高一数学教案:函数的值域的求法
- 格式:doc
- 大小:45.70 KB
- 文档页数:4
诚西郊市崇武区沿街学校高一数学必修1函数的定义域和值域
教学目的
知识与技能
(1)继续理解函数的概念和记号以及域函数概念相关的定义域、函数值、值域的概念。
(2)掌握两个函数是同一函数的条件。
(3)会求简单函数的定义域和值域。
过程与方法
(1)通过对函数的概念的学习,初步探究客观世界中各种运动域数量间的互相依赖关系。
(2)使学生掌握求函数是=式的值得方法。
(3)培养批判思维才能、自我调控才能、交流与才能。
情感、态度与价值观
(1)懂得变化、联络、制约的辩证唯物主意观点。
(2)学会全面的观察、分析、研究问题。
重点难点
重点:符号“y=f(x)〞的含义。
难点:符号“y=f(x)〞的含义。
教法学法:讨论研究
教学用具:多媒体教学过程
板书设计
教学反思。
龙文教育一对一个性化辅导教案
学生学校年级高一次数第次科目数学教师侯忠职日期时段
课题函数及定义域、值域求法
教学重点1、理解并掌握函数和映射的概念和它们的异同点
2、理解定义域的概念,会求一些函数的定义域
3、理解值域的概念,会求一些函数的值域
教学难点1、函数与映射的异同点
2、求解函数的定义域和值域
教学目标1、掌握函数与映射的异同点
2、掌握函数定义域和值域的求法
教学步骤及教学内容一、教学衔接:
1、检查学生的作业,及时指点;
2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。
二、内容讲解:
知识点一:函数与映射
知识点二:函数的定义域
知识点三:函数的值域
拓展提升:高考真题
三、课堂总结与反思:
带领学生对本次课授课内容进行回顾、总结
四、作业布置:
复习教案所讲知识点,完成教案上的作业
管理人员签字:日期:年月日
作业布置1、学生上次作业评价:○好○较好○一般○差
备注:
2、本次课后作业:
见教案
课
堂
小
结
家长签字:日期:年月日。
浅谈函数值域的求法——两题看高一新生求函数值域
徐孝慧
【期刊名称】《数学学习与研究:教研版》
【年(卷),期】2012(000)023
【摘要】正对于步入高一,刚学过函数的概念、定义域、值域的学生来说,遇到解函数值域问题时,方法经常会乱套.下面我就对这类学生阐述几种常见的求函数值域的方法.题目求函数y=1/(x~2+x+1)的值域.问题转化成:求函数y=x~2+x+1的值域.1.图像法分析这是一个一元二次函数,要求它的值域,可以先画出它的图像,根据图像写出它的值域,这也是求值域的一种方法,称图像法.2.配方法
【总页数】1页(P100-100)
【作者】徐孝慧
【作者单位】江苏省扬州中学
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.利用向量求两类无理函数的值域——兼谈一对“姐妹函数”值域的探求 [J], 张中发;诸敏
2.和高一新生谈谈函数值域的求法 [J], 吴选根
3.怎样求函数值域?——略谈用对立统一观点求值域 [J], 崔亮;
4.高一函数值域求法策略 [J], 张生德
5.解析几何法在求函数值域与最值中的研究——用斜率法求一类函数的值域与最值[J], 林娟娟;
因版权原因,仅展示原文概要,查看原文内容请购买。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高一数学函数的定义域与值域的常用方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
例1. 已知,试求。
解:设,则,代入条件式可得:,t≠1。
故得:。
说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。
例2. (1)已知,试求;(2)已知,试求;解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。
(2)由条件式,以-x代x则得:,与条件式联立,消去,则得:。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
例4. 求下列函数的解析式:(1)已知是二次函数,且,求;(2)已知,求,,;(3)已知,求;(4)已知,求。
【题意分析】(1)由已知是二次函数,所以可设,设法求出即可。
(2)若能将适当变形,用的式子表示就容易解决了。
(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。
(4),同时使得有意义,用代替建立关于,的两个程就行了。
【解题过程】⑴设,由得,由,得恒等式,得。
故所求函数的解析式为。
(2),又。
(3)设,则所以。
(4)因为①用代替得②解①②式得。
【题后思考】求函数解析式常见的题型有:(1)解析式类型已知的,如本例⑴,一般用待定系数法。
对于二次函数问题要注意一般式,顶点式和标根式的选择;(2)已知求的问题,法一是配凑法,法二是换元法,如本例(2)(3);(3)函数程问题,需建立关于的程组,如本例(4)。
例析求函数值域的方法曲靖市民族中学 张小琼求函数的值域常和求函数的最值问题紧密相关,是高中数学的重点和难点。
注意:求值域要先求定义域。
虽然没有固定的方法和模式,但常用的方法有:一、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
例1:求函数1y =+的值域。
0≥11≥,∴函数1y =的值域为[1,)+∞。
二、图像法:对于二次函数在给定区间求值域问题,一般采用图像法。
例2:求函数242y x x =-++([1,1]x ∈-)的值域。
(开口方向;区间与对称轴的关系)三、中间变量法:函数式中含有可以确定范围的代数式。
例3:求函数2211x y x -=+的值域。
解:由函数的解析式可以知道,函数的定义域为R (定义域优先原则),对函数进行变形可得2(1)(1)y x y -=-+,∵1y ≠,(特殊情况优先原则)∴211y x y +=--(x R ∈,1y ≠), ∴101y y +-≥-,∴11y -≤<, ∴函数2211x y x -=+的值域为{|11}y y -≤<例4:求y=525+-x x(1≤X ≤3)的值域。
解:y =525+-x x⇒ x =1255+-y y∵1≤X ≤3 ∴1≤1255+-y y ≤3 (怎么求解?)⇒ y ∈[112,74] 四、分离常数法:分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例5:求函数125xy x -=+的值域。
解:(此处要先求定义域)∵177(25)112222525225x x y x x x -++-===-++++, ∵72025x ≠+,∴12y ≠-,∴函数125x y x -=+的值域为1{|}2y y ≠-。
五、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。
1、函数的有关概念(1)函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x .(2)构成函数的三要素是什么?定义域、对应关系和值域(3)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0)y =ax 2+b x +c (a ≠0)y =x k (k ≠0) (三)1、如何求函数的定义域例1:已知函数f (x ) =3+x +21+x (1)求函数的定义域;(2)求f (-3),f (32)的值; (3)当a >0时,求f (a ),f (a -1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y =f (x ),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.解:例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.分析:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义.2、如何判断两个函数是否为同一函数例3、下列函数中哪个与函数y=x相等?(1)y = (x)2 ; (2)y = (33x);x2(3)y =2x; (4)y=x分析:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
姓名 学生姓名 上课时间 学科 数学 年级 高一 课时计划 第( )次课提交时间 2013-1-31教研组长教管主任签字教学目标:掌握函数的定义域和值域的基本求法,熟知映射的定义。
教学重点:函数的定义域和值域的求法。
教学难点: 值域的求法,复合函数定义域的求法。
教学过程:知识梳理一 ※映射定义:设非空数集A ,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射,记为f :A →B ,f 表示对应法则,b=f(a)。
A 中的元素就叫做原象,B 中的元素就叫做象。
若A 中不同元素的象也不同,且B 中每一个元素都有原象与之对应,则称从A 到B 的映射为一一映射。
在理解映射概念时要注意: ⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
例题精讲题型一 对映射定义的考查例1.下列对应中,哪些是A 到B 的映射?⑷例2:设:f M N 是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的a b c1 21 2a b c123 ab ab c1 2D 、N 是M 中所在元素的象的集合;变式训练 在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则与A 中的元素)2,1(-对应的B 中的元素为( )(A ))1,3(- (B ))3,1( (C ))3,1(-- (D ))1,3(知识梳理二 函数1、函数定义,即“y=f(x)”的含义:函数f : A →B 是特殊的映射。
函数就是定义在非空数集A ,B 上的映射,此时称数集A 为定义域,象集C={f(x)|x ∈A}为值域。
注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . ③据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个。
江苏省泰州市第二中学 高一数学教案 函数的值域(1)教学目标:理解函数值域的意义,会求简单函数的值域。
教学重点:二次函数值域的求法。
教学过程:一. 问题情境1、函数的概念2、已知函数1)1()(2+-=x x f x ∈A={-1,0,1,2,3}。
(1)求每一个x 所对应的函数值f (x )。
并求这些函数值构成的集合C 。
(2)如B=R ,则函数f (x )=(x-1)2+1,x ∈A={-1,0,1,2,3},则这个对应是函数吗?集合B 和C 有何关系。
如x ∈R 呢?二. 数学建构用自己的语言说值域的定义。
三. 数学应用问题1:已知函数f (x )=3x-6,(i )当(1)x ≥2,(2)x ∈[-1,3],分别求f (x )值域.分析:(1)图象观察(2)代数推理(ii )当函数f(x)的值域为[-1,3],求函数f(x)的定义域。
问题2:试画出函数f(x)=x 2+1的图象,并据图象回答下列问题:(1)比较f(-2),f(1),f(3)的大小;(2)若0<x 1<x 2,试比较f(x 1)与f(x 2)的大小.(3)若x 1<x 2<0,那么f(x 1)与f(x 2)哪个大?(4)若|x 1|<|x 2|,试比较f(x 1)与f(x 2)的大小?问题3: 已知函数f (x )=x 2-2x+3,当定义域分别为下列集合时,求f (x )的值域。
(1)R (2)[2,3] (3)[-3,6]注:给定区间二次函数值域的求法步骤:1.配方画图。
2.确定对称轴和区间的位置,找出最高点和最低点。
3.写解。
思考:已知一个函数的解析式为y=x2,它的值域是[1,4],这样的函数有多少个,试写出其中两个。
四.回顾反思五.练习1、求下列函数的值域(1)y=x +1;(2)y=x2-4x+6;x∈[1,5)(3)(选)y=2x-x-12、P28练习3、求函数值域f(x) =2x2-6x+c x∈[1,3]的值域第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。
函数的值域
教学目的:
(1)理解函数值域的概念
(2)要求学生掌握利用直接法、二次函数、换元法等求函数的值域。
教学过程:
一、复习函数的定义、定义域及值域的概念。
提出课题:函数的值域
二、新授:
1.直接法:
例1、求下列函数的值域
(1)①y=3x+2(-1≤x ≤1) ②x
y 1=
③“题②”中加上条件:“1>x ”则其值域为 。
④|2||1|-++=x x y
(2)x x f -+=15)(
(3)1
+=
x x y
练习:3
12)(-+=x x x f
(4)上题中加上条件:“4>x ”求此函数的值域
(5)1
|||2|1+-=
x x y
(5)求函数1122+-=x x y 的值域
(6)求函数6
6522-++-=x x x x y 的值域
注:求函数的值域,不但要重视对应法则的作用,而且要特别注意定义域对值
域的制约作用
2.二次函数(在给定区间上)的值域的求法(配方法)
例2 求下列函数的最大值、最小值与值域:
(1)y=x 2-2x-1;
(2)y=x 2-2x-1,x ∈[0,3];
练习:(1)y=x 2-6x-1,x ∈[-2,0]
(2)y=3-4x-2x 2,x ∈[1,2]
(3)3
4252+-=x x y
注:求二次函数在给定区间上求值域时,关键是确定二次函数的对称轴与给定
区间的联系,这个关系弄清后,再借助二次函数的图象求值域
3.换元法
例3 (1)求函数y=x+21-x -2的值域
练习:求函数下列函数的的值域
(1)x x y -+=142 ☆(2)22142x x y -+=
☆(2)求函数2224)
1(5+++=x x x y 的值域
本课自我回顾与反思:
课后作业: 姓名: ⒈求下列函数的最值和值域:
(1)y=2x-3,x ∈[-1,1] (2) y=x+2x -1;
(3)y=
2
1++x x (x>0) (4)y=-x 2+3x-2,x ∈[1,3].
(5)24x x y -= ☆(6)25|12|-+-=x x y
☆2.已知函数f(x)=x 2-4ax+2a+6(a ∈R).
⑴若函数的值域为[0,+∞),求a 的值;
⑵若函数的值.均为非负数...
,求函数f(a)=2-a|a+3|的值域.。