新人教版高中数学1.3算法案例2秦九韶算法教案必修三
- 格式:doc
- 大小:88.00 KB
- 文档页数:2
1.3算法案例(二)__秦九韶算法一、内容及其解析本节的教学内容是算法案例中的秦九韶算法,它是求一元多项式的值的一种方法.在初中,学生已经学习了多项式的有关知识,那里是把多项式看作代数式.因此在本段内容的教学之前,应当先向学生说明,这里是函数的观点考察多项式,因此,求自变量取某个实数时的函数值问题,即求多项式的值就是一个常规问题.二、教学目标及其解析目标定位知识与技能:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质.过程与方法:模仿秦九韶计算方法,体会古人计算构思的巧妙.了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用.情感态度与价值观目标:通过对秦九韶算法的学习,了解中国古代数学对世界数学发展的贡献,充分认识到我国文化历史的悠久.目标解析1 秦九韶算法是我国南宋数学家秦九韶在他的代表作《数书九章》中提出的一种用于计算一元n 次多项式的值的方法.三、问题诊断分析在本节主要存在的问题是学生不能对秦九韶算法的先进性及其程序设计的理解,所以教师要强调当多项式的次数增大时,此种方法的先进性就体现出来了,所以教师要找到规律,让学生体会此种解法的先进性.四、教学支持条件分析的一般模式在本节课的教学中准备使用多媒体辅助教学.五、教学过程设计问题一 什么事了解秦九韶算法?小问题1 怎样求多项式1)(2345+++++=x x x x x x f 当x=5时的值呢?(设计意图:通过具体的例子引入秦九韶算法.)结论:第一种一共用了10次乘法运算,5次加法运算.而第二种一共用了5次乘法运算,5次加法运算.小问题2 用秦九韶算法求n 次多项式0111...)(a x a x a x a x f n n n n ++++=--当0x x =(0x 是任意实数)时的值,需要多少次乘法运算,多少次加法运算?小问题 3 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++的求值问题?要求多项式的值,我们可以把它改写成:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++.首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+.例题1 (课本第38页例2)(设计意图:从实例到一般,先总结实例进而引申到一般) 变式巩固 用秦九韶算法求多项式1432)(2367+-+-=x x x x x f 当x=2时的函数值.小问题4 你是怎么理解秦九韶算法的?结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值.课堂小结(提问方式)秦九韶算法计算多项式的值及程序设计上述的整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩. 这是一个反复执行的步骤,因此可用循环结构来实现.【程序框图】:六 目标检测1、利用秦九韶算法求多项式1153723+-+x x x 在23=x 的值时,在运算中下列哪个值用不到( )A 、164B 、3767C 、86652D 、851692、利用秦九韶算法求多项式1352.75.38123)(23456-++-++=x x x x x x x f 在2=x 的值,写出详细步骤.七 配餐作业A 组②秦九韶算法计算多项式f(x)=12+35x-8x 2+79x 3+6x 4+5x 5+3x 6,当x=-4时的值时,υ3的值为( )A .-845B .220C .-57D .34③用秦九韶算法,求当x=2时,f(x)=x 5-5x 4+x 3-1的函数值.B 组1.秦九韶算法与直接计算相比较,下列说法错误的是( )A 、秦九韶算法与直接计算相比较,大大减少了乘法的次数,使计算量减少,并且逻辑结构简单.B 、秦九韶算法减少了做乘法的次数,在计算机上也就加快了计算的速度.C 、秦九韶算法减少了做乘法的次数,在计算机上也就降低了计算的速度.D 、秦九韶算法避免对自变量x 单独做幂的计算,而是与系数一起逐次增长幂次,从而可提高计算的精度.2.用秦九韶算法和直接算法求当0x x =时()654323126016024019264f x x x x x x x =-+-+-+的值,做的乘法次数分别为( )A.6,20B.7,20C.7,21D.6,21C 组求15.033.016.041.083.0)(2345+++++=x x x x x x f 当x=5时的值.八、教学反思1、学生还是不会分析运算次数的问题,应该给学生详细讲解.2、学生在多项式 11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++按照秦九韶算法写成标准形式是容易出错,且速度很慢,应教会学生快速的写法及检验方法.3、应多给学生介绍一些有关秦九韶算法的背景知识,这样更能吸引学生的注意力和学习兴趣,另外介绍历史名人的大致成就,扩大学生的文化视野.。
四川省古蔺县中学高中数学必修三:1.3《算法案例---秦九韶算法》学案学习目标:(1)在学习中国古代数学中的算法案例的同时,进一步体会算法的特点。
(2)体会中国古代数学对世界数学发展的贡献。
学习重点和难点:(1)重点:理解秦九韶算法的思想。
(2)难点:用循环结构表示算法的步骤。
学习过程;一、新课引入在数学的发展史上,从公元前2、3世纪公元14世纪,中国的数学虽有过高潮,也有过低落,但一直走在世界的前列,是世界数学的中心。
中国古代数学对世界数学发展有着不可磨灭的贡献。
秦九韶算法就是中国古代数学的一枝奇葩。
今天这节课我们领略秦九韶算法的魅力。
二、自主探究+教师作关键性的引导(1)设计求多项式763452)(2345+-+--=x x x x x x f 当x=5时的值的算法,并写出程序。
(2)有没有更高效的算法?能否探求更好的算法,来解决任意多项式的求解问题?T 引导学生把多项式变形为:7)6)3)4)52((((763452)(2345+-+--=--+--=x x x x x x x x x x x f 并提问:从内到外,如果把每一个括号都看成一个常数,那么变形后的式子中有哪些“一次式”?x 的系数依次是什么?(3)若将x 的值代入变形后的式子中,那么求值的计算过程是怎样的?最后得系数2677即为所求的值。
三、合作探究+教师作关键性的引导(4)让学生描述上述计算过程。
(5)用秦九韶算法求多项式的值,与多项式组成有直接关系吗?用秦九韶算法计算上述多项式的值,需要多少次乘法运算和多少次加法运算?(6)秦九韶算法适用于一般的多项式0111)(a x a x a x a x f n n n n ++⋅⋅⋅++=--的求值问题吗?(7)T 引导S 思考:把n 次多项式的求值问题转化成求n 个一次多项式的值的问题,即求:132321211a x v v a x v v a x v v a x a v n n n n n n +=⋅⋅⋅+=+=+=---- 的值的过程,共做了多少次乘法运算,多少次加法运算?(8)怎样用程序框图表示秦九韶算法?观察秦九韶算法的数学模型,计算k v 时要用到1-k v 的值,若令n a v =0,我们可以得到下面的递推公式:),2,1(10n k a x v v a v k n k kn ⋅⋅⋅=⎩⎨⎧+==-- 这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现。
第一章算法初步1.3算法案例1.3算法案例(第2课时)——秦九韶算法学习目标1.学习秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质.2.模仿秦九韶计算方法,体会古人计算构思的巧妙.3.通过对秦九韶算法的学习,充分认识到我国文化历史的悠久.合作学习一、设计问题,创设情境我们已经学了多项式的计算,下面我们计算一下多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值,并统计所做的计算的种类及计算次数.根据我们的计算统计可以得出我们共需要次乘法运算,次加法运算.我们把多项式变形为f(x)=((((x+1)x+1)x+1)x+1)x+1,再统计一下计算当x=5时的值时需要的计算次数,可以得出仅需次乘法和次加法运算即可得出结果.显然少了次乘法运算.这种算法就叫秦九韶算法.二、信息交流,揭示规律秦九韶计算多项式的方法【例1】已知一个5次多项式为f(x)=4x5+2x4+3.5x3-2.6x2+1.7x-0.8,用秦九韶算法求这个多项式当x=5时的值.思考:例1计算时需要多少次乘法计算?多少次加法计算?三、运用规律,解决问题利用秦九韶算法求f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.四、变式训练,深化提高【例2】设计利用秦九韶算法计算多项式f(x)=a n x n+a n-1x n-1+a n-2x n-2+…+a1x+a0的值的程序框图.练习:依据例2的程序框图编写程序.五、反思小结,观点提炼1.本节课我们学习了哪些知识内容?2.你认为秦九韶算法的原理是什么?3.秦九韶算法的程序设计用到了什么逻辑结构?布置作业课本P48习题1.3A组第2题.参考答案一、设计问题,创设情境10,5,4,5,6.二、信息交流,揭示规律f(x)=a n x n+a n-1x n-1+a n-2x n-2+…+a1x+a0=(a n x n-1+a n-1x n-2+a n-2x n-3+…+a1)x+a0=((a n x n-2+a n-1x n-3+…+a2)x+a1)x+a0…=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=a n x+a n-1,然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2,v3=v2x+a n-3,…v n=v n-1x+a0,这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.上述方法称为秦九韶算法. 【例1】解:根据秦九韶算法,把f(x)改写为f(x)=((((4x+2)x+3.5)x-2.6)x+1.7)x-0.8.按照从内到外的顺序,依次计算一次多项式当x=5时的值:v0=4;v1=4×5+2=22;v2=22×5+3.5=113.5;v3=113.5×5-2.6=564.9;v4=564.9×5+1.7=2 826.2;v5=2 826.2×5-0.8=14 130.2.所以,当x=5时,多项式的值等于14 130.2.思考:需要5次乘法,5次加法.三、运用规律,解决问题解:f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,所以有v0=7;v1=7×3+6=27;v2=27×3+5=86;v3=86×3+4=262;v4=262×3+3=789;v5=789×3+2=2 369;v6=2 369×3+1=7 108;v7=7 108×3=21 324.故当x=3时,多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x的值为21 324.四、变式训练,深化提高【例2】解:程序框图如下:INPUT“n=”;nINPUT“an=”;aINPUT“x=”;xv=ai=n-1WHILE i>=0PRINT“i=”;i INPUT“ai=”;av=v x+ai=i-1WENDPRINT vEND五、反思小结,观点提炼略。
1.3算法案例秦九韶算法(1)教学目标(a )知识与技能了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
(b )过程与方法模仿秦九韶计算方法,体会古人计算构思的巧妙。
能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。
(c )情态与价值通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。
通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
(2)教学重难点重点:秦九韶算法的特点难点:秦九韶算法的先进性理解(3)学法与教学用具学法:探究秦九韶算法对比一般计算方法中计算次数的改变,体会科学的计算。
教学用具:电脑,计算器,图形计算器(4)教学设想(一)创设情景,揭示课题我们已经学过了多项式的计算,下面我们计算一下多项式1)(2345+++++=x x x x x x f 当5=x 时的值,并统计所做的计算的种类及计算次数。
根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。
我们把多项式变形为:1)))1(1(1()(2+++++=x x x x x x f 再统计一下计算当5=x 时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。
显然少了6次乘法运算。
这种算法就叫秦九韶算法。
(二)研探新知1.秦九韶计算多项式的方法1210123120132211012211)))((())(()()(a a x a x a x a a x a x a x a x a a x a x a x a x a a x a x a x a x a x f n n n n n n n n n n n n n n n n n n n +++++==+++++=+++++=+++++=--------------例1 已知一个5次多项式为8.07.16.25.325)(2345-+-++=x x x x x x f 用秦九韶算法求这个多项式当5=x 时的值。