来的谐波问题也逐步得到人们的重视,在理想情况下, 供应的优质电力应具有正弦波形的电压,但在实际中供电电压的波形会因某些原因而偏离正弦波形, 即产生谐波。
电力系统中有非线性(时变或时不变)负载时,即使电源都以工频50HZ供电,当工频电压或电流作用于非线性负载时,就会产生不同于工频的其它频率的正弦电压或电流,这些不同于工频频率的正弦电压或电流,用傅氏级数展开,就是人们称的电力谐波。
这些非线性负荷在工作时向电源反馈高次谐波, 导致供电系统的电压、电流波形畸变, 使供电质量变差。
谐波的危害表现为干扰通信线路的正常工作:引起电机、变压器和电容器等电气设备附加损耗和发热, 使设备温度升高, 效率降低; 绝缘加速老化, 使用寿命缩短, 甚至损坏; 降低继电保护、控制, 以及检测装置的工作精度和可靠性等。
谐波注入电网后会使无功功率加大, 功率因数降低, 甚至可能引发并联或串联谐振, 损坏电气设备。
为此, 必须采取有力措施, 防止电网中因谐波危害所造成的严重后果,保证供电系统中所有的电器、电子设备能在电磁兼容意义的基础上进行正常、和谐的工作。
1谐波产生的原因供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。
电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。
目前所称供电系统谐波是指一些频率为基波频率整数倍的正弦波分量, 又称为高次谐波。
供电系统中, 谐波是电力质量的重要指标之一, 产生谐波的根本原因是给具有非线性阻抗特性的电气设备(又称为非线性负荷) 供电的结果。
矿区电网谐波研究与治理一、电网电能质量要求电能质量包括四个方面的相关术语和概念:电压质量,即用实际电压与额定电压间的偏差(偏差含电压幅值,波形和相位的偏差),反映供电企业向用户供给的电力是否合格;电流质量,即对用户取用电流提出恒定频率、正弦波形要求,并使电流波形与供电电压同相位,以保证系统以高功率因数运行,这个定义有助于电网电能质量的改善,并降低网损;供电质量,包含技术含义和非技术含义两个方面:技术含义有电压质量和供电可靠性;非技术含义是指服务质量包括供电企业对用户投诉的反应速度和电力价格等;用电质量,包括电流质量和非技术含义,如用户是否按时、如数缴纳电费等,它反映供用双方相互作用与影响用电方的责任和义务。
一般地,电能质量的定义:导致用户设备故障或不能正常工作的电压、电流或频率偏差。
这个定义简单明晰,概括了电能质量问题的成因和后果。
随着基于计算机系统的控制设备与电子装置的广泛应用,电力系统中用电负荷结构发生改变,即变频装置、电弧炉炼钢、电气化铁道等非线性、冲击性负荷产生的谐波对电能质量的污染与破坏,而电能作为商品,人们会对电能质量提出更高的要求,保障电能质量既是电力企业的责任,供电企业应保证供给用户的供电质量符合国家标准;同时也是用户(拥有干扰性负荷)应尽的义务,即用户用电不得危害供电;安全用电;对各种电能质量问题应采取有效的措施加以抑制。
电能质量已逐渐成为全社会共同关注的问题,有关电能质量中的谐波问题已经成为电工领域的前沿性课题,电能质量中的谐波是制约我们矿区电网发展的不利因素,有必要对其相关指标与改善措施作讨论和分析。
谐波即对周期性的变流量进行傅里叶级数分解,得到频率为大于1的整数倍基波频率的分量,它是由电网中非线性负荷而产生的。
《电能质量公用电网谐波》(GB/T14529-1993)中规定了各电压等级的总谐波畸变率,各单次奇次电压含有率和各单次偶次电压含有率的限制值。
谐波超过本规定的电压正弦波形畸变率极限值时,应查明谐波源并采取措施,把电压正弦波形畸变率限制在规定的极限值以内。
电力系统中的谐波污染问题与解决方案随着电力系统的发展,电力设备越来越智能化,大量非线性负载的出现使得电网中的谐波问题日益突出。
谐波污染会对电网稳定性、设备可靠性、以及用户用电质量造成极大的影响,甚至可能导致事故的发生。
因此,保证电力系统的用电质量,控制谐波污染是一个迫切需要解决的问题。
电力系统中谐波污染的原因电力系统中主要的谐波源来自于非线性负载。
对于自然电阻、电感、电容等元件,其电流和电压之间的关系为线性关系,但是在非线性负载下,电流和电压之间的关系则会变成非线性关系,从而产生谐波。
大部分非线性负载中均含有半导体元器件,如变频器、熔接机、电子镇流器等,这些负载会将电网上的交流电转换成直流电,再用半导体开关对其进行控制,从而输出较高功率电子脉冲。
电力系统中谐波污染的影响谐波污染对电网的稳定性和安全性有着极大的影响。
电网中的谐波会导致电压、电流、频率等参数发生变化,甚至可能会引发设备故障,给电网带来安全隐患。
对于用户而言,谐波污染还会影响其使用电器的安全和可靠性。
例如,谐波会使得电器中的电容器过早老化,从而减短使用寿命。
电力系统中谐波污染的解决方案一、控制谐波源控制谐波源是最有效的解决方案。
通过使用低谐波负载,如交流电动机、照明负载等,可以有效降低谐波污染。
对于这些负载而言,电流和电压之间的关系比较简单,没有出现非线性关系。
同时,还可以采用减小负载容量、增加电感、电容等措施,使得谐波污染降低。
二、谐波滤波器谐波滤波器是一种常用的控制谐波的设备。
其主要作用是在电力系统中增加一个滤波电路,滤除谐波,保证用户用电的安全和稳定性。
谐波滤波器是通过电容、电感等元件构成的,它可以滤除制定的谐波,同时保留基波电压和基波电流,以达到保证电力质量的目的。
不过,谐波滤波器存在着能量消耗大、对于高次谐波的滤除效果较差等问题。
三、提高电力的质量增加电力的质量,特别是将非线性负载调整到正常负载可以缓解谐波污染的程度。
这方面可以下功夫增强电力设备的质量,同时进行科学规划和设计建立合理的电力系统。
谐波的产生原因和治理方式供电系统中的谐波在供电系统中谐波电流的出现已经有许多年了。
过去,谐波电流是由电气化铁路和工业的直流调速传动装置所用的,由交流变换为直流电的水银整流器所产生的。
近年来,产生谐波的设备类型及数量均已剧增,并将继续增长。
所以,我们必须很慎重地考虑谐波和它的不良影响,以及如何将不良影响减少到最小。
1 谐波的产生在理想的干净供电系统中,电流和电压都是正弦波的。
在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。
在实际的供电系统中,由于有非线性负荷的存在,当电流流过与所加电压不呈线性关系的负荷时,就形成非正弦电流。
任何周期性波形均可分解为一个基频正弦波加上许多谐波频率的正弦波。
谐波频率是基频的整倍数,例如基频为50Hz,二次谐波为100Hz,三次谐波则为150Hz。
因此畸变的电流波形可能有二次谐波、三次谐波……可能直到第三十次谐波组成。
2 产生谐波的设备类型所有的非线性负荷都能产生谐波电流,产生谐波的设备类型有:开关模式电源(SMPS)、电子荧火灯镇流器、调速传动装置、不间断电源(UPS)、磁性铁芯设备及某些家用电器如电视机等。
(1)开关模式电源(SMPS):大多数的现代电子设备都使用开关模式电源(SMPS)。
它们和老式的设备不同,它们已将传统的降压器和整流器替换成由电源直接经可控制的整流器件去给存贮电容器充电,然后用一种和所需的输出电压及电流相适合的方法输出所需的直流电流。
这对于设备制造厂的好处是使用器件的尺寸、价格及重量均可大幅度地降低,它的缺点是不管它是哪一种型号,它都不能从电源汲取连续的电流,而只能汲取脉冲电流。
此脉冲电流含有大量的三次及高次谐波的分量。
(2)电子荧光灯镇流器:电子荧光灯镇流器近年被大量采用。
它的优点是在工作于高频时可显著提高灯管的效率,而其缺点是其逆变器在电源电流中产生谐波和电气噪声。
使用带有功率因数校正的型号产品可减少谐波,但成本昂贵。