2019-2020年八年级数学第一学期期末复习卷2和答案【惠州好老师】
- 格式:doc
- 大小:452.28 KB
- 文档页数:10
2019-2020学年八年级上期末考试数学试卷一.选择题(共6小题,满分12分,每小题2分)1.(2分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10D.﹣a102.(2分)下列航空公司的标志中,是轴对称图形的是()A.B.C.D.3.(2分)无论a取何值时,下列分式一定有意义的是()A.B.C.D.4.(2分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(2分)下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣66.(2分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二.填空题(共8小题,满分24分,每小题3分)7.(3分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.8.(3分)因式分解:4a3b3﹣ab=.9.(3分)请用代数式表示:一个长方形的长为a,宽是长的,则这个长方形的周长是.10.(3分)如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=度.11.(3分)如果x2﹣mx+81是一个完全平方式,那么m的值为.12.(3分)如果分式的值为9,把式中的x,y同时扩大为原来的3倍,则分式的值是.13.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB 于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC 于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为。
2019-2020学年八年级数学第一学期期末考试试卷一、选择题(每小题3分,共30分)1、下列四个手机APP 图标中,是轴对称图形的是( )A 、B 、C 、D 、2、下列图形中具有稳定性的是( )A 、正方形B 、长方形C 、等腰三角形D 、平行四边形 3、下列长度的三根木棒能组成三角形的是( )A 、1 ,2 ,4B 、2 ,2 ,4C 、2 ,3 ,4D 、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为( )A 、152×105米B 、1.52×10﹣5米C 、﹣1.52×105米D 、1.52×10﹣4米 5、下列运算正确的是( )A 、(a +1)2=a 2+1B 、a 8÷a 2=a 4C 、3a ·(-a )2=﹣3a 3D 、x 3·x 4=x 7 6、如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A 、AB =2BD B 、AD ⊥BC C 、AD 平分∠BAC D 、∠B =∠C第6题 第8题7、如果(x +m )与(x -4)的乘积中不含x 的一次项,则m 的值为( )A 、4B 、﹣4C 、0D 、18、如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,且∠B =∠E =90°,判定△ABC ≌△DEF 的依据是( )A 、SASB 、ASAC 、AASD 、HL 9、分式2mn m +n中的m 、n 的值同时扩大到原来的5倍,则此分式的值( )A 、不变B 、是原来的15 C 、是原来的5倍 D 、是原来的10倍 10、如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A 、90°-12α B 、12α C 、90°+12α D 、360°-α二、填空题(每小题4分,共24分)11、若分式xx+2有意义,则x的取值范围为。
人教版2019-2020学年八年级(上)期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.102.(3分)点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.(3分)下列运算正确的是()A.a2+a2=a4B.(﹣2a3)2=4a6C.(a﹣2)(a+1)=a2+a﹣2D.(a﹣b)2=a2﹣b24.(3分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.5.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对6.(3分)一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4B.6C.8D.107.(3分)下列各式从左到右的变形正确的是()A.=B.C.D.8.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x9.(3分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3D.2﹣(x+2)=3(x﹣1)10.(3分)已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n11.(3分)已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°12.(3分)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x人,则所列方程为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)当x时,分式有意义.14.(3分)三角形的三边长分别为5,8,2x+1,则x的取值范围是.15.(3分)化简()的结果是.16.(3分)如果x2+mx+4是一个完全平方式,那么m的值是.17.(3分)如图,已知∠AOB=30°,点P在边OA上,OD=DP=14,点E,F在边OB上,PE=PF.若EF=6,则OF的长为.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E.设点P、Q运动的时间是t秒(t>0).若点P从A点出发沿AC以每秒3个单位的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回到点A停止运动;点Q从点C出发沿CB以每秒1个单位的速度向点B匀速运动,到达点B后停止运动,当t=时,△APD和△QBE全等.三.解答题(共8小题,满分66分)19.(6分)化简:(1);(2).20.(6分)如图,若在象棋盘上建立直角坐标系,使“帥”位于点(﹣2,﹣3),“馬”位于点(1,﹣3),(1)画出所建立的平面直角坐标系;(2)分别写出“兵”和“炮”两点位于你所建立的平面直角坐标系的坐标.21.(8分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.22.(8分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).(1)若点M、N关于x轴对称,试求a,b的值;(2)若点M、N关于y轴对称,试求(b+2a)2019.23.(8分)如图,已知:点B、F、C、E在一条直线上,∠B=∠E,BF=CE,AC∥DF.求证:△ABC≌△DEF.24.(8分)如图,在Rt△ABC中,∠ACB=Rt∠,∠B=30°,AE是∠BAC的角平分线,CD是AB上的高,请从图中找出一个等边三角形,并说明理由.25.(10分)新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?26.(12分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.2.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.3.【解答】解:A.a2+a2=2a2,错误;C.(a﹣2)(a+1)=a2+a﹣2a﹣2=a2﹣a﹣2,错误D.(a﹣b)2=a2﹣2ab+b2,错误故选:B.4.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.5.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.6.【解答】解:多边形的边数为:360÷45=8.故选:C.7.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选:C.8.【解答】解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.9.【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选:D.10.【解答】解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.11.【解答】解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.12.【解答】解:设原来参加游览的同学共x人,由题意得﹣=3.故选:D.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:因为4x+5≠0,所以x≠﹣.故答案为≠.14.【解答】解:根据三角形的三边关系可得:8﹣5<2x+1<5+8,解得:1<x<6.故答案为:1<x<6.15.【解答】解:()==﹣,故答案为:﹣.16.【解答】解:∵x2+mx+4是一个完全平方式,∴m=±4,故答案为:±417.【解答】解:作PM⊥OB于M,如图所示:∵OD=DP=14,∴∠DPO=∠AOB=30°,∴∠PDM=∠FPD+∠AOB=60°,∵PM⊥OB,∴∠DPM=30°,∴DM=PD=7,又∵PE=PF,∴EM=FM=EF=3,∴DF=DM﹣FM=7﹣3=4,∴OF=DF+OD=4+14=18;故答案为:18.18.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵PD⊥AB,∴∠A+∠APD=90°,∴∠APD=∠B,∴当AP=BQ时,△APD和△QBE全等,当点P从A点出发沿AC向点C运动时,3t=6﹣t,解得,t=1.5(秒),当点P沿CA返回时,8﹣3(t﹣)=6﹣t,解得,t=5(秒),故答案为:1.5秒或5秒.三.解答题(共8小题,满分66分)19.【解答】解:(1)原式==.(2)原式====.20.【解答】解:(1)∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣2,﹣3).“馬”位于点(1,﹣3),可得出原点的位置,即可建立直角坐标系;(2)“兵”和“炮”两点位于你所建立的平面直角坐标系的坐标是:兵(﹣4,0);炮(﹣1,﹣1).21.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.22.【解答】解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得,∴(b+2a)2019=1.23.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).24.【解答】解:结论:△CEF为等边三角形,理由:在Rt△ACB中,∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵AE平分∠CAB,∴∠CAE=∠CAB=30°,∴∠AEC=90°﹣∠CAE=60°,∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣∠B=60°∴∠CEF=∠ECF=∠CFE=60°,∴△CEF是等边三角形.25.【解答】解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:.160000=176000﹣8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000﹣150)×58+58×0.8×150﹣80000﹣176000=90260(元).答:在这两笔生意中,商场共盈利90260元.26.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)证明:延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.。
2019-2020学年八年级上学期末考试数学试题一、选择题(本大题共14小题,共42.0分)1.下面设计的原理不是利用三角形稳定性的是()A. 三角形的房架B. 自行车的三角形车架C. 斜钉一根木条的长方形窗框D. 由四边形组成的伸缩门2.视力表中的字母“E”有各种不同的摆放形式,下面每种组合中的两个字母“E”不能关于某条直线成轴对称的是()A. B. C. D.3.某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A. B. C. D.4.若分式有意义,则x的取值范围是()A. B. C. D.5.已知a m=6,a n=3,则a2m-n的值为()A. 12B. 6C. 4D. 26.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A. 3B. 4C. 3或5D. 3或4或57.下列说法:①满足a+b>c的a、b、c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角,其中错误的有()A. 0个B. 1个C. 2个D. 3个8.下列计算正确的是()A. B. C. D.9.一定能确定△ABC≌△DEF的条件是()A. ,,B. ,,C. ,,D. ,,10.由图中所表示的已知角的度数,可知∠α的度数为()A.B.C.D.11.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.B.C.D.12.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A. B. C. D.13.甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x 个,那么所列方程是()A. B. C. D.14.如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有()A. 0个B. 2个C. 4个D.8个二、填空题(本大题共4小题,共16.0分)15.分解因式:9-12t+4t2=______.16.一个正多边形的每个内角都是150°,则它是正______边形.17.已知,则代数式的值为______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.三、计算题(本大题共1小题,共10.0分)19.(1)解分式方程:(2)计算:x(x+2y)-(x+y)2四、解答题(本大题共5小题,共52.0分)20.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.21.如图,在一块边长为a米的正方形空地的四角均留出一块边长为<米的正方形修建花坛,其余的地方种植草坪.利用因式分解计算当a=13.6,b=1.8时,草坪的面积.22.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ.(1)证明:CP=CQ;(2)求∠PCQ的度数;(3)当点D是AB中点时,请直接写出△PDQ是何种三角形.23.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线L成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线L上找一点P(在答题纸上图中标出),使PB+PC的长最小.24.在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.(1)如图1,若点D在线段BC上,证明:∠BAD=∠EDC;(2)如图1,若点D在线段BC上,证明:①AD=DE;②BC=DC+2CF(提示:构造全等三角形);(3)如图2,若点D在线段BC的延长线上,直接写出BC、DC、CF三条线段之间的数量关系.答案和解析1.【答案】D【解析】解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.利用三角形的稳定性进行解答.此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.2.【答案】C【解析】解:如图所示,A,B,D选项中,两个字母“E”关于直线l成轴对称,而C选项中,两个字母“E”不能沿着某条直线翻折互相重合,故选:C.把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴.本题主要考查了轴对称的概念,轴对称包含两层含义:①有两个图形,且这两个图形能够完全重合,即形状大小完全相同;②对重合的方式有限制,只能是把它们沿一条直线对折后能够重合.3.【答案】D【解析】解:0.000 000001=1×10-9,故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】A【解析】解:由题意得,x-2≠0,解得x≠2.故选:A.根据分式有意义,分母不等于0列不等式求解即可.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.【答案】A【解析】解:∵a m=6,a n=3,∴a2m-n=(a m)2÷a n=36÷3=12.故选:A.直接利用同底数幂的乘除运算法则计算得出答案.此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】C【解析】解:∵△ABC≌△DEF,AB=2,AC=4,∴DE=AB=2,DF=AC=4,∵△DEF的周长为奇数,∴EF的长为奇数,C、当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故本选项正确;B、当EF=4时,不符合EF为奇数,故本选项错误;A、当EF=3时,由选项C知,此选项错误;D、当EF=3或4或5时,其中4不符合EF为奇数,故本选项错误;故选:C.根据全等求出DE=AB=2,DF=AC=4,根据△DEF的周长为奇数求出EF的长为奇数,再根据EF长为奇数和三角形三边关系定理逐个判断即可.本题考查了全等三角形的性质和三角形三边关系定理的应用,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.7.【答案】D【解析】解:(1)满足a+b>c且a<c,b<c的a、b、c三条线段一定能组成三角形,故错误;(2)只有锐角三角形的三条高交于三角形内一点,故错误;(3)三角形的外角大于与它不相邻的任何一个内角,故错误;故选:D.利用三角形的三边关系、三角形的三线的定义及三角形的外角的性质,分别判断后即可确定正确的选项.本题考查了三角形的三边关系、三角形的三线的定义及三角形的外角的性质,属于基础定义或基本定理.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.【答案】B【解析】解:(-2a)2=4a2,A选项错误;(-3)-2==,B选项正确;(a5)2=a10,C选项错误;b3•b4=b7,D选项错误;故选:B.根据积的乘方与幂的乘方、负整数指数幂、同底数幂的乘法法则计算,判断即可.本题考查的是积的乘方与幂的乘方、负整数指数幂、同底数幂的乘法,掌握它们的运算法则是解题的关键.9.【答案】A【解析】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.【答案】D【解析】解:∠α=360°-120°-120°-70°=50°.故选:D.根据四边形的外角和为360°直接求解.本题考查了多边形的内角与外角,牢记多边形的外角和定理是解答本题的关键.11.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等.12.【答案】B【解析】解:∵D是线段AB垂直平分线上的点,∴AD=BD,∴△DAB是等腰三角形,∠B=∠DAB,∵∠CAD:∠DAB=1:2,∴设∠DAC=x,则∠B=∠DAB=2x,∴x+2x+2x=90°,∴x=18°,即∠B=36°,故选:B.先根据线段垂直平分线及等腰三角形的性质得出∠B=∠DAB,再根据∠DAE 与∠DAC的度数比为2:1可设出∠B的度数,再根据直角三角形的性质列出方程,求出∠B的度数即可.本题考查的是线段垂直平分线的性质,直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.13.【答案】A【解析】解:设甲每小时做x个零件,则乙每小时做(x+6)个零件,依题意,得:=.故选:A.设甲每小时做x个零件,则乙每小时做(x+6)个零件,根据工作时间=工作总量÷工作效率结合甲做60个所用时间与乙做90个所用时间相等,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.14.【答案】C【解析】解:如图所示:因为△ABC为等腰三角形,且△ABC的面积为1,所以满足条件的格点C有4个,故选:C.根据等腰三角形的性质和三角形的面积解答即可.本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键15.【答案】(3-2t)2【解析】解:原式=(3-2t)2.故答案为:(3-2t)2原式利用完全平方公式分解即可得到结果.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.16.【答案】十二【解析】解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:十二.首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.17.【答案】7【解析】解:∵x+=3,∴(x+)2=9,即x2+2+=9,∴x2+=9-2=7.根据完全平方公式把已知条件两边平方,然后整理即可求解.本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是解题的关键.18.【答案】60°或120°【解析】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.【答案】解:(1)去分母得:2-x-1=2x-5,解得:x=2,经检验x=2是分式方程的解;(2)原式=x2+2xy-x2-2xy-y2=-y2.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果.此题考查了解分式方程,以及整式的乘除,熟练掌握运算法则是解本题的关键.20.【答案】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【解析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.21.【答案】解:由图可得,草坪的面积是:a2-4b2,当a=13.6,b=1.8时,a2-4b2=(a+2b)(a-2b)=(13.6+2×1.8)×(13.6-2×1.8)=17.2×10=172,即草坪的面积是172.【解析】根据题意和图形可以表示出草坪的面积,然后根据因式分解法和a、b的值可以求得草坪的面积本题考查因式分解的应用,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴CP=CD=CQ;(2)∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴∠ACP=∠ACD,∠BCQ=∠BCD,∴∠ACP+∠BCQ=∠ACD+∠BCD=∠ACB=120°,∴∠PCQ=360°-(∠ACP+BCQ+∠ACB)=360°-(120°+120°)=120°;(3)△PDQ是等边三角形.理由:∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形【解析】(1)由折叠直接得到结论;(2)由折叠的性质求出∠ACP+∠BCQ=120°,再用周角的意义求出∠PCQ=120°;(3)先判断出△APD是等边三角形,△BDQ是等边三角形,再求出∠PDQ=60°,即可.此题是几何变换综合题,主要考查了折叠的性质,等腰三角形的性质,等边三角形的判定,锐角三角函数,极值的确定,三角形的面积公式,解本题的关键是判断出∠PCQ=120°是个定值.23.【答案】解:(1)如图所示:(2)△ABC的面积=;(3)如图所示,点P即为所求.【解析】(1)直接利用对称点的性质得出对应点位置进而得出答案;(2)利用割补法即可得出答案;(3)利用轴对称求最短路线的方法得出答案.本题主要考查作图-轴对称变换,解题的关键是根据与轴对称的定义作出变换后的对应点及割补法求三角形的面积.24.【答案】(1)证明:∵△ABC是等边三角形,∴∠B=60°,∵∠ADC=∠ADE+∠EDC=∠B+∠BAD,∠ADE=60°,∴∠BAD=∠EDC;(2)证明:①过D作DG∥AC交AB于G,如图1所示:∵△ABC是等边三角形,AB=BC,∴∠B=∠ACB=60°,∴∠BDG=∠ACB=60°,∴∠BGD=60°,∴△BDG是等边三角形,∴BG=BD,∠AGD=∠B+∠BGD=60°+60°=120°,∴AG=DC,∵CE是∠ACB外角的平分线,∴∠DCE=120°=∠AGD,由(1)知∠GAD=∠EDC,在△AGD和△DCE中,,∴△AGD≌△DCE(SAS),∴AD=DE;②∵△AGD≌△DCE,∴GD=CE,∴BD=CE,∵EF⊥BC,CE是∠ACB外角的平分线,∴∠ECF=60°,∠CEF=30°,∴CE=2CF,∴BC=CE+DC=DC+2CF;(3)解:BC=2CF-DC;理由如下:过D作DG∥AC交AB延长线于G,如图2所示:∵DG∥AC,△ABC是等边三角形,∴∠BGD=∠BDG=∠B=60°,∴△GBD是等边三角形,∴GB-AB=DB-BC,即AG=DC,∵∠ACB=60,CE是∠ACB的外角平分线,∴∠DCE=∠ACE=×(180°-∠ACB)=60°,∴∠AGD=∠DCE=60°,∵∠GAD=∠B+∠ADC=60°+∠ADC,∠CDE=∠ADC+∠ADE=∠ADC+60°,∴∠GAD=∠CDE,在△AGD和△DCE中,,∴△AGD≌△DCE(ASA),∴GD=CE,∴BD=CE,∵CE=2CF,∴BC=BD-DC=CE-DC=2CF-DC.【解析】(1)由等边三角形的性质得出∠B=60°,再由三角形的外角性质结合已知条件,即可得出结论;(2)过D作DG∥AC交AB延长线于G,证得△AGD≌△DCE,得出:①AD=DE;进一步利用GD=CE,BD=CE得出②BC=DC+2CF;(3)过D作DG∥AC交AB延长线于G,由平行线和等边三角形的性质得出∠BGD=∠BDG=∠B=60°,证出△GBD是等边三角形,证出AG=CD,再证出∠GAD=∠CDE,证明△AGD≌△DCE,得出GD=CE,进而得出结论.此题是三角形综合题目,考查了等边三角形的性质、角平分线的意义、全等三角形的判定与性质以及平行线的性质等知识,通过作辅助线,构造三角形全等是解决问题的关键.。
2019-2020学年人教部编版八年级上册数学期末复习试卷含答案[时间:90分钟满分:100分]一、选择题(每小题3分,共30分)1.将多项式x-x3分解因式正确的是()A.x(x2-1) B.x(1-x2)C.x(x+1)(x-1) D.x(1+x)(1-x)2.化简aa-1+11-a的结果为()A.-1 B.1 C.a+1a-1D.a+11-a3.如图1,直线m是五边形ABCDE的对称轴,其中∠A=120°,∠ABC=110°,那么∠BCD的度数为()图1A.50°B.60°C.70°D.80°4.如图2,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于点D,交AB于点E.当∠B=30°时,下列关系不成立的是()图2A.AC=AE=BE B.AD=BDC.AC=BD D.CD=DE5.已知(m+n)2=25,(m-n)2=9,则mn与m2+n2的值分别为()A .4,17B .3,16C .5,34D .6,186.如图3,在△ABC 中,点D ,E 分别在边AB ,AC 上,BE 与CD 相交于点O ,如果已知∠ABC =∠ACB ,那么还不能判定△ABE ≌△ACD ,补充下列条件中的一个后,仍无法判定△ABE ≌△ACD 的是( ) A .AD =AE B .BE =CD C .OB =OCD .∠BDC =∠CEB图3 图47.如图4,在△ABC 中,AB =AC ,点D ,E 分别在AC ,AB 上,且BC =BD =DE =EA ,则∠A 的度数为( ) A .36° B.180°7 C .30° D .24°8.如图5所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( )图5A .6个B .7个C .8个D .9个9.如图6,在△ABC 中,∠A =60°,BE ⊥AC ,垂足为E ,CF ⊥AB ,垂足为F ,BE ,CF 交于点M .如果CM =4,FM =5,则BE 等于( )图6A .9B .12C .13D .1410.如图7,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连接PQ 交AC 边于D ,则DE 的长为( )图7A.13B.12C.23D .不能确定二、填空题(每小题3分,共18分)11.若点P (3,4)与Q (m ,n )关于x 轴对称,则m +n =____. 12.计算:⎝ ⎛⎭⎪⎫12-2-(-2)0+(-0.2) 2 020×(-5) 2 020=____.13.如图8,已知AC =FE ,BC =DE ,点A ,D ,B ,F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是_______________.图814.如图9,在△ABC 中,AB =AC ,AD 是角平分线,BE =CF ,则下列说法:图9①DA 平分∠EDF ; ②△EBD ≌△FCD ; ③BD =CD ; ④AD ⊥BC .正确的有___________.(填序号)15.已知关于x 的分式方程x +k x +1-kx -1=1的解为负数,则k 的取值范围是_________ _.16.如图10,Rt △ABC 中,∠ACB =90°,∠BAC 与∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,下列结论: ①GA =GP ;②∠DCP =45°;③BP 垂直平分CE ;④GF +FC =GA . 其中正确的判断有_________.(填序号)图10三、解答题(共52分)17.(4分)先化简,再求值:[(x +2y )2-(3x +y )(3x -y )-5y 2]÷2x ,其中x =-12,y =1.18.(6分)有一道题“先化简,再求值:⎝ ⎛⎭⎪⎫x -2x +2+4x x 2-4÷1x 2-4,其中,x =-3”小玲做题时把“x =-3”错抄成了“x =3”,但她的计算结果也是正确的,请你解释这是怎么回事?19.(6分)工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?20.(8分)如图11,在△ABC 和△DEF 中,B ,E ,C ,F 在同一直线上,下列有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①AB =DE ;②AC =DF ;③∠B =∠DEF ;④BE =CF .图1121.已知AD是△ABC的角平分线(∠ACB>∠B),P是射线AD上一点,过点P 作EF⊥AD,交射线AB于点E,交直线BC的延长线于点M.图12(1)如图12①,∠ACB=90°,求证:∠M=∠BAD;(2)如图②,∠ACB为钝角,P在AD延长线上,连接BP,CP,BP平分∠EBC,CP平分∠BCF,∠BPD=50°,∠CPD=21°,求∠M的度数.22.(10分)如图13①,△ABE是等腰三角形,AB=AE,∠BAE=45°.过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD,DE并延长AD交BE于点P.(1)求证:AD=BE;(2)试说明AD平分∠BAE;(3)如图②,将△DCE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化?请说明理由.图1323.(10分)如图14,△ABC中,AB=BC=AC=12,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的速度为每秒2个单位长度.当点M第一次到达B点时,M,N同时停止运动.图14(1)点M,N运动几秒后,M,N两点重合?(2)点M,N运动几秒后,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案选择题:1-5 DBDCA6-10 BBCBB第3题详解【解析】∵直线m是五边形ABCDE的对称轴,∴∠E=∠A=120°,∠D=∠B=110°,∴∠BCD=540°-120°×2-110°×2=80°.第5题详解【解析】∵(m+n)2=25,(m-n)2=9,∴m2+2mn+n2=25,①m2-2mn+n2=9,②①-②,得4mn=16,∴mn=4,∴m2+n2=25-2mn=25-2×4=17.第7题详解【解析】根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可得到∠C与∠A之间的关系,从而再利用三角形内角和定理求解即可.第8题详解【解析】分情况讨论.①当AB为等腰三角形ABC底边时,符合条件的C点有4个;②当AB为等腰三角形ABC其中的一条腰时,符合条件的C点有4个.∴使△ABC为等腰三角形的C点有8个.第9题详解【解析】 ∵BE ⊥AC ,CF ⊥AB ,∠A =60°, ∴∠ABE =∠ACF =30°,∵在Rt △EMC 中,CM =4,∴ME =2, ∵在Rt △FBM 中,FM =5,∴BM =2FM =10,∴BE =BM +ME =12. 第10题详解【解析】 如答图,过P 作PF ∥BC 交AC 于F . ∵PF ∥BC ,△ABC 是等边三角形, ∴∠PFD =∠QCD ,△APF 是等边三角形,第10题答图∴AP =PF =AF , ∵PE ⊥AC ,∴AE =EF , ∵AP =PF ,AP =CQ ,∴PF =CQ . ∵在△PFD 和△QCD 中,⎩⎨⎧∠PFD =∠QCD ,∠PDF =∠QDC ,PF =QC ,∴△PFD ≌△QCD (AAS),∴FD =CD , ∵AE =EF ,∴EF +FD =AE +CD , ∴DE =AE +CD =12AC ,∵AC =1,∴DE =12.11、-112、4【解析】原式=4-1+[(-0.2)×(-5)]2 020=4-1+1=4.13、∠C=∠E或AB=FD或AD=FB_14、_①②③④【解析】∵在△ABC中,AB=AC,AD是角平分线,∴BD=CD,AD⊥BC,∠B=∠C.故③④正确;∵BE=CF,∴△EBD≌△FCD(SAS),∴∠BDE=∠CDF,∴∠ADE=∠ADF,即DA平分∠EDF.故①②正确.15、k>12且k≠1_【解析】去分母,得(x+k)(x-1)-k(x+1)=x2-1,去括号,得x2-x+kx-k-kx-k=x2-1,移项,合并同类项,得x=1-2k,根据题意,得1-2k<0,且1-2k≠±1,且k≠1.解得k>1216、①②③④【解析】∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP,故①正确;∵∠BAC 与∠CBE 的平分线相交于点P ,∴点P 也在∠BCD 的平分线上,∴∠DCP =∠BCP ,∵∠ACB =90°,∴∠DCP =45°,故②正确;∵BE =BC ,BP 平分∠CBE ,∴BP 垂直平分CE ,故③正确;∵∠DCP =∠BCP ,又∵PG ∥AD ,∴∠FPC =∠DCP =∠BCP ,∴FP =FC ,∴GF +FC =GF +PF =GP =GA ,故④正确.综上所述,正确的判断有①②③④.17、解: 原式=(x 2+4xy +4y 2-9x 2+y 2-5y 2)÷2x=(-8x 2+4xy )÷2x =-4x +2y ,当x =-12,y =1时,原式=2+2=4.18、解: ⎝ ⎛⎭⎪⎪⎫x -2x +2+4x x 2-4÷1x 2-4 =(x -2)2+4x (x +2)(x -2)·(x +2)(x -2)=x 2+4, 当x =3时,原式=32+4=13,当x =-3时,原式=(-3)2+4=13,∴小玲做题时把“x =-3”错抄成了“x =3”,但她的计算结果也是正确的. 19、解: 设原计划平均每天生产x 个零件,则现在每天生产(x +25)个零件.由题意,得600x +25=450x ,解得x =75, 经检验,当x =75时,x (x +25)≠0,所以x=75是原方程的解.答:原计划平均每天生产75个零件.20、解:将①②④作为题设,③作为结论,可写出一个正确的命题.已知:在△ABC和△DEF中,B,E,C,F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠B=∠DEF.证明:在△ABC和△DEF中,∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF(SSS),∴∠B=∠DEF.将①③④作为题设,②作为结论,也可写出一个正确的命题,证明过程略.21、解:(1)证明:∵EF⊥AD,∴∠APF=∠MCF=90°,∵∠AFP=∠MFC,∴∠M=∠PAF,∵∠BAD=∠CAD,∴∠M=∠BAD;(2)∵∠BPD=50°,∠CPD=21°,∴∠BPC=71°,∴∠PBC+∠PCB=109°.∵∠BCF=2∠PCB,∠EBC=2∠PBC,∴∠EBC+∠BCF=218°,∴∠ABC+∠ACB=360°-218°=142°,∴∠BAC=180°-142°=38°,∴∠DCP=∠FCP=∠CPD+∠CAD=40°,∴∠MDP=∠DPC+∠DCP=61°.∵EF⊥AP,∴∠MPD=90°,∴∠M =90°-61=29°.22、解: (1)证明:∵BC ⊥AE ,∠BAE =45°,∴∠CBA =∠CAB ,∴BC =CA ,在△BCE 和△ACD 中,⎩⎪⎨⎪⎧BC =AC ,∠BCE =∠ACD ,CE =CD ,∴△BCE ≌△ACD ,∴AD =BE ;(2)∵△BCE ≌△ACD ,∴∠EBC =∠DAC ,∵∠BDP =∠ADC ,∴∠BPD =∠DCA =90°,∵AB =AE ,∴AD 平分∠BAE ;(3)AD ⊥BE 不发生变化.理由:旋转后同(1)可证△BCE ≌△ACD ,∴∠EBC =∠DAC ,∵∠BFP =∠AFC ,∴∠BPF =∠ACF =90°,∴AD ⊥BE .23、解: (1)设运动x s 后,点M ,N 重合,则x +12=2x ,解得x =12.∴运动12 s 后,点M ,N 重合;(2)设点M ,N 运动t s 后,可得到等边三角形AMN ,如答图①,AM =t ,AN =AB -BN =12-2t ,则t =12-2t ,解得t =4,∴点M ,N 运动4 s 后,可得到等边三角形AMN ;①②第23题答图(3)当点M,N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12 s时M,N两点重合,恰好在C处,如答图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,⎩⎪⎨⎪⎧AC=AB,∠C=∠B,∠AMC=∠ANB,∴△ACM≌△ABN,∴CM=BN,设当点M,N在BC边上运动时,M,N运动y s时,△AMN是等腰三角形,∴CM=y-12,NB=36-2y,由CM=NB,得y-12=36-2y,解得y=16,符合题意,故假设成立.∴当点M,N在BC边上运动时,能得到以MN为底边的等腰三角形,此时M,N运动的时间为16 s.。
2023-2024学年广东省惠州市八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个字中可以看作是轴对称图形的是( )A. 幸B. 福C. 惠D. 州2.下列长度的三条线段,能组成三角形的是( )A. 1,3,4B. 2,2,7C. 4,5,7D. 3,3,63.下列汽车标志中,不是由多个全等图形组成的是( )A. B. C. D.4.计算a3⋅a2的结果是( )A. aB. a6C. 6aD. a55.在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为( )A. (−2,−1)B. (2,−1)C. (−2,1)D. (2,1)6.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )A. B. C. D.7.下列式子中是分式的是( )A. 1πB. x3C. 25D. 1x−18.如图,小虎用10块高度都是3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离DE的长度为( )A. 30cmB. 27cmC. 24cmD. 21cm9.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于( )A. 70°B. 80°C. 90°D. 100°10.小王准备在红旗街道旁建一个送奶站,向居民区A,B提供牛奶,要使A,B两小区到送奶站的距离之和最小,则送奶站C的位置应该在( )A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。
11.分解因式:a2−ab=______.12.若代数式5有意义,则实数x的取值范围是______ .x−213.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=______°.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,大于1MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,若CD=3,2AB=10,则△ABD的面积是________.15.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为.三、解答题:本题共9小题,共75分。
一、选择题(本题有8小题,每小题3分,共24分)1.(3分)点A(﹣3,2)关于原点对称的点是B,点B关于y轴对称的点是C,则点C 的坐标是()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(﹣3,2)2.(3分)如图所示,图中不是轴对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x2 4.(3分)如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°5.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)6.(3分)如果分式的值为零,那么x为()A.﹣1B.1C.±1D.1或27.(3分)等腰三角形的一个角是48°,它的一个底角的度数是()A.48°B.48°或42°C.42°或66°D.48°或66°8.(3分)如图,△ABC中,AB=AC=10,DE是AB的中垂线,△BCD的周长为16,则BC的长为()A.5B.6C.8D.10二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)计算(﹣3x3)2=.10.(3分),,的最简公分母为.11.(3分)分解因式:a3b﹣ab=.12.(3分)已知三角形三个内角的度数比是2:3:4,则这个三角形中最大角的度数是.13.(3分)已知x+y=6,xy=﹣2,则=.14.(3分)已知正n边形的一个内角为135°,则边数n的值是.15.(3分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB 边的距离是.16.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠C=.三、解答题(共52分)17.(5分)化简:x(4x+3y)﹣(2x+y)(2x﹣y)18.(6分)解方程:.19.(7分)先化简代数式(1﹣)÷,再从﹣2,1,0三个数中选一个适当的数作为a的值代入求值.20.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点,(1)作出△ABC关于y轴对称的△A1B1C1;(2)写出A1、B1、C1三点的坐标,并求△A1B1C1的面积.21.(6分)已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.求证:(1)AE=CF;(2)AF∥CE.22.(7分)甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B 骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.23.(7分)如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.24.(8分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题(本题有8小题,每小题3分,共24分)1.(3分)点A(﹣3,2)关于原点对称的点是B,点B关于y轴对称的点是C,则点C 的坐标是()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(﹣3,2)【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:点A(﹣3,2)关于原点对称的点B的坐标是(3,﹣2),则点B关于y轴对称的点是C的坐标是(﹣3,﹣2).故选:C.【点评】对知识点的记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数;关于纵轴的对称点,纵坐标不变,横坐标变成相反数.2.(3分)如图所示,图中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、有四条对称轴,是轴对称图形,故本选项错误;B、有三条对称轴,是轴对称图形,故本选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项正确;D、有二条对称轴,是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x2【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减,分别进行计算,即可选出答案.【解答】解:A、x2与x3不是同类项,不能合并,故此选项错误;B、x2•x3=x2+3=x5,故此选项错误;C、(x2)3=x6,故此选项错误;D、x5÷x3=x2,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.4.(3分)如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.【解答】解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选:B.【点评】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.5.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A错误;B2x2+2x=2x2(1+)中不是整式,故B错误;C(x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;Dx4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.故选:D.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意B不是整式的积,A、C不是积的形式.6.(3分)如果分式的值为零,那么x为()A.﹣1B.1C.±1D.1或2【分析】根据分式值为零条件:分式值为零的条件是分子等于零且分母不等于零可得:|x|﹣1=0,且x2﹣3x+2≠0,再解即可.【解答】解:根据分式值为零的条件:|x|﹣1=0,且x2﹣3x+2≠0,解得:x=﹣1,故选:A.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.(3分)等腰三角形的一个角是48°,它的一个底角的度数是()A.48°B.48°或42°C.42°或66°D.48°或66°【分析】分底角为48°和顶角48°,根据等腰三角形的性质和三角形内角和定理求解即可.【解答】解:当底角为48°时,则底角为48°;当顶角为48°时,则底角==66°;综上可知三角形的一个底角为48°或66°,故选:D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.8.(3分)如图,△ABC中,AB=AC=10,DE是AB的中垂线,△BCD的周长为16,则BC的长为()A.5B.6C.8D.10【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后推出△BDC的周长=AC+BC,代入数据进行计算即可得解.【解答】解:∵DE是AB的中垂线,∴AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△BDC的周长为1,AC=10,∴10+BC=16,解得BC=6.故选:B.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,是基础题,熟记性质是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)计算(﹣3x3)2=9x6.【分析】利用积的乘方,以及幂的乘法法则即可求解.【解答】解:原式=9x6.故答案是:9x6.【点评】本题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键.10.(3分),,的最简公分母为6x2y2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:,,的分母分别是2xy、3x2、6xy2,故最简公分母为6x2y2.故答案为6x2y2.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.11.(3分)分解因式:a3b﹣ab=ab(a+1)(a﹣1).【分析】先提取公因式ab,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a ﹣b)(a+b).【解答】解:原式=ab(a2﹣1)=ab(a+1)(a﹣1).故答案为:ab(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(3分)已知三角形三个内角的度数比是2:3:4,则这个三角形中最大角的度数是80°.【分析】设三角形三角的度数是2x°,3x°,4x°,得出方程2x+3x+4x=180,求出方程的解即可.【解答】解:∵设三角形三角的度数是2x°,3x°,4x°,则2x+3x+4x=180,∴x=20,∴最大角4x°=80°,故答案为:80°.【点评】本题考查了三角形内角和定理的应用,解此题的关键是能根据题意得出方程.13.(3分)已知x+y=6,xy=﹣2,则=10.【分析】把分式整理成含x+y、xy的形式,再整体代入计算.【解答】解:=,∵x+y=6,xy=﹣2,∴原式==.【点评】此题的关键是根据题意把分式整理成含x+y、xy的形式.14.(3分)已知正n边形的一个内角为135°,则边数n的值是8.【分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故答案为:8.【点评】本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.15.(3分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB 边的距离是2.【分析】过D作DE⊥AB于E,得出DE的长度是D到AB边的距离,根据角平分线性质求出CD=ED,代入求出即可.【解答】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=2(角平分线性质),故答案为:2.【点评】本题考查了对角平分线性质的应用,关键是作辅助线DE,本题比较典型,难度适中.16.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠C=37°.【分析】根据三角形外角的性质以及等腰三角形的性质.由AB=AD=DC可得∠DAC=∠C,易求解.【解答】解:∵∠BAD=32°,AB=AD=DC,∴∠ABD=∠ADB=74°,又∵AD=DC,∴∠C=∠CAD=∠ADB=37°.故答案为:37°.【点评】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.此类题目考查学生分析各角之间关系的能力,运用所学的三角形知识点求解.三、解答题(共52分)17.(5分)化简:x(4x+3y)﹣(2x+y)(2x﹣y)【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并即可得到结果.【解答】解:原式=4x2+3xy﹣4x2+y2=3xy+y2.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:.【分析】设=y,则原方程化为y=+2y,解方程求得y的值,再代入=y 求值即可.结果需检验.【解答】解:设=y,则原方程化为y=+2y,解之得,y=﹣.当y=﹣时,有=﹣,解得x=﹣.经检验x=﹣是原方程的根.∴原方程的根是x=﹣.【点评】用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.(7分)先化简代数式(1﹣)÷,再从﹣2,1,0三个数中选一个适当的数作为a的值代入求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=•=,当a=0时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点,(1)作出△ABC关于y轴对称的△A1B1C1;(2)写出A1、B1、C1三点的坐标,并求△A1B1C1的面积.【分析】(1)分别画出A、B、C的对应点A1、B1、C1即可;(2)根据图象写出坐标即可,利用分割法求三角形面积即可.【解答】解:(1)△A1B1C1如图所示.(2)由图象可知A1(0,4),B1(2,2),C1(1,1).△A1B1C1的面积=6﹣×3×1﹣×1×1﹣×2×2=2.【点评】本题考查了利用轴对称变换作图,解题的关键是作出对称点,学会利用分割法求三角形的面积.21.(6分)已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.求证:(1)AE=CF;(2)AF∥CE.【分析】(1)由BF=DE可得BE=DF,从而可根据SAS判定△ABE≌△CDF,由全等三角形的对应边相等即可得到结论.(2)由全等三角形的对应角相等可得∠AEB=∠CFD,根据内错角相等两直线平行可得AE∥CF,再根据有一组边平行且相等的四边形是平行四边形,从而不难证得结论.【解答】证明:(1)∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF;(2)∵△ABE≌△CDF,∴∠AEB=∠CFD,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.【点评】此题主要考查学生对平行四边形的判定及性质和全等三角形的判定及性质的综合运用能力.22.(7分)甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B 骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.【分析】本题中有两个相等关系:“B的速度是A的速度的3倍”以及“B比A少用3小时20分钟”;根据等量关系可列方程.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.【点评】利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.23.(7分)如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.【分析】由∠B=75°,∠C=45°,利用三角形内角和求出∠BAC.又AE平分∠BAC,求出∠BAE、∠CAE.再利用AD是BC上的高在△ABD中求出∠BAD,此时就可以求出∠DAE.最后利用三角形的外角和内角的关系可以求出∠AEC.【解答】解:方法1:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=×60°=30°,∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°﹣∠B=90°﹣75°=15°,∴∠DAE=∠BAE﹣∠BAD=30°﹣15°=15°,在△AEC中,∠AEC=180°﹣∠C﹣∠CAE=180°﹣45°﹣30°=105°;方法2:同方法1,得出∠BAC=60°.∵AE平分∠BAC,∴∠EAC=∠BAC=×60°=30°.∵AD是BC上的高,∴∠C+∠CAD=90°,∴∠CAD=90°﹣45°=45°,∴∠DAE=∠CAD﹣∠CAE=45°﹣30°=15°.∵∠AEC+∠C+∠EAC=180°,∴∠AEC+30°+45°=180°,∴∠AEC=105°.答:∠DAE=15°,∠AEC=105°.【点评】此题主要考查了三角形的内角,外角以及和它们相关的一些结论,图形比较复杂,对于学生的视图能力要求比较高.24.(8分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。
2019-2020学年广东省惠州市八年级上期末考试数学试卷
一、选择题(本题共10小题,每小题3分,共30分)
1.(3分)下列倡导节约的图案中,是轴对称图形的是()
A .
B .
C .
D .
2.(3分)在下列长度的三条线段中,不能组成三角形的是()
A.2cm,3cm,4cm B.3cm,6cm,6cm
C.2cm,2cm,6cm D.5cm,6cm,7cm
3.(3分)在平面直角坐标系中,点P(﹣3,1)关于y轴对称点在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列计算正确的是()
A.(a+b)2=a2+b2B.﹣(2a2)2=4a2
C.a2•a3=a6D.a6÷a3=a3
5.(3分)计算a3•(﹣a)的结果是()
A.a2 B.﹣a2C.a4D.﹣a4
6.(3分)分式方程=的解是()
A.x=﹣1B.x=0C.x=1D.无解
7.(3分)如果x2+2ax+9是一个完全平方式,则a的值是()
A.3B.﹣3C.3或﹣3D.9或﹣9
8.(3分)如图,足球图片中的一块黑色皮块的内角和是()
A.180°B.360°C.540°D.720°
9.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条
第1 页共18 页。
广东省惠州市八年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.(3分)一个三角形的两边长分别是4和6,其第三边边长可能是()A.1 B.3 C.10 D.113.(3分)五边形的外角和等于()A.180°B.360°C.540°D.720°4.(3分)如图,在△ABC中,AB=AC,AD⊥BC,则下列结论错误的是()A.BD=AD B.BD=CD C.∠B=∠C D.∠BAD=∠CAD5.(3分)如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD6.(3分)下列运算正确的是()A.﹣3a2•2a3=﹣6a6 B.4a6÷(﹣2a3)=﹣2a2C.(﹣a3)2=a6D.(ab3)2=ab67.(3分)分式﹣可变形为()A.﹣B.C.﹣D.8.(3分)下面的多项式在实数范围内能因式分解的是()A.2+y2 B.2﹣y C.2++1 D.2﹣2+19.(3分)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),由图中面积关系可以直接得到的公式是()A.a2﹣b2=(a+b)(a﹣b)B.a2+b2=(a+b)2﹣2abC.(a﹣b)2=a2+b2﹣2ab D.(a+b)2﹣(a﹣b)2=4ab10.(3分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24二、填空题(本大题共6个小题,每小题4分,共24分)11.(4分)(﹣2a2)(a﹣3)= .12.(4分)因式分解:ab2﹣a= .13.(4分)点P与Q(﹣2,3)关于轴对称,则线段PQ的长为.14.(4分)若一个多边形的内角和为360°,则这个多边形的边数为.15.(4分)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .16.(4分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.三、解答题(一)(本题共3个小题,每小题6分,共18分)17.(6分)化简,求值:(﹣1)﹣(+2)2,其中=﹣2.18.(6分)(1)解方程: +=4.(2)解不等式组:.19.(6分)如图,OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,点M在OA上,点N在OB上,且PM=PN.求证:EM=FN.三、解答题(二)(本大题共3个小题,每小题7分,共21分)20.(7分)先化简,再求值:(﹣a﹣2)÷.其中a与2,3构成△ABC的三边,且a为整数.21.(7分)如图,△ABC中,∠C=90°,∠A=30°,DE垂直平分线段AC.(1)求证:△BCE是等边三角形.(2)若BC=3,求DE的长.22.(7分)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?三、解答题(三)(本大题共3个小题,每小题9分,共27分)23.(9分)(1)填空:(a﹣b)(a+b)=(a﹣b)(a2+ab+b2)=(a﹣b)(a3+a2b+ab2+b3)=(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:39﹣38+37﹣…+33﹣32+3.24.(9分)如图,△ABC是等腰直角三角形,∠C=90°,点D是AB的中点,点E,F分别在BC,AC上,且AF=CE.(1)填空:∠A的度数是.(2)探究DE与DF的关系,并给出证明.25.(9分)如图,△ABC是边长为6cm的等边三角形.若点P以1cm/s的速度从点B出发,同时点Q以1.5cm/s的速度从点C出发,都按逆时针方向沿△ABC的边运动,运动时间为6秒.(1)试求出运动到多少秒时,直线PQ与△ABC的某边平行;(2)当运动到t1秒时,P、Q对应的点为P1、Q1,当运动到t2秒时(t1≠t2),P、Q对应的点为P2、Q2,试问:△P1CQ1与△P2CQ2能否全等?若能,求出t1、t2的值;若不能,请说明理由.广东省惠州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个【解答】解:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形是轴对称图形;第四个图形轴对称图形;共3个,故选:C.2.(3分)一个三角形的两边长分别是4和6,其第三边边长可能是()A.1 B.3 C.10 D.11【解答】解:设第三边长为,由题意得:6﹣4<<6+4,则2<<10.故选:B.3.(3分)五边形的外角和等于()A.180°B.360°C.540°D.720°【解答】解:五边形的外角和是360°.故选:B.4.(3分)如图,在△ABC中,AB=AC,AD⊥BC,则下列结论错误的是()A.BD=AD B.BD=CD C.∠B=∠C D.∠BAD=∠CAD【解答】解:∵AB=AC,AD⊥BC,∴BD=BC,∠B=∠C,∠BAD=∠CAD.无法确定BD=AD.故B、C、D正确,A错误.故选:A.5.(3分)如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD【解答】解:在△ABD与△ACD中,∵∠CAD=∠BAD,AD=AD,∴根据ASA只要证明∠ADC=∠ADB即可,∴可以添加∠BDE=∠CDE即可,故选:B.6.(3分)下列运算正确的是()A.﹣3a2•2a3=﹣6a6 B.4a6÷(﹣2a3)=﹣2a2C.(﹣a3)2=a6D.(ab3)2=ab6【解答】解:A、﹣3a2•2a3=﹣6a5,故A错误;B、4a6÷(﹣2a3)=﹣2a3,故B错误;C、(﹣a3)2=a6,故C正确;D、(ab3)2=a2b6,故B错误;故选:C.7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.【解答】解:﹣=﹣=,故选:D.8.(3分)下面的多项式在实数范围内能因式分解的是()A.2+y2 B.2﹣y C.2++1 D.2﹣2+1【解答】解;A、2+y2,无法因式分解,故A选项错误;B、2﹣y,无法因式分解,故B选项错误;C、2++1,无法因式分解,故C选项错误;D、2﹣2+1=(﹣1)2,故D选项正确.故选:D.9.(3分)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),由图中面积关系可以直接得到的公式是()A.a2﹣b2=(a+b)(a﹣b)B.a2+b2=(a+b)2﹣2abC.(a﹣b)2=a2+b2﹣2ab D.(a+b)2﹣(a﹣b)2=4ab【解答】解:阴影部分的面积=(a+b)(a﹣b)=a2﹣b2;因而可以验证的乘法公式是(a+b)(a﹣b)=a2﹣b2.故选:A.10.(3分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24【解答】解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.二、填空题(本大题共6个小题,每小题4分,共24分)11.(4分)(﹣2a2)(a﹣3)= ﹣2a3+6a2.【解答】解:(﹣2a2)(a﹣3)=﹣2a3+6a2.故答案为:﹣2a3+6a2.12.(4分)因式分解:ab2﹣a= a(b+1)(b﹣1).【解答】解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).13.(4分)点P与Q(﹣2,3)关于轴对称,则线段PQ的长为 6 .【解答】解:点P与Q(﹣2,3)关于轴对称则P(﹣2,﹣3),则线段PQ的长为6,故答案为:6.14.(4分)若一个多边形的内角和为360°,则这个多边形的边数为 4 .【解答】解:根据n边形的内角和公式,得(n﹣2)•180=360,解得n=4.故这个多边形的边数为4.故答案为:4.15.(4分)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3 .【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.16.(4分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70°.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.三、解答题(一)(本题共3个小题,每小题6分,共18分)17.(6分)化简,求值:(﹣1)﹣(+2)2,其中=﹣2.【解答】解:(﹣1)﹣(+2)2=2﹣﹣2﹣4﹣4=﹣5﹣4,当=﹣2时,原式=﹣5×(﹣2)﹣4=10﹣4=6.18.(6分)(1)解方程: +=4.(2)解不等式组:.【解答】解:(1)去分母得:﹣5=4(2﹣3),解得:=1,经检验=1是分式方程的解;(2),∵由①得,<2,由②得,≥﹣1,∴不等式组的解集是:﹣1≤<2.19.(6分)如图,OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,点M在OA上,点N在OB上,且PM=PN.求证:EM=FN.【解答】证明:∵点P在∠AOB的平分线上,PE丄0A于E,PF丄OB于F,∴PF=PE,在Rt△PEM和Rt△PEN中,∴Rt△PEM≌Rt△PEN(HL),∴EM=FN.三、解答题(二)(本大题共3个小题,每小题7分,共21分)20.(7分)先化简,再求值:(﹣a﹣2)÷.其中a与2,3构成△ABC的三边,且a为整数.【解答】解:原式=•=•=﹣a2+2a,∵a与2,3构成△ABC的三边,且a为整数,∴a为2、3、4,当a=2时,a﹣2=0,不行舍去;当a=4时,a﹣4=0,不行,舍去;当a=3时,原式=﹣3.21.(7分)如图,△ABC中,∠C=90°,∠A=30°,DE垂直平分线段AC.(1)求证:△BCE是等边三角形.(2)若BC=3,求DE的长.【解答】证明:(1)在△ABC中,∵∠B=180°﹣∠C﹣∠A=180°﹣90°﹣30°=60°,∵DE垂直平分AC,∴EC=EA,∴∠ECA=∠A=30°,∴∠BCE=60°,∴△BCE是等边三角形;(2)由(1)得,EC=BC=3,Rt△ECD中,∵∠ECD=30°,∴DE=EC=.22.(7分)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?【解答】解:设该车间原计划每天生产的零件为个,由题意得,﹣=5,解得=15,经检验,=15是原方程的解.答:该车间原计划每天生产的零件为15个.三、解答题(三)(本大题共3个小题,每小题9分,共27分)23.(9分)(1)填空:(a﹣b)(a+b)= a2﹣b2(a﹣b)(a2+ab+b2)= a3﹣b3(a﹣b)(a3+a2b+ab2+b3)= a4﹣b4(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= a n﹣b n(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:39﹣38+37﹣…+33﹣32+3.【解答】解:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=a n﹣b n;(3)原式===.故答案为:(1)a2﹣b2; a3﹣b3;a4﹣b4;(2)a n﹣b n24.(9分)如图,△ABC是等腰直角三角形,∠C=90°,点D是AB的中点,点E,F分别在BC,AC上,且AF=CE.(1)填空:∠A的度数是45°.(2)探究DE与DF的关系,并给出证明.【解答】解:(1)∵△ABC是等腰直角三角形,∠C=90°,∴∠A=45°,故答案为:45°;(2)DE=DF,DE⊥DF,证明:连接CD,∵△ABC是等腰直角三角形,∠C=90°,点D是AB的中点,∴CD=AD=BD,CD⊥AD,∴∠DCE=∠A=45°,∵AF=CE,∴△DCE≌△DAF(SAS),∴DE=DF,∠ADF=∠CDE,∴∠ADF+∠FDC=∠CDE+∠FDC,∵∠CDA=90°,∴∠EDF=90°,∴DE=DF,DE⊥DF.25.(9分)如图,△ABC是边长为6cm的等边三角形.若点P以1cm/s的速度从点B出发,同时点Q以1.5cm/s的速度从点C出发,都按逆时针方向沿△ABC的边运动,运动时间为6秒.(1)试求出运动到多少秒时,直线PQ与△ABC的某边平行;(2)当运动到t1秒时,P、Q对应的点为P1、Q1,当运动到t2秒时(t1≠t2),P、Q对应的点为P2、Q2,试问:△P1CQ1与△P2CQ2能否全等?若能,求出t1、t2的值;若不能,请说明理由.【解答】解:(1)①如图1中,PQ∥AB时,△PCQ是等边三角形,∴CP=CQ,∴6﹣t=1.5t,t=2.4(秒),②如图2中,PQ∥AC时,△BPQ是等边三角形,∴BQ=BP,∵AB=CB,∴PC=AQ,∴6﹣t=1.5t﹣6,∴t=4.8(秒).综上所述,当t=2.4或4.8秒时,直线PQ与△ABC的某边平行.(2)如图,若△P1CQ1与△P2CQ2全等,则CP1=CQ2,CQ1=CP2则有:,解得,不符合题意,∴△P1CQ1与△P2CQ2不全等;。
人教版八年级上期末数学复习试题B 卷一、选择题(本大题共10小题,每小题3分,共30分) 1.若13x -有意义,则x 的取值范围是( ) A .x >3 B .x <3 C . x ≠-3 D .x ≠32. 若分式3621x x -+的值为0,则x =( ) A .0 B .12C .2D .73. 下列等式中,从左到右的变形是因式分解的是( )A .29(3)(3)a a a -=+-B .222()x x x x x -=--C .22(1)x x x+=+D .2(2)2y y y y -=-4. 把分式11361124x x +-的分子与分母各项系数化为整数,得到的正确结果是() A.3243x x +-B. 4263x x +-C.2121x x +-D.4163x x +- 5. 在下列运算中,正确的是( )A. ()222x y x y -=-B. ()()2236a a a +-=-C. ()222244a b a ab b +=++D. ()()22222x y x y x y -+=-6. 如图,在△ABC 中,∠ABC =50°,∠BAC =20°,D 为线段AB交点,连结AD ,则∠CAD =( )A. 40°B. 30°C. 20°D. 10°7. )A. 2B.C.D.2 8. 下图是由若干个正方形和长方形组成的,其中能表示等式(a +b )2=a 2+2ab +b 2的是( )A. B. C. D.学校: 班级: 考号: 姓名: --------------------------------------装-------------------------------------订--------------------------------------线--------------------------------------------------------9. 学完分式运算后,老师出了一道题:化简23224x xx x +-++-. 小明的做法是:原式=22222(3)(2)2(3)(2)284444x x x x x x x x x x x +--+-----==----; 小亮的做法是:原式=(x +3)(x -2)+(2-x )=x 2+x -6+2-x =x 2-4; 小芳的做法是:原式=3231311.2(2)(2)222x x x x x x x x x x +-++--=-==++-+++对于这三名同学的做法,你的判断是 ( )A. 小明的做法正确B.小亮的做法正确C.小芳的做法正确D.三名同学的做法都不正确10. 如图,从一个大正方形中裁去面积为30cm 2和48cm 2的两个小正方形,则余下部分的面积为( ) A.78 cm 2B.2cm 2 C.2D.cm 2二、填空题(本大题共7小题,每小题4分,共28分)11是二次根式,则x 的取值范围是 . 12.化简:2+24a a =-______________. 13. 实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.000 001 56m ,数字0.000 001 56可用科学记数法表示为 .14. 请在“()”的位置处填入一个整式,使得多项式2x +( )能因式分解,你填入的整式为 .15. 若221x x +=,则2243x x ++的值是_______.16. 如果216x mx ++是完全平方式,则m 的值是________. 17.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,且DA =DB . 若CD =3,则BC =_______.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(1101(π3)2-⎛⎫+- ⎪⎝⎭;(2)2(2)2(32)()()x y x x y x y x y +-+++-.19. 化简求值:2221112a aa a a a---÷++,其中2a=. 20.解方程:22111xx x-=--.四、解答题(二)(本大题共3小题,每小题8分,共24分)21. 如图,在△ABC中, D是边AB上一点, E是边AC的中点, 作CF∥AB交DE的延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠B=∠ACB,CE=5,CF=7,求DB.22. 列分式方程解应用题用电脑程序控制小型赛车进行200m比赛,“畅想号”和“逐梦号”两赛车进入了最后的决赛. 比赛中,两车从起点同时出发,“畅想号”到达终点时,“逐梦号”离终点还差20m.从赛后数据得知两车的平均速度相差1m/s.求“畅想号”的平均速度.23. 老师在黑板上书写了一个代数式的正确计算结果,随后用手遮住了原代数式....的一部分,如下图:(1)求被手遮住部分的代数式,并将其化简;(2)原代数式的值能等于-1吗?请说明理由.(31)111x xx x x+ -÷=-+-FEAD五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 已知△ABC三条边的长度分别是24)-,记△ABC 的周长为ABC C ∆.(1)当2x =时,△ABC 的最长边的长度是________(请直接写出答案); (2)请求出ABC C ∆(用含x 的代数式表示,结果要求化简);(3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S = .其中三角形边长分别为a ,b ,c ,三角形的面积为S . 若x 为整数,当ABC C ∆取得最大值时,请用秦九韶公式求出△ABC 的面积.25. 如图1, E 是等边三角形ABC 的边AB 所在直线上一点,D 是边BC 所在直线上一点,且D 与C 不重合,若EC =ED .则称D 为点C 关于等边三角形ABC 的反称点,点E 称为反称中心.图1 图2 备用图1 在平面直角坐标系xOy 中,(1)已知等边三角形AOC 的顶点C 的坐标为(2,0),点A 在第一象限内,反称中心E 在直线AO 上,反称点D 在直线OC 上.①如图2,若E 为边AO 的中点,在图中作出点C 关于等边三角形AOC 的反称点D ,并直接写出点D 的坐标:________;②若AE =2,求点C 关于等边三角形AOC 的反称点D 的坐标;(2)若等边三角形ABC 的顶点为B (n ,0),C (n +1,0),反称中心E 在直线AB 上,反称点D 在直线BC 上,且2≤AE <3.请直接写出点C 关于等边三角形ABC 的反称点D 的横坐标t 的取值范围: (用含n 的代数式表示).参考答案一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案DCABCBABCD二、填空题(本题共28分,每小题4分)11. 3x ≥.12.12a -. 13. 61.5610-⨯ 14. 1- 15. 5 16. 8± 17. 9注:①第14题答案不唯一,只要符合题目要求的均可给满分;②第16题只填8和中一个的扣1分,若含有错误答案则得0分;三、解答题(本题共62分,第18-20题,每小题6分,第21-23题8分,第24-25题9分) 18.(1)解:原式=2321+……………………………………………………………2分=231.……………………………………………………………3分 (2)解:原式=222224464x xy y x xy x y ++--+-………………………………………2分=2243x y -+.……………………………………………………………3分 注:第19题每小题4分.19.解:原式=2221211a a a a a a -+-⋅+-……………………………………………………………1分()()()221111a a a a a a a +-=-⋅++-……………………………………………………………2分2211a a a +=-++ ……………………………………………………………3分1aa =-+.……………………………………………………………5分当2a =时,原式2.3=-……………………………………………………………6分20.解:方程两边乘(1)(1)x x +-,得(1)(1)(1)2x x x x +-+-=.……………………………………………………………3分 解得1x =.……………………………………………………………………………5分 检验:当时1x =,得(1)(1)0x x +-=.因此1x =不是原分式方程的解. 所以原分式方程无解.………………………………………………………………………6分21. (1)证明:∵E 是边AC 的中点, ∴AE=CE . 又∵CF ∥AB ,∴A ACF ∠=∠ ,ADF F ∠=∠. ………………2分 在△ADE 与△CFE 中,,,,ADF F A ACF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE . ……………………………………………………………………………4分(2)解:∵△ADE ≌△CFE ,CF =7, ∴CF=AD=7.………………………………………………………………………5分 又∵∠B =∠ACB , ∴AB=AC .……………………………………………………………………………6分 ∵E 是边AC 的中点,CE =5, ∴AC=2CE =10.∴AB =10.∴DB=AB -AD =10-7=3. ……………………………………………………………8分 22.解:设“畅想号”的平均速度为xm/s .………………………………………………………1分由题意,得200200201x x -=-. ……………………………………………………………4分 解得 10x =.……………………………………………………………………………6分 经检验,10x =是原方程的解,且符合题意. 答:“畅想号”的平均速度为10m/s .………………………………………………………8分 注:缺少检验或缺少答的扣1分.23. 解:(1)设被手遮住部分的代数式为A .则31111x x A x x x +⎛⎫-÷= ⎪-+-⎝⎭.……………………………………………………………2分31111x xA x x x +-=⋅--+,……………………………………………………………3分 3.1x A x -=-……………………………………………………………………………5分(2)不能……………………………………………………………………………6分 理由:若能使原代数式的值能等于,则1=11x x +--,即=0x , 但是,当=0x 时,原代数式中的除数01xx =+,原代数式无意义. 所以原代数式的值不能等于.……………………………………………………………8分24. 解:(1)3…………………………………………………………………………………2分 (2)由根式有意义可得10,40.x x +≥⎧⎨-≥⎩即14x -≤≤.5x -,24)=x -. 所以ABC C ∆24)-55x x -+=.…………………………………………………4分(3)由(2)可得5ABC C ∆=,且14x -≤≤.由于x 为整数,且要使ABC C ∆取得最大值,所以x 的值可以从大到小依次验证. 当4x =1,4,14<,不满足三角形三边关系.所以4x ≠.…………………………………………………………………………………6分 当3x =时,三条边的长度分别是2,2,3,满足三角形三边关系. 故此时ABC C ∆取得最大值为7,符合题意.…………………………………………………8分 不妨设a =2, b =2, c =3, 得S =. …………………………………………………………………………………10分注:第(2)问中不要求学生写出讨论x 取值范围的过程,结果正确并化简即可得满分.25. 解:(1)① 如图,xy123–1–212–1D EA OC或 xy123–1–212–1M D EA O C………………………2分 D (-1,0)…………………………………………………………………………………3分 ② ∵等边三角形AOC 的两个顶点为O (0,0),C (2,0), ∴OC =2. ∴AO =OC =2.由AE =2可知,点E 有两个可能的位置(如图3,图4).xyD(E )123–1–212–1AO Cxy123–1–21234–1E AOC (D )图3 图4(ⅰ) 如图3,点E 与坐标原点O 重合. ∵EC =ED ,EC =2, ∴ED =2.∵D 是边OC 所在直线上一点,且D 与C 不重合, ∴D 点坐标为(2,0) .…………………………………………………………………6分(ⅱ) 如图4,点E 在边OA 的延长线上,且AE =2. ∵AC =AE =2, ∴∠E =∠ACE.∵△AOC 为等边三角形, ∴∠OAC =∠ACO =60°. ∴∠E =∠ACE =30°. ∴∠OCE =90°. ∵EC =ED,∴点D 与点C 重合.这与题目条件中的D 与C 不重合矛盾,所以图4中的情况不符合要求,舍去. 综上所述:D (2,0).………………………………………………………………………8分 (2)32n t n -<≤-或+23n t n ≤<+.……………………………………………10分注:①作图只要留有痕迹,并能作出点D 的位置即可给1分;②第(2)问中,不写等号的扣1分,只写出32n t n -<≤-, 或只写出+23n t n ≤<+的扣1分. 注:本参考答案仅供阅卷参考,各题有其他正确解法的可参考评分细则酌情给分。