等差等比数列定义
- 格式:doc
- 大小:230.50 KB
- 文档页数:4
等差等比公式等差等比公式是数学中最常用的一种公式,用于解决问题的求解,此类公式在学术和实际应用中都得到了广泛的使用。
本文将着重介绍等差等比公式的定义,特点,应用及计算方法。
一、定义等差等比公式是指以满足以下条件的数列为公式:1、数列中的任意项和前一项的差值(即等差)相等;2、数列中的任意项和前一项的比值(即等比)相等。
二、特点等差等比公式具有如下特点:1、所有项中具有相同的差值;2、所有项中具有相同的比值;3、可以使用等差数列组成等差等比公式,也可以使用等比数列构成等差等比公式;4、等差等比公式可以根据需要,改变项数而不改变模式;5、等差等比公式可以有多种形式,如:a)一般形式:an = a1 qn-1b)动形式:an = a1 qn-1 +dc)比形式:an = a1 rn-1三、应用等差等比公式常用于投资、租金的计算、求解某种物价变动的趋势、解决利率计算问题、求解倍数问题等,还可以用在统计学中,如在市场调查等领域。
四、计算方法1、一般形式:an = a1 qn-1a1表示等差等比数列中的第一项,q表示公比,an表示数列中的第n项,n为正整数。
计算方法:(1)找出等差等比数列的公比q,要求等差等比数列第一项为a1;(2)求出等差等比数列的第n项:an = a1 qn-12、移动形式:an = a1 qn-1 +dd表示等差等比数列中的常量,有时也称为差值。
计算方法:(1)求出等差等比数列中的常量d,要求等差等比数列第一项为a1;(2)求出等差等比数列的第n项:an = a1 qn-1 +d3、等比形式:an = a1 rn-1a1表示等比数列的第一项,r表示公比,an表示数列中的第n 项,n为正整数。
计算方法:(1)找出等比数列的公比r,要求等比数列第一项为a1;(2)求出等比数列的第n项:an = a1 rn-1五、总结等差等比公式有着丰富的应用,它可以通过解决复杂问题和实用性计算,满足各种工作需求。
1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等差数列与等比数列的知识点总结
等差数列和等比数列是数学中的两个重要概念,它们在日常生活和科学研究中有着广泛的应用。
以下是关于等差数列和等比数列的主要知识点总结:
等差数列:
1. 定义:一个数列,其中任意两个相邻项的差是一个常数,这个数列被称为等差数列。
2. 通项公式:$a_n = a_1 + (n - 1)d$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。
3. 求和公式:$S_n = \frac{n}{2} [2a_1 + (n - 1)d]$,其中 $S_n$ 是前$n$ 项的和。
4. 等差中项:任意两项的算术平均值等于第三项。
5. 等差数列的性质:如果两个数列都是等差数列,那么它们的和也是一个等差数列。
等比数列:
1. 定义:一个数列,其中任意两个相邻项的比是一个常数,这个数列被称为等比数列。
2. 通项公式:$a_n = a_1 \times q^{n-1}$,其中 $a_1$ 是首项,$q$ 是公比,$n$ 是项数。
3. 求和公式:对于 $q \neq 1$,有 $S_n = \frac{a_1(1 - q^n)}{1 - q}$;对于 $q = 1$,有 $S_n = na_1$。
4. 等比中项:任意两项的几何平均值等于第三项。
5. 等比数列的性质:如果两个数列都是等比数列,那么它们的乘积是一个等比数列。
以上是关于等差数列和等比数列的主要知识点总结。
在学习这些内容时,可以通过做练习题来加深理解和巩固知识。
等比等差数列的所有公式等差数列和等比数列是数学领域里比较基础且常见的两种数列。
它们不仅在高中阶段的数学学习中出现,同时也在大学的高级数学科目中应用广泛。
本文将会全面介绍等差数列和等比数列的定义、公式以及应用,以期为读者提供一个全面且清晰的了解。
一、等差数列等差数列是指一种数列,其任意两个相邻项之间的差值是相等的,这个相等的差值叫做公差。
举个例子,1,3,5,7,9....,就是一个公差为2的等差数列。
等差数列的通项公式对于任意一个等差数列,其通项公式可以表示为an=a1+(n-1)d,其中an表示该数列的第n项,a1表示该数列的首项,d表示该数列的公差。
这个公式用起来非常方便,读者只需要知道该数列的首项和公差,就可以轻松地得出该数列的任意一项。
等差数列的和公式等差数列的和公式就是数列的所有数值之和,它能够帮助我们快速计算数列中所有数值之和。
韦达定理是该公式的基础,韦达定理是指求等差数列和时将数列上下颠倒,在叠加两个相同的数列使其首项与末项分别相加后,其中的所有项均相等,其和是所求等差数列的和的两倍。
求和公式: Sn=n(a1+an)/2其中n表示项数,a1表示首项,an表示末项。
(特殊情况下)如果公差为1,那么求和公式可以变为:Sn=n(a1+an)/2=n(a1+1)/2 。
二、等比数列等比数列是指一种数列,其任意两个相邻项之间的比值是相等的,这个相等的比值叫做公比。
例如,1,2,4,8,16....就是一个公比为2的等比数列。
等比数列的通项公式对于任意一个等比数列,其通项公式可以表示为an=a1×r^(n-1),其中an表示该数列的第n项,a1表示该数列的首项,r表示该数列的公比。
与等差数列的情况类似,知道等比数列的首项和公比,就可以很容易地得出该数列的任意一项。
等比数列的和公式等比数列的和公式可以帮助我们快速计算数列中所有数值之和。
其中,如果公比r=1,那么求和公式就是Sn=na1,这个公式表示如果公比为1的等比数列中有n个元素,那么这个数列的和就是该数列第一个元素的值与这n 个元素数值之和相等。
等差等比数列性质总结一、等差数列1、定义:等差数列是指在数列中任意两项之间的差值相等的数列。
2、正则式:若等差数列$\left\{ {{a_n}} \right\}$的首项为$a_1$,公差为d,n为正整数,则其等差数列正则式为:$$a_n=a_1+(n-1)d$$3、数列函数:若等差数列 $\left\{ {{a_n}} \right\}$的首项为$a_1$,公差为d,则其函数形式为:$$f(x)=a_1+(x-1)d$$4、首项和公差:若等差数列 $\left\{ {{a_n}} \right\}$中,$a_1$为首项,$a_2$和$a_1$之差为公差d,则$$d = \left( {a_2 - a_1} \right) = \left( {a_3 - a_2} \right) = \left( {a_n - a_{n - 1}} \right)$$5、求和公式:若等差数列 $\left\{ {{a_n}} \right\}$中,$a_1$为首项,公差为d,n为正整数,则$a_1$+$a_2$+$a_3$+……+$a_n$的和$$S_n=n \cdot a_1 + \frac{1}{2} \cdot n \cdot \left( {n - 1} \right) \cdot d$$二、等比数列1、定义:等比数列是指在数列中任意两项之比都相等的数列。
2、正则式:若等比数列$\left\{ {{a_n}} \right\}$的首项为$a_1$,公比为q,n为正整数,则其等比数列正则式为:$$a_n=a_1q^{n-1}$$3、数列函数:若等比数列 $\left\{ {{a_n}} \right\}$的第一项为$a_1$,公比为q,则其函数形式为:$$f(x)=a_1q^{x-1}$$4、首项和公比:若等比数列 $\left\{ {{a_n}} \right\}$中,$a_1$为首项,$a_2$和$a_1$之比为公比q,则。
等差、等比数列的公式1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+=3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n q a q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a qq a a S nn n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2b a A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±=③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kk kaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk n n k nn k kk kaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2nq的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶练习 1.三个数,,1,,1,1,122成等比数列又成等差数列n m nm的值为则nm n m ++22 ( )A .-1或3B .-3或1C .1或3D .-3或-1 2.在等比数列1020144117,5,6,}{a a a a a a a n 则中=+=⋅=( )A .2332或B .2332--或 C .515--或 D .2131-或3.等比数列===302010,10,20,}{M MM M n a n n 则若项乘积记为前( )A .1000B .40C .425D .814.已知等差数列5,8,11,…与3,7,11,…都有100项,则它们相同项的个数 ( ) A .25 B .26 C .33 D .345.已知一个等差数列的前5项的和是120,最后5项的和是180,又所有项的和为360,则此数列的项数为 ( ) A .12项 B .13项 C .14项 D .15项 6.若两个等差数列)(27417,}{},{+∈++=N n n n B A B A n b a nn n n n n 且满足和项和分别为的前则的值是1111b a( )A .47 B .23 C .34 D .71781.B 2.A 3.D 4.A 5.A 6.C求通项方法(一)一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。
什么是等差数列和等比数列?在数学中,等差数列和等比数列是常见的数列类型,它们具有特定的规律和性质。
下面将分别介绍等差数列和等比数列的定义、性质和应用。
1. 等差数列:等差数列是指数列中相邻两项之差恒定的数列。
换句话说,等差数列中的每一项与前一项的差值都是相同的。
这个差值被称为公差,通常用字母d表示。
等差数列的一般形式可以表示为:a, a + d, a + 2d, a + 3d, ...其中,a是首项,d是公差。
等差数列可以是无限数列,也可以是有限数列。
等差数列的性质包括:-公差:相邻两项之差是常数,即d。
-通项公式:等差数列的第n项可以通过通项公式来计算,通常表示为an = a + (n-1)d。
-首项和末项:等差数列的首项是a,末项是an。
等差数列的应用包括:-数学问题:在数学问题中,等差数列可以用来建模和解决各种问题,如数学题目中的数列问题、等差数列求和等。
-物理学:在物理学中,等差数列可以用来描述物理量随时间的变化规律,如速度、加速度等的变化。
2. 等比数列:等比数列是指数列中相邻两项之比恒定的数列。
换句话说,等比数列中的每一项与前一项的比值都是相同的。
这个比值被称为公比,通常用字母r表示。
等比数列的一般形式可以表示为:a, ar, ar^2, ar^3, ...其中,a是首项,r是公比。
等比数列可以是无限数列,也可以是有限数列。
等比数列的性质包括:-公比:相邻两项之比是常数,即r。
-通项公式:等比数列的第n项可以通过通项公式来计算,通常表示为an = a * r^(n-1)。
-首项和末项:等比数列的首项是a,末项是an。
等比数列的应用包括:-数学问题:在数学问题中,等比数列可以用来建模和解决各种问题,如数学题目中的数列问题、等比数列求和等。
-经济学:在经济学中,等比数列可以用来描述复利的增长规律,如利率、投资回报率等的变化。
等差数列和等比数列是数学中常见的数列类型,它们具有特定的规律和性质。
什么是等差数列和等比数列等差数列和等比数列是数列中常见的两种类型。
在数学中,数列是一组按照一定规律排列的数字。
等差数列和等比数列都能用于解决实际问题和数学推理,因此对它们的理解非常重要。
一、等差数列等差数列也被称为公差数列,是指数列中的每个数与它前面的数之差都相等。
这个相等的差值称为公差,通常用字母"d"来表示。
等差数列的一般形式可以表示为a、a+d、a+2d、a+3d、...,其中a是首项,d 是公差。
等差数列的求和公式如下:Sn = (n/2)(2a + (n-1)d)其中Sn表示等差数列的前n项和,n表示项数,a表示首项,d表示公差。
等差数列常见的应用包括:计算年龄、时间、距离等等。
例如,如果一个人每年增长3岁,在5年后他的年龄是多少?二、等比数列等比数列是指数列中的每个数与它前面的数之比都相等。
这个相等的比值称为公比,通常用字母"q"来表示。
等比数列的一般形式可以表示为a、aq、aq²、aq³、...,其中a是首项,q是公比。
等比数列的求和公式如下:Sn = a(1 - qⁿ)/(1 - q)其中Sn表示等比数列的前n项和,n表示项数,a表示首项,q表示公比。
等比数列常见的应用包括:求利息、计算数量、模型预测等等。
例如,一笔投资每年收益率为10%,如果投资10年后的总收益是多少?三、等差数列与等比数列的关系等差数列和等比数列之间存在一定的联系。
当公比q等于1时,等比数列就变成了等差数列。
因此,等差数列是等比数列的一种特殊情况。
另外,在某些情况下,我们可以通过观察数列的性质来确定它是等差数列还是等比数列。
例如,如果一个数列从第二项开始,每一项都是前一项的2倍,那么我们可以断定这个数列是等比数列。
四、总结等差数列和等比数列是数学中常见的两种数列类型。
它们都有各自的求和公式,并能在实际问题中发挥重要作用。
理解等差数列和等比数列的概念、特性和应用,对于数学学习和问题解决都是非常有帮助的。
等差数列和等比数列公式等差数列公式是指具有相同公差的数列,其中每一项的值与前一项的值之差都相等。
等比数列公式是指具有相同比例的数列,其中每一项的值与前一项的值之比都相等。
等差数列公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式为:aₙ=a₁+(n-1)*d等差数列的前n项和公式为:Sₙ=n/2*(a₁+aₙ)=n/2*(2a₁+(n-1)*d)等差数列的前n项和为首项与尾项之和乘以项数的一半。
等差数列的示例:1,4,7,10,13,...以此等差数列的首项a₁=1,公差d=3,求该等差数列的第n项aₙ和前n项和Sₙ。
首先,利用等差数列的通项公式可以求得任意一项的值:aₙ=a₁+(n-1)*d假设要求第10项a₁₀,则代入a₁=1,d=3,n=10:a₁₀=1+(10-1)*3=1+9*3=1+27=28其次,利用等差数列的前n项和公式可以求得前n项的和:Sₙ=n/2*(a₁+aₙ)假设要求前10项和S₁₀,则代入a₁=1,aₙ=28,n=10:S₁₀=10/2*(1+28)=5*29=145因此,等差数列1,4,7,10,13,...的第10项为28,前10项和为145等比数列公式:设等比数列的首项为a₁,公比为r,第n项为aₙ,则等比数列的通项公式为:aₙ=a₁*r^(n-1)等比数列的前n项和公式为:Sₙ=(a₁*(r^n-1))/(r-1)(当r≠1)Sₙ=n*a₁(当r=1)等比数列的前n项和为首项与第n项乘以公比的n次方之差除以公比减1的结果。
等比数列的示例:2,6,18,54,162,...以此等比数列的首项a₁=2,公比r=3,求该等比数列的第n项aₙ和前n项和Sₙ。
首先,利用等比数列的通项公式可以求得任意一项的值:aₙ=a₁*r^(n-1)假设要求第6项a₆,则代入a₁=2,r=3,n=6:a₆=2*3^(6-1)=2*3^5=2*3*3*3*3*3=2*243=486其次,利用等比数列的前n项和公式可以求得前n项的和:Sₙ=(a₁*(r^n-1))/(r-1)假设要求前6项和S₆,则代入a₁=2,r=3,n=6:S₆=(2*(3^6-1))/(3-1)=(2*(729-1))/2=(2*728)/2=728因此,等比数列2,6,18,54,162,...的第6项为486,前6项和为728综上所述,等差数列和等比数列是数学中常见的数列,通过等差数列的通项公式和前n项和公式以及等比数列的通项公式和前n项和公式,可以方便地计算出数列中任意一项的值和前n项的和。
数列的等差与等比关系数列是数学中一种常见的数学对象,它是由一系列按照特定规律排列的数字组成。
在数列中,有两种常见的关系,即等差关系和等比关系。
这两种关系在数学中有着广泛的应用,不仅在数学本身,还在物理、经济等领域中起着重要的作用。
一、等差关系等差数列是指数列中相邻两项之间的差值保持不变。
也就是说,如果一个数列满足每个数与它的前一个数之差等于一个常数d,那么这个数列就是等差数列。
等差数列的通项公式可以表示为An = A1 + (n-1)d,其中An表示第n项,A1表示第一项,d表示公差。
等差数列的性质非常有趣。
首先,等差数列的前n项和可以通过求和公式Sn = (A1 + An) * n / 2来计算。
其次,等差数列的平均值等于它的中项,即平均值等于首项与末项的和除以2。
此外,等差数列还有一个重要的性质,即任意三项成等差数列的充要条件是它们的中项等于它们的平均值。
等差数列在实际生活中有着广泛的应用。
例如,在物理学中,等差数列可以用来描述物体匀速运动的位置随时间的变化。
在经济学中,等差数列可以用来描述人口增长、物价上涨等现象。
二、等比关系等比数列是指数列中相邻两项之比保持不变。
也就是说,如果一个数列满足每个数与它的前一个数之比等于一个常数r,那么这个数列就是等比数列。
等比数列的通项公式可以表示为An = A1 * r^(n-1),其中An表示第n项,A1表示第一项,r 表示公比。
等比数列也有一些有趣的性质。
首先,等比数列的前n项和可以通过求和公式Sn = A1 * (1 - r^n) / (1 - r)来计算。
其次,等比数列的平均值等于它的首项与末项的几何平均数。
此外,等比数列还有一个重要的性质,即任意三项成等比数列的充要条件是它们的中项等于它们的平均值的平方根。
等比数列在实际生活中也有着广泛的应用。
例如,在生物学中,等比数列可以用来描述细胞的分裂过程。
在金融学中,等比数列可以用来描述复利的计算过程。
一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kkk aa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkk aa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q aqa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知c b a 1,1,1成等差数列,求证:(1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列; (2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b 求证:{n b }是等比数列.[解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k 由1)、2)知,,32,-=∈*n a N n n 时当① ②.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP PQbn an S n 222,①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P QP +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP Q P a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.①②①,②[解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列(B )为非零的常数数列(C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为( ) (A )21(B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为( )(A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( )(A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( ) A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
等比数列和等差数列公式等差数列(Arithmetic Sequence)是一种常见的数列,其中每一项与它前一项的差都是一个常数。
等比数列(Geometric Sequence)是一种特殊的数列,其中每一项与它前一项的比都是一个常数。
等差数列的通项公式:对于等差数列{a₁,a₂,a₃,...,aₙ},其中公差为d,则第n项的值可以通过以下公式计算出来:aₙ=a₁+(n-1)d等差数列的前n项和公式:前n项和Sn可以通过以下公式计算出来:Sn=(n/2)(a₁+aₙ)=(n/2)(2a₁+(n-1)d)等差数列的性质:1.等差数列的前n项和与项数成正比,当n增大时,前n项和也随之增大。
2.等差数列的前n项和与公差成正比,公差越大,前n项和增长的速度越快。
等比数列的通项公式:对于等比数列{a₁,a₂,a₃,...,aₙ},其中公比为r,则第n项的值可以通过以下公式计算出来:aₙ=a₁×r^(n-1)等比数列的前n项和公式:前n项和Sn可以通过以下公式计算出来:Sn=a₁×(1-r^n)/(1-r)(当r≠1)等比数列的性质:1.等比数列的前n项和与项数成正比,当n增大时,前n项和也随之增大。
2.等比数列的前n项和与公比成正比,当公比绝对值小于1时,累加和趋近于一个有限值;当公比绝对值大于1时,累加和无限增长。
等差数列和等比数列在数学中的应用广泛,由于其规律性和计算简便性,被广泛应用于数学、物理、经济等领域。
举例:1.等差数列:2,5,8,11,14...其中公差为3,第n项的通项公式为aₙ=2+(n-1)×3第6项的值为a₆=2+(6-1)×3=2+15=17前6项的和为S₆=(6/2)×(2+17)=3×19=572.等比数列:3,6,12,24,48...其中公比为2,第n项的通项公式为aₙ=3×2^(n-1)第6项的值为a₆=3×2^(6-1)=3×2^5=3×32=96。
等差数列和等比数列的公式总结嘿,伙计们!今天我们来聊聊等差数列和等比数列的公式总结,让你在数学的世界里游刃有余,不再感到困惑。
我们来说说等差数列。
等差数列,顾名思义,就是每个数字之间的差都是相等的。
这就好像你的朋友们每次聚会都在同一时间,只是距离你家的距离有所不同。
我们可以用一个简单的例子来说明这个概念。
假设你有五个朋友,他们分别住在1公里、2公里、3公里、4公里和5公里的地方。
你可以告诉别人,你的朋友们都住在离你家相等的距离上,只不过每个人离你家的距离不同而已。
这就是等差数列的概念。
现在我们来看看等比数列。
等比数列是指每个数字之间的比值都是相等的。
这就好像你的朋友们每次聚会都在同一个地方,只是参加的人越来越多,人与人之间的比例越来越悬殊。
我们还是用上面的例子来说明这个概念。
这次,你有一个朋友过生日,他邀请了10个人来参加他的派对。
这10个人分别住在1公里、2公里、4公里、8公里、16公里、32公里、64公里、128公里和256公里的地方。
你可以告诉别人,你的朋友和他的10个朋友都住在离你家相等的距离上,只不过每个人离你家的距离是前一个人的两倍而已。
这就是等比数列的概念。
那么,我们如何求解等差数列和等比数列的通项公式呢?这里我们用一个简单的例子来说明。
假设你有一个等差数列,首项是a1,公差是d,项数是n。
那么通项公式就是:an = a1 + (n 1) * d。
这个公式告诉我们,第n项的值等于首项加上(项数减一)乘以公差。
同样地,对于等比数列,首项是a1,公比是q,项数是n。
那么通项公式就是:an =a1 * q^(n 1)。
这个公式告诉我们,第n项的值等于首项乘以公比的(项数减一)次方。
我们在计算的时候还需要注意一些特殊情况。
例如,当公差或公比为0时,我们需要分情况讨论;当首项为0时,我们需要特别注意通项公式的计算结果是否为0;当项数为正整数且大于0时,我们的通项公式才能正确计算出每一项的值。
等差数列、等比数列知识点梳理等差数列和等比数列知识点梳理第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一*n,2个定值,则称这个数列为等差数列,记:(d为公差)(,) nN,a,a,dnn,1 d2、等差数列通项公式: ,为首项,为公差 aaand,,,(1)1n1推导过程:叠加法推广公式: aanmd,,,()nma,anmd, 变形推广: n,m3、等差中项a,bbbA,(1)如果,,成等差数列,那么叫做与的等差中项(即:aaAA22A,a,b 或(2)等差中项:,,a数列是等差数列,2a,a,a(n,2),2a,a,a nnn-1n,1n,1nn,24、等差数列的前n项和公式:naa(),nn(1),1nS,,,nad 1n22d122,,,nadn(),,AnBn 122mnpq,,,a,a,a,a前N相和的推导:当时,则有,特别地,当mnp,,2mnpq aaa,,2aaaaaa,,,,,,,,,时,则有。
(注:,)当然扩充到3项、mnp12132nnn,,4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。
5、等差数列的判定方法,(1) 定义法:若或(常数) 是等差数列( n,N,,aa,a,da,a,d,nn,1n,1nn(2)等差中项:数列是等差数列 ,,an,2a,a,a(n,2),2a,a,an,1nn,2nn-1n,1(3)数列是等差数列(其中是常数)。
,,aa,kn,bk,b,nn2(4)数列是等差数列,(其中A、B是常数)。
,,aSAnBn,,,nn6、等差数列的证明方法定义法或者等差中项发是等差数列( ,,a,n7、等差数列相关技巧:d(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、ann1da及S,其中a、称作为基本元素。
只要已知这5个元素中的任意3个,便nn1可求出其余2个,即知3求2。
等比数列等差数列知识点归纳总结等比数列和等差数列是数学中常见且重要的概念之一。
在解决各种数学问题和应用中,它们都有着广泛的应用。
本文将对等比数列和等差数列的知识点进行归纳总结,以帮助读者更好地理解和掌握这两个数列的特点和应用。
一、等差数列等差数列是一种特殊的数列,其中每一项与前一项之差保持恒定。
具体来说,对于一个等差数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ + (n-1)d其中,a₁表示首项,d表示公差,n表示项数。
等差数列的常用术语包括首项、公差、通项公式和项数等。
1. 首项(a₁):等差数列的第一项称为首项。
2. 公差(d):等差数列中相邻两项的差称为公差。
公差可以是正数、负数或零。
3. 通项公式:等差数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等差数列包含的项的个数称为项数。
等差数列的主要特点是任意两项之差相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、平均数问题、等差数列的图像和几何问题等。
二、等比数列等比数列是一种特殊的数列,其中每一项与前一项之比保持恒定。
具体来说,对于一个等比数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ * r^(n-1)其中,a₁表示首项,r表示公比,n表示项数。
等比数列的常用术语包括首项、公比、通项公式和项数等。
1. 首项(a₁):等比数列的第一项称为首项。
2. 公比(r):等比数列中相邻两项的比称为公比。
公比可以是正数、负数或零,但不能为1。
3. 通项公式:等比数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等比数列包含的项的个数称为项数。
等比数列的主要特点是任意两项之比相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、计算几何问题和金融领域的应用等。
等差、等比数列定义
1.概念与公式:
①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;
2°.通项公式:;)()1(1d k n a d n a a k n -+=-+=
3°.前n 项和公式:公式:.2
)1(2)(11d n n na a a n S n n -+=+= ②等比数列:1°.定义若数列q a a a n
n n =+1}{满足
(常数),则}{n a 称等比数列; 2°.通项公式:;11k n k n n q a q a a --== 3°.前n 项和公式:),1(1)1(111≠--=--=q q
q a q q a a S n n n 当q=1时.1na S n = 2.简单性质:
①首尾项性质:设数列,,,,,:}{321n n a a a a a
1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a
2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a
②中项及性质:
1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2
b a A += 2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±=
③设p 、q 、r 、s 为正整数,且,s r q p +=+
1°. 若}{n a 是等差数列,则;s r q p a a a a +=+
2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅
④顺次n 项和性质:
1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n n k k k
k a a a 12131
2,,则组成公差为n 2d 的等差数列; 2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=n k n n k n
n k k k k a a a 121312,,则
组成公差为q n
的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)
1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于____..
3.已知数列}{n a 满足)(133
,0*11N n a a a a n n n ∈+-==+,则20a =___________.
2.设数列{}n a 的前n 项和为n S ,*1(31)()2
n n a S n N -=∈ ,且454a =,则1a =______. 3.已知数列{}n a 的前n 项和(51)2
n n n S +=-,则其通项n a =______________. 4.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++= __ .
5.已知等差数列{}n a 中,247,15a a ==,则前10项的和10S = .
6.数列{}n a 对任意*N n ∈都满足42
2++⋅=n n n a a a ,且0,4,273>==n a a a ,则=11a . 7.在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为____________.
8.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为4
1的等差数列,则|m -n |等于_______. 9.已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为_____________.
10.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是_______.
11.已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n
, …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为____________.
12.各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = .
13.已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则
18621751a a a a a a ++++= . 14.已知数列{}n a 满足n n a S 4
11+
=,则n a = . 15.已知等比数列{a n }中,
(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .
(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= .
(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .
16.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 __ .
17.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有 项.
18.设数列{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 .
19.在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 ____.
20.成等差数列的四个数的和为26,第二数与第三数之积为40,这四个数为___________.
21.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329
,且公比q ∈(0,1).数列{a n }的通项公式为___________. 22.等差数列{}n a 中,01>a ,且13853a a =,则}{n S 中最大项为 .
23.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则13
5135b b a a ++的值为___________. 24.已知等差数列{}n a 的公差与等比数列{}n b 的公比相等,且都等于d )1,0(≠>d d ,11b a = ,333b a =,555b a =,
求n n b a ,.
25.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.
(1)求公差d 的取值范围;
(2)指出S 1、S 2、…、S 12中哪一个值最大,并说明理由.
26.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=
n n 2+S n (n =1,2,3…). 求证:数列{
n
S n }是等比数列.
27.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.
28.已知{}n a 为等比数列,324202,3
a a a =+=
,求{}n a 的通项式.
29.三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.
30.(数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.
(1)求c 的值;(2)求{}n a 的通项公式.
31. 已知实数列是}{n a 等比数列,其中5547,14,,1a a a +=且成等差数列.
(Ⅰ)求数列}{n a 的通项公式;
(Ⅱ)数列}{n a 的前n 项和记为,n S 证明: ,n S <128,3,2,1(=n …).。