2019-2020学年四川省德阳市中江县八年级上册期末数学试卷有答案-推荐
- 格式:doc
- 大小:321.50 KB
- 文档页数:20
四川省德阳市中江县八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(3分)下列计算中,正确的是()A.(﹣3)﹣2=﹣B.4•2=8C.(a2)3•a3=a9 D.(a﹣2)0=12.(3分)下列图标中轴对称图形的个数是()A.1个B.2个 C.3个 D.4个3.(3分)如图,AC平分∠BAD,CM⊥AB于点M,CN⊥AN,且BM=DN,则∠ADC与∠ABC 的关系是()A.相等B.互补C.和为150°D.和为165°4.(3分)若42+(﹣1)+25是一个完全平方式,则常数的值为()A.11 B.21 C.﹣19 D.21或﹣195.(3分)若分式的值为0,则的值为()A.﹣1 B.0 C.1 D.±16.(3分)用一些不重叠的多边形把平面的一部分完全覆盖叫做平面镶嵌.则用一种多边形镶嵌时,下列多边形中不能进行平面镶嵌的是()A.三角形B.正方形C.正五边形D.正六边形7.(3分)如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.以上结论正确的有()个.A.1 B.2 C.3 D.48.(3分)一定能将三角形的面积分成相等的两部分的是三角形的()A.高线B.中线C.角平分线D.都不是9.(3分)若分式中的和y都扩大到原的3倍,那么分式的值()A.扩大到原的3倍B.不变C.缩小到原的D.缩小到原的10.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠AED=70°,则∠DCB=()A.70°B.165°C.155° D.145°11.(3分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.6412.(3分)已知关于的分式方程﹣1=的解是正数,则m的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠6二、填空题(本大题共8个小题,每小题3分,本大题满分24分)请把答案直接填在题中的横线上.13.(3分)将数0.000000015用科学记数法表示为 .14.(3分)分解因式:9m 3﹣m= .15.(3分)计算:(﹣8)2017×0.1252016+(π﹣3.14)0﹣()﹣1的结果为 . 16.(3分)在△ABC 中,若AB=5,AC=3.则中线AD 的长的取值范围是 . 17.(3分)等腰三角形一腰上的高线与另一腰夹角为50°,则该三角形的顶角为 . 18.(3分)如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为 .19.(3分)已知2+y 2=25,y=12,则+y 的值为 .20.(3分)如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数是 .三、解答题(共22分)21.(11分)(1)计算:(4﹣1)﹣(2﹣3)(2+3)+(﹣1)2;(2)已知实数a ,b 满足(a +b )2=1,(a ﹣b )2=25,求a 2+b 2+ab 的值.22.(11分)解答题(1)解方程: +=;(2)化简求值:(m +2+),其中m=﹣1.四、作图题(共9分)23.(9分)如图所示,(1)写出顶点C 的坐标;(2)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;(3)若点A2(a,b)与点A关于轴对称,求a﹣b的值.五、证明题(要写出必要的推理过程,共17分)24.(7分)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.25.(10分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.六、应用题(共12分)26.(12分)为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200 米的道路进行了改造,铺设草油路面.铺设400 米后,为了尽快完成道路改造,后每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?四川省德阳市中江县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(3分)下列计算中,正确的是()A.(﹣3)﹣2=﹣B.4•2=8C.(a2)3•a3=a9 D.(a﹣2)0=1【解答】解:A、(﹣3)﹣2=,故此选项错误;B、4•2=6,故此选项错误;C、(a2)3•a3=a9,正确;D、(a﹣2)0=1(a≠2),故此选项错误;故选:C.2.(3分)下列图标中轴对称图形的个数是()A.1个B.2个 C.3个 D.4个【解答】解:图①是轴对称图形,图②是轴对称图形;图③是轴对称图形;图④不是轴对称图形,轴对称图形共3个,故选:C.3.(3分)如图,AC平分∠BAD,CM⊥AB于点M,CN⊥AN,且BM=DN,则∠ADC与∠ABC 的关系是()A.相等B.互补C.和为150°D.和为165°【解答】解:∵AC平分∠BAD,CM⊥AB于点M,CN⊥AN,∴CM=CN,∠CND=∠BMC=90°,∵BM=DN,在△CND与△CMB中,∵,∴△CND≌△CMB,∴∠B=∠CDN,∵∠CDN+∠ADC=180°,∴∠ADC+∠ABC=180°.故选B.4.(3分)若42+(﹣1)+25是一个完全平方式,则常数的值为()A.11 B.21 C.﹣19 D.21或﹣19【解答】解:∵42+(﹣1)+25是一个完全平方式,∴﹣1=±20,解得:=21或﹣19,故选D5.(3分)若分式的值为0,则的值为()A.﹣1 B.0 C.1 D.±1【解答】解:∵分式的值为0,∴2﹣1=0,﹣1≠0,解得:=﹣1.故选:A.6.(3分)用一些不重叠的多边形把平面的一部分完全覆盖叫做平面镶嵌.则用一种多边形镶嵌时,下列多边形中不能进行平面镶嵌的是()A.三角形B.正方形C.正五边形D.正六边形【解答】解:A、三角形能进行平面镶嵌,因为三角形的内角和为180°.180°×2=360°;B、正方形能进行平面镶嵌,因为正方形的内角和为90°.90°×4=360°;C、正五边形不能进行平面镶嵌,因为正五边形的内角和为108°.108°的整数倍不等于360°;D、正六边形能进行平面镶嵌,因为正六边形的内角和为120°.120°×3=360°;故选C.7.(3分)如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.以上结论正确的有()个.A.1 B.2 C.3 D.4【解答】证明:∵BE⊥AC于E,CF⊥AB于F,∴∠AFC=∠AEB=90°,故在Rt△AEB中,∠B=90°﹣∠A,在Rt△AFC中∠C=90°﹣∠A,∴∠B=∠C,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),故①选项正确,由AE=AF,AC=AB,得BF=CE,在△BDF和△CDE中,,∴△BDF≌△CDE,选项②正确,∵△ABE≌△ACF,∴AE=AF,AC=AB,连接AD,在Rt△AFD和Rt△AED中,,∴Rt△AFD≌Rt△AED(HL),∴∠DAF=∠DAE,即点D在∠BAC的平分线上,选项③正确,而点F不一定是AB的中点,故④错误.故选C.8.(3分)一定能将三角形的面积分成相等的两部分的是三角形的()A.高线B.中线C.角平分线D.都不是【解答】解:三角形的中线将三角形分成面积相等的两部分,故选B.9.(3分)若分式中的和y都扩大到原的3倍,那么分式的值()A.扩大到原的3倍B.不变C.缩小到原的D.缩小到原的【解答】解:用3和3y代替式子中的和y得:=,则分式的值扩大为原的3倍.故选:A.10.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠AED=70°,则∠DCB=()A.70°B.165°C.155° D.145°【解答】解:∵AD=AE,∠AED=70°,∴∠ADE=70°,∵AB∥ED,∴∠BAD=70°,∵AB=AC=AD,∴∠ABC=∠ACB,∠ACD=∠ADC,∴∠DCB=∠ACB+∠ACD=(360°﹣70°)÷2=145°.故选:D.11.(3分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.12.(3分)已知关于的分式方程﹣1=的解是正数,则m的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠6【解答】解:方程两边同时乘以﹣1得,1﹣m﹣(﹣1)+2=0,解得=4﹣m.∵为正数,∴4﹣m>0,解得m<4.∵≠1,∴4﹣m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.二、填空题(本大题共8个小题,每小题3分,本大题满分24分)请把答案直接填在题中的横线上.13.(3分)将数0.000000015用科学记数法表示为 1.5×10﹣8.【解答】解:0.000000015=1.5×10﹣8.故答案为:1.5×10﹣8.14.(3分)分解因式:9m3﹣m=m(3m+1)(3m﹣1).【解答】解:原式=m(9m2﹣1)=m(3m+1)(3m﹣1)故答案为:m(3m+1)(3m﹣1)15.(3分)计算:(﹣8)2017×0.1252016+(π﹣3.14)0﹣()﹣1的结果为﹣9.【解答】解:(﹣8)2017×0.1252016+(π﹣3.14)0﹣()﹣1=(﹣8×0.125)2016×(﹣8)+1﹣2=﹣8﹣1=﹣9.故答案为:﹣9.16.(3分)在△ABC中,若AB=5,AC=3.则中线AD的长的取值范围是1<AD<4.【解答】解:延长AD至点E,使DE=AD,连接EC,∵BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD,∴CE=AB,∵AB=5,AC=3,CE=5,设AD=,则AE=2,∴2<2<8,∴1<<4,∴1<AD<4.故答案为:1<AD<4.17.(3分)等腰三角形一腰上的高线与另一腰夹角为50°,则该三角形的顶角为40°或140°.【解答】解:如图1,三角形是锐角三角时,∵∠ACD=50°,∴顶角∠A=90°﹣50°=40°;如图2,三角形是钝角时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故答案为:40°或140°.18.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为9.【解答】解:∵∠C=90°,∠B=30°,∴∠BAC=60°,∵DE是AB的垂直平分线,∴DB=DA,∴∠BAD=∠B=30°,∴∠CAD=30°,∴AD=2CD=6,∴DB=AD=6,∴BC=3+6=9,故答案为:919.(3分)已知2+y2=25,y=12,则+y的值为±7.【解答】解:∵(+y)2=2+y2+2y=25+2×12=49,∴+y=±7,故答案为:±720.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是120°.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故答案为:120°.三、解答题(共22分)21.(11分)(1)计算:(4﹣1)﹣(2﹣3)(2+3)+(﹣1)2;(2)已知实数a,b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.【解答】解:(1)原式=42﹣﹣(42﹣9)+(2﹣2+1)=42﹣﹣42+9+2﹣2+1=2﹣3+10;(2)∵(a+b)2=1,∴a2+2ab+b2=1①,∵(a﹣b)2=25,∴a2﹣2ab+b2=25②,由 ①+‚②得:a2+b2=13,由①•﹣②‚得:ab=﹣6,∴a2+b2+ab=13﹣6=7.22.(11分)解答题(1)解方程: +=;(2)化简求值:(m+2+),其中m=﹣1.【解答】解:(1)方程两边同时乘以(﹣2),得4+(﹣2)=2=2检验:当=2时,(﹣2)=0∴原分式方程无解.(2)原式=[+]×=×=×=﹣6﹣2m当m=﹣1时原式=﹣6﹣2×(﹣1)=﹣6+4=﹣2.四、作图题(共9分)23.(9分)如图所示,(1)写出顶点C的坐标;(2)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;(3)若点A2(a,b)与点A关于轴对称,求a﹣b的值.【解答】解:(1)C(﹣2,﹣1).(2)△ABC关于y轴对称的△A1B1C1如图所示;如图,B1(﹣3,1).(3)∵A(1,2)与A2(a,b)关于轴对称,可得:a=1,b=﹣2,∴a﹣b=3.五、证明题(要写出必要的推理过程,共17分)24.(7分)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.【解答】证明:过点E作EF⊥BC于点F,则∠EFB=∠A=90°,又∵BE平分∠ABC,∴∠ABE=∠FBE,∵BE=BE,∴△ABE≌△FBE(AAS),∴AE=EF,AB=BF,又点E是AD的中点,∴AE=ED=EF,∴Rt△CDE≌Rt△CFE(HL),∴CD=CF,∴BC=CF+BF=AB+CD.25.(10分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.【解答】证明:(1)∵△ACB和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,又∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE;(2)在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC﹣∠CED=120°﹣60°=60°.六、应用题(共12分)26.(12分)为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200 米的道路进行了改造,铺设草油路面.铺设400 米后,为了尽快完成道路改造,后每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?【解答】(1)解:设原计划每天铺设路面米,根据题意可得:解得:=80检验:=80是原方程的解且符合题意,答:原计划每天铺设路面80米;原工作400÷80=5(天);(2)后工作(1200﹣400)÷[80×(1+20%)]=8(天).共支付工人工资:1500×5+1500×(1+20%)×8=21900(元)答:共支付工人工资21900元.。
四川省德阳市名校2019年数学八上期末考试试题一、选择题1.下列分式中,最简分式是( )A. B. C. D.2.分式242x x -+的值为零,则x 的值为( ) A .2B .0C .2-D .2± 3.若5a b +=,2ab =,则22a b +的值为( ) A.3 B.21 C.23D.25 4.某施工队挖一条240米的渠道,开工后,每天比原计划多挖20米,结果提前2天完成任务.若设原计划每天挖x 米,则所列方程正确的是( )A .240240220x x -=+B .240240202x x -=+C .240240220x x -=-D .240240202x x-=- 5.下列式子计算正确的是( ) A .660a a ÷= B .236(2)6a a -=-C .222()2a b a ab b --=-+D .22()()a b a b a b ---+=- 6.下列等式从左往右因式分解正确的是( )A .()ab ac b a b c d ++=++B .()()23212x x x x -+=--C .()222121m n m mn n +-=++-D .()()2414141x x x -=+- 7.如图,在ABC ∆中,BC 的垂直平分线EF 交ABC ∠的平分线BD 于点E ,若60BAC ∠=︒,24ACE ∠=︒,那么BEF ∠的大小是( )A .32︒B .54︒C .58°D .60︒8.把一张长方形纸片按如图所示折叠2次,若∠1=50°,则∠2的度数为( )A .10︒B .15︒C .20︒D .25︒9.下列图形选自历届世博会会徽,其中是轴对称图形的是( )A. B. C. D.10.具有下列条件的两个等腰三角形,不能判定它们全等的是( )A .顶角、一腰分别相等B .底边、一腰分别相等C .两腰分别相等D .一底角、底边分别相等11.只给定三角形的两个元素,画出的三角形的形状和大小是不确定的,在下列给定的两个条件上增加一个“AB=5cm”的条件后,所画出的三角形的形状和大小仍不能完全确定的是( )A .∠A=30°,BC=3cmB .∠A=30°,AC=3cmC .∠A=30°,∠C=50°D .BC=3cm, AC=6cm12.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是( )A.3B.4C.5D.6 13.只用下列图形不.能.进行平面镶嵌的是( ) A.全等的三角形B.全等的四边形C.全等的正五边形D.全等的正六边形14.如图,直线,相交于点,,平分,若,则的度数为( )A. B. C. D.15.三角形的三边长分别是3,1﹣2a ,8.则数a 的取值范围是( )A .﹣5<a <﹣2B .﹣5<a <2C .5<a <11D .0<a <2 二、填空题16.132的五次方根是__________________; 17.已知x+y =8,xy =14,则x 2+y 2=_____.【答案】3618.如图,正方形ABCD 的三个顶点A 、B 、D 分别在长方形 EFGH 的边EF 、FG 、EH 上,且C 到HG 的距离是1,到点H ,G ,则正方形ABCD 的面积为______.19.在△ABC 中,若∠A =80°,∠C =70°,则∠B =_____°,若∠A =100°,∠B =∠C ,则∠C =_____°.20.如图,Rt △ABC 中,∠ACB =90°,D 为AB 上的点,BD =CD =5,则AD =_______.三、解答题21.计算:2019031(1)24(3.14)()2π--+---⨯-. 22.先化简,再求值:(1)已知a+b =2,ab =2,求a 3b+2a 2b 2+ab 3的值;(2)求(2x ﹣y )(2x+y )﹣(2y+x )(2y ﹣x )的值,其中x =2,y =1.23.如图,已知线段AC 、BC ,利用尺规作一点O ,使得点O 到点A 、B 、C 的距离均相等.(保留作图痕迹,不写作法)24.将两个全等的直角三角形ABC ∆和DBE ∆按图1方式摆放,其中 90ACB DEB ∠=∠=︒,30A D ∠=∠=︒,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求CFE ∠的度数;(2)求证: CF EF =;(3)若将图1中DBE ∆绕点B 按顺时针方向旋转至如图2,其他条件不变,请你写出如图2中,AF EF 与DE 之间的关系,并加以证明.25.在△ABC 内任取一点 P (如图①),连接 PB 、PC ,探索∠BPC 与∠A ,∠ABP ,∠ACP 之间的数量关系,并证明你的结论:当点 P 在△ABC 外部时 (如图②),请直接写出∠BPC 与∠A ,∠ ABP ,∠ACP 之间的数量关系。
四川省德阳市2020版八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·深圳模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2020·石家庄模拟) PM2.5是指大气中直径小于或等于的颗粒物,是衡量空气污染程度的重要指标.将0.0000025用科学记数法表示为,则n的值是()A .B .C .D .3. (2分) (2018·天津) 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A .B .C .D .4. (2分) (2020八下·锡山期中) 若分式有意义,则x的取值范围是()A . x≠0B . x≠-C . x≠D . x≠25. (2分)下面的计算错误的是()A . a3•a3=a6B . (﹣y2)5=y10C . (﹣a3y2)3=﹣a9y6D . ( x﹣ xy)•(﹣12y)=﹣4xy+9xy26. (2分)已知等腰三角形的一边等于3,一边等于7,那么它的周长等于()A . 13B . 13或17C . 17D . 14或177. (2分)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为()A . 1.1vB . 1.2vC . 1.3vD . 1.4v8. (2分) (2019八上·普兰店期末) 线段AB的垂直平分线上一点P到A点的距离PA=5,则点P到B点的距离PB等于()A . PB=5B . PB>5C . PB<5D . 无法确定9. (2分)若 - =2,则分式的值等于()A . -B .C . -D .10. (2分)下列各式计算正确的是()A .B .C .D .二、填空题 (共10题;共10分)11. (1分)分式和的最简公分母是6a2b2c.________.12. (1分) (2020八下·北京期中) 如果分式的值大于,那么的取值范围是________.13. (1分)(2019·泸州) 如图,在等腰中,,,点在边上,,点在边上,,垂足为,则长为________.14. (1分)直角三角形的两条直角边分别为6、8,斜边长为10,则三角形的面积是________,斜边上的高是________.15. (1分)(2020·马龙模拟) 如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为________.16. (1分)如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C两点.若∠1=42°,则∠2的度数是________ .17. (1分) (2019八上·哈尔滨期中) 如图,∠BAC=30°,P是∠BAC平分线上一点,PM∥AC交AB于M,PD⊥AC 于D,若PD=3 ,则AM=________.18. (1分)写出一个以 x=2 为根且可化为一元一次方程的分式方程是________.19. (1分)化简 =________.20. (1分) (2019九上·哈尔滨月考) 如图,中, , 点D在线段BC的延长线上,连接AD,CD=1,BC=12,∠DAB=30°,则AC=________.三、解答题 (共8题;共82分)21. (10分) (2018八上·钦州期末)(1)计算:(6x2﹣8xy)÷2x;(2)分解因式:a3﹣6a2+9a.22. (10分) (2020八上·富锦期末) 解分式方程:(1)(2)23. (5分) (2018八上·北京期末) 如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24. (10分)(2019·无棣模拟) 先化简:并从0,-1,2中选一个合适的数作为a的值代入求值。
四川省德阳市2019-2020学年数学八上期末模拟学业水平测试试题(2)一、选择题1.能使分式4723x x +-值为整数的整数x 有( )个. A .1 B .2 C .3 D .42.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5B .4C .3D .2 3.若解方程225111m x x x +=+--会产生增根,则m 等于( ) A .-10B .-10或-3C .-3D .-10或-4 4.计算(x ﹣y+z)(x+y ﹣z)的正确结果为( ) A .x 2﹣y 2+2xy ﹣z 2 B .x 2﹣2xy+y 2﹣z 2 C .x 2+2xy+y 2﹣z 2 D .x 2+y 2﹣2xy+z 25.已知,,则( ) A.0B.-4C.4D.8 6.下列计算中,正确的是( ) A.﹣a (3a 2﹣1)=﹣3a 3﹣a B.(a ﹣b )2=a 2﹣b 2C.(﹣2a ﹣3)(2a ﹣3)=9﹣4a 2D.(2a ﹣b )2=4a 2﹣2ab+b 27.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用()1,0-表示,左下角方子的位置用()2,1--表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是( )A .()2,0-B .()1,1-C .()1,2-D .()1,2--8.如图,在矩形ABCD 中,3AB =,4BC =,点E 是边AD 上一点,点F 是矩形内一点,30BCF ∠=o ,则12EF CF +的最小值是( )A .3B .4C .5 D.9.如图,是的高,,则度数是( )A. B. C. D.10.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD 相交于点O ,如果AB=AC ,那么图中全等的三角形有( )A.2对B.3对C.4对D.5对11.如图,在ABC ∆中,90BAC ∠=︒,2ABC C ∠=∠,BE 平分ABC ∠交于点E ,AD BE ⊥于点D ,下列结论:①AC BE AE -=;②DAE C ∠=∠;③4BC AD =;④点E 在线段BC 的垂直平分线上,其中正确的个数有( )A .4个B .3个C .2个D .1个12.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④ 13.一个多边形的内角和是7200,则这个多边形的边数是( )A .2B .4C .6D .8 14.学校阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是( )A .正方形2块,正三角形2块B .正方形2块,正三角形3块C .正方形l 块,正三角形2块D .正方形2块,正三角形l 块15.已知一个三角形的两边长分别为4,7,则第三边的长可以为( )A .2B .3C .8D .12二、填空题16.若分式方程213242ax x x x +=--+有增根x =2,则a =___. 17.因式分解:3x 2+6x+3=_____.18.如图,AD ∥BC ,CP 和DP 分别平分∠BCD 和∠ADC ,AB 过点P ,且与AD 垂直,垂足为A ,交BC 于B ,若AB =10,则点P 到DC 的距离是_____.19.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.20.如图,已知正方形ABCD 边长为3,点E 在AB 边上且BE=1,点P,Q 分别是边BC,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是___.三、解答题21.某商厦分别用600元购进甲、乙两种糖果,因为甲糖果的进价是乙糖果进价的1.2倍,所以进回的甲糖果的重量比乙糖果少10kg .(1)甲、乙两种糖果的进价分别是多少?(2)若两种糖果的销售利润率均为10%,则两种糖果的售价分别是多少?(3)如果将两种糖果混合在一起销售,总利润不变,那么混合后的糖果单价应定为多少元?22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是__________________.(请选择正确的一个)A.22()()a b a b a b -=+- B .2222()a ab b a b -+=- C.2()a ab a a b +=+(2)若2216x y -=,8x y +=,求x y -的值;(3)计算:22222111111111123420182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23.如图,在ABC △中,CM AB ⊥于点M ,ACB ∠的平分线CN 交AB 于点N ,过点N 作ND AC ∥交BC 于点D .若78A ∠=︒,50B ∠=︒.求:①CND ∠的度数;②MCN ∠的度数.24.如图,在Rt ACB 中,90C =∠,BE 平分ABC ∠,ED 垂直平分AB 于点D ,若9AC =,求AE 的长.25.已知:如图1,在平面直角坐标系中,点A ,B ,E 分别是x 轴和y 轴上的任意点. BD 是∠ABE 的平分线,BD 的反向延长线与∠OAB 的平分线交于点C.探究: (1)求∠C 的度数.发现: (2)当点A ,点B 分别在x 轴和y 轴的正半轴上移动时,∠C 的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C 的变化范围.应用:(3)如图2在五边形ABCDE 中,∠A +∠B +∠E =310°,CF 平分∠DCB ,CF 的反向延长线与∠EDC 外角的平分线相交于点P ,求∠P 的度数.【参考答案】***一、选择题16.﹣2.17.3(x+1)218.519.40°20.92三、解答题21.(1)甲糖果的进价为12元/千克,乙糖果的进价为10/千克;(2)甲糖果的售价为13.2元/千克,乙糖果的售价为11元/千克;(3)混合后的糖果单价应定为12元.22.(1)A ;(2)2x y -= ;(3)1010201923.①26°;②14°【解析】【分析】①在ABC △中,由三角形的内角和定理可得52ACB ∠=︒,由角平分线的定义可得1262ACN ACB ∠=∠=︒,再由平行线的性质可得 =26CND ACN ∠∠=︒;②在ACN △中,根据三角形的内角和定理求得=76ANC ∠︒ ,再由CM AB ⊥,根据直角三角形的两锐角互余即可求得14MCN ∠=︒.【详解】①在ABC △中,∵=78=50A B ∠︒∠︒,∴52ACB ∠=︒又∵CN 平分ACB ∠∴11522622ACN ACB ∠=∠=⨯︒=︒ ∵ND AC ∥∴=26CND ACN ∠∠=︒②在ACN △中,=180()180(7826)76ANC A ACN ∠︒-∠+∠=︒-︒+︒=︒又∵CM AB ⊥∴907614MCN ∠=︒-︒=︒【点睛】本题考查了三角形的内角和定理,熟知三角形的内角和为180°是解决问题的关键.24.AE 的长为6.【解析】【分析】根据角平分线的性质可得DE=CE ,根据垂直平分线可得AE=BE ,进而得到30A ABE CBE ∠=∠=∠=,设AE x =,则9DE CE x ==-,根据直角三角形30°角所对直角边为斜边的一半得到关于x 的方程,然后求解方程即可.【详解】解:设AE x =,则9CE x =-,BE 平分ABC ∠,CE CB ⊥,ED AB ⊥,9DE CE x ∴==-,又ED 垂直平分AB ,AE BE ∴=,A ABE CBE ∴∠=∠=∠,在Rt ACB 中,90A ABC ∠+∠=,30A ABE CBE ∴∠=∠=∠=,12DE AE ∴=,即192x x -=, 解得6x =.即AE 的长为6.【点睛】本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.25.(1)∠C=45°;(2)不变.∠C=12∠AOB =45°; (3) 25°.。
四川省德阳市2020版八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019八上·江岸期中) 点P(-3,2)关于轴对称的点的坐标是()A . (3,2)B . (-3,-2)C . (3,-2)D . (2,-3).2. (1分)(2019·抚顺) 若一个等腰三角形的两边长分别为2,4,则第三边的长为()A . 2B . 3C . 4D . 2或43. (1分)下列运算正确的是()A . a8÷a2=a4B . a5﹣(﹣a)2=a3C . a3•(﹣a)2=a5D . 5a+3b=8ab4. (1分) (2017八下·东台期中) 下列各式中,正确的是()A .B .C .D .5. (1分)如图,AC、BD相交于点O,∠1=∠2,若用“SAS”说明△ACB≌△BDA,则还需要加上条件()A . AD=BCB . BD=ACC . ∠D=∠CD . OA=AB6. (1分) (2017八下·盐湖期末) 正十二边形的每一个内角的度数为()A . 120°B . 135°C . 1080°D . 150°7. (1分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α的度数为…()A . 30°B . 45°C . 60°D . 75°8. (1分) (2015七下·泗阳期中) 下列计算正确的是()A . x+x=x2B . x2•x3=x6C . x3÷x=x2D . (x2)3=x59. (1分) (2020八上·吴兴期末) 定义:△ABC中,一个内角的度数为,另一个内角的度数为,若满足,则称这个三角形为“准直角三角形”.如图,在Rt△ABC中,∠C=90°, AC=8,BC=6,D是BC上的一个动点,连接AD,若△ABD是“准直角三角形”,则CD的长是()A .B .C .D .10. (1分)计算:的值是()A . 0B . 1C . 2D . 3二、填空题 (共10题;共10分)11. (1分)(2017·梁子湖模拟) 把多项式16x3﹣9xy2分解因式的结果是________.12. (1分) (2019七下·虹口开学考) 若分式的值为零,则x的值为________13. (1分) (2018八上·望谟月考) 如图,,则,,则的大小是________.14. (1分) (2019八上·安阳期中) 如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长是________.15. (1分)在一个边长为10.5cm的正方形中间,挖去一个边长为4.5cm的小正方形,剩下部分的面积是________cm216. (1分) (2018七上·湖州期中) 如图是一个数值转换机,若输入的a值为-4,则输出的结果应为________.17. (1分)等边三角形ABC的边长为6,在AC,BC边上各取一点E、F,连接AF,BE相交于点P,若AE=CF,则∠APB= ________ .18. (1分) (2019七下·灌云月考) 如图,在△ABC中,已知D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积为________ cm2.19. (1分)已知关于x的方程的解是负数,则m的取值范围为________20. (1分)(2018·铁西模拟) 如图,△ABC的三个顶点和它内部的点P1 ,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2 ,把△AB C分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点 P1、P2、P3 ,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点 P1、P2、P3、…、P2017 ,把△ABC分成________个互不重叠的小三角形.三、解答题 (共8题;共14分)21. (3分) (2017八下·高阳期末) 计算(1)(2)22. (2分)解方程:.23. (1分) (2020八上·新乡期末) 如图,在直角坐标系中,的三个顶点的坐标分别为,,(1)请在图中画出关于轴对称的,并求出点的坐标;(2)求的面积;(3)在轴上画出点,使的值最小,保留作图痕迹.24. (1分)如图,在△ABC中,已知∠ABC=30°,点D在BC上,点E在AC上,∠BAD=∠E BC,AD交BE于F.(1)求的度数;(2)若EG∥AD交BC于G,EH⊥BE交BC于H,求∠HEG的度数.25. (1分)如图,在△ACD和△ABE中,CD与BE交于点O,下列三个说明:①AB=AC,②CE=BD,③∠B=∠C,请用其中两个作为条件,余下一个作为结论,(1)编一道数学问题,并写出解答过程.解:条件:________(填序号)结论:________(填序号)(2)理由是什么26. (2分) (2018八上·翁牛特旗期末) 如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高。
四川省德阳市2020版八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)函数中,自变量的取值范围是()A .B .C .D .2. (2分)(2019·贵池模拟) 下列运算正确是()A . (﹣a2)3=a6B . a2a3=a6C . (﹣ab)2=a2bD . 2a6÷a3=2a33. (2分)下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有()A . 1种B . 2种C . 3种D . 4种4. (2分) (2019八上·鄞州期中) 如图,折叠长方形纸片的一边,使点落在边上的点处,已知,,则折痕的长为A .B .C .D . 135. (2分)(2011·梧州) 因式分解x2y﹣4y的正确结果是()A . y(x+2)(x﹣2)B . y(x+4)(x﹣4)C . y(x2﹣4)D . y(x﹣2)26. (2分) (2019八上·花都期中) 如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A . AD=AEB . DB=AEC . DF=EFD . DB=EC7. (2分) (2017八下·盐都开学考) 如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共7题;共10分)8. (1分)=________9. (3分)如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:________;得到的一对全等三角形是△________≌△________.10. (2分) (2015九上·黄陂期中) x2﹣6x+(________)=(x﹣________)211. (1分) (2017八上·罗庄期末) 若(x﹣y﹣2)2+|xy+3|=0,则(﹣)÷ 的值是________.12. (1分)(2017·静安模拟) 如图,在正方形ABCD中,点E、F分别在边BC、CD上,△AEF是等边三角形,如果AB=1,那么CE的长是________ .13. (1分) (2019九上·台安月考) 如图,边长为2的正三角形ABO的边OB在x轴上,将绕原点O逆时针旋转得到,则点的坐标为________.14. (1分)(2014·苏州) 如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.三、解答题 (共8题;共70分)15. (5分)计算:①(a+b)2(a2﹣2ab+b2)②(x+5)2﹣(x﹣2)(x﹣3)③1002216. (5分)先化简,再求值:,其中x=1.17. (5分) (2017八下·福建期中) 如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.18. (10分) (2019八上·玉田期中) 如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为.(1)求被墨水污染的部分;(2)原分式的值能等于吗?为什么?19. (5分)(2013·崇左) 我市新城区环形路的拓宽改造工程项目,经投标决定由甲、乙两个工程队共同完成这一工程项目.已知乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程如果由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.求甲、乙两队单独完成这项工程各需要多少天?20. (10分) (2016八上·镇江期末) 如图,△ABC中,∠C=90°.(1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=8,BC=6,求CP的长.21. (15分)(2018·赣州模拟) 如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.22. (15分) (2019八下·嘉兴期中) 我们规定:有一组邻边相等,且这组邻边的夹角为的凸四边形叫做“准筝形”。
四川省德阳市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)数,,,﹣,,0. ,﹣0.1010010001…(相邻两个1之间的0的个数逐次加1)中,无理数的个数为()A . 2个B . 3个C . 4个D . 5个2. (2分)(2019·宁夏) 下列各式中正确的是()A .B .C .D .3. (2分) (2017九下·潍坊开学考) 下列计算正确的是()A . x3﹣x2=xB . x3•x2=x6C . x3÷x2=xD . (x3)2=x54. (2分)化简的结果是()A . 2aB . 2a2C . 0D . 2a2-2a5. (2分) (2019七下·江苏月考) 若三角形的三边的长分别是2cm、5cm、acm,则a的长可能为()cm.A . 8B . 2C . 5D . 36. (2分) (2020七下·巩义期末) 某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生分别选了一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知“最喜爱机器人”的人数比“最喜爱3D打印”的人数少5人,则被调查的学生总人数为()A . 50人B . 40人C . 30人D . 25人7. (2分)如图,在ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论中正确的有()个1.BF= DF2.S△AFD=2S△EFB3.四边形AECD是等腰梯形4. ∠AEB=∠ADCA . 1个B . 2个C . 3个D . 4个8. (2分)(2020·遵化模拟) 扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分) (2016八上·富宁期中) 4的算术平方根是________,9的平方根是________,﹣27的立方根是________.10. (1分)若(2x﹣3y)•M=9y2﹣4x2 ,则M表示的式子为________.11. (1分) (2019七下·北京期中) 下列各命题中:①对顶角相等;②若,则x=2;③ ;④两条直线相交,若有一组邻补角相等,则这两条直线互相垂直,其中错误的命题是________(填序号)12. (1分) (2018八上·洪山期中) 定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线,在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请写出∠C所有可能的度数________.13. (1分) (2019八下·硚口月考) 如图,在矩形ABCD中,AB=8,AD=10,按如图所示的折叠使点D落在BC 上的点E处,则EF的长为________.14. (1分) (2019八下·邵东期末) 如图,在矩形ABCD中,已知AB=3,BC=4,则BD=________.三、解答题 (共10题;共90分)15. (5分)求下列根式的值: ,其中 .16. (5分) (2017七下·常州期末) 已知x+y=1,xy= ,求下列各式的值:(1) x2y+xy2;(2)(x2﹣1)(y2﹣1).17. (2分) (2019八上·杭州期末) 如图,已知线段a,b和,用直尺和圆规作,使,,不写作法,保留作图痕迹18. (5分) (2017八上·罗平期末) 将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义 =ad﹣bc.上述记号叫做2阶行列式,若 =8.求x的值.19. (15分) (2019八下·成都期末) 某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:(1)本次调查学生共________人,并将条形图补充完整________;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.20. (10分)(2019·宁洱模拟) 如图,在正方形ABCD中,AE,DF相交于点O且AF=BE.(1)求证:△ABE≌△DAF;(2)求证:AE⊥DF.21. (10分)(2020·宿州模拟) 如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.22. (7分) (2019八下·灯塔期中) 如图,在中,是斜边上两点,且将绕点顺时针旋转90°后,得到连接(1)求证:△AED≌△AEF(2)猜想线段BE,ED,DC之间的关系,并证明23. (15分)(2017·道外模拟) 如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长24. (16分) (2019八上·榆树期末) 如图,在△ABC中,AC=BC ,∠ACB=90°,点D是AB的中点,点E 是AB边上一点.直线BF垂直于直线CE于点F ,交CD于点G .求证:AE=CG .参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共90分)15-1、16-1、16-2、17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、。
四川省德阳中江县初中2019年数学八上期末质量跟踪监视试题一、选择题1.要使分式24a a +-有意义,则a 的取值范围是( ) A.4a >B.4a <C.4a ≠D.2a ≠- 2.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037用科学记数法表示为( ) A .3.7x10-5 B .3.7x10-6 C .3.7x10-7 D .37x10-53.下列计算正确的是( ) A .(ab) 2=a 2b 2 B .2(a +1)=2a +1 C .a 2+a 3=a 6D .a 6÷a 2=a 3 4.某口琴社团为练习口琴,第一次用1200元买了若干把口琴,第二次在同一家商店用2200元买同一款的口琴,这次商家每把口琴优惠5元,结果比第一次多买了20把.求第一次每把口琴的售价为多少元?若设第一次买的口琴为每把x 元,列方程正确的是( )A .12002200205x x -=- B .22001200205x x -=- C .12002200205x x -=- D .22001200205x x-=- 5.下列各式计算正确的是( ) A .223a a a += B .326()a a -= C .326a a a ⋅= D .()222a b a b +=+ 6.下列分解因式错误的是( )A.()()2422x x x x x -+=+-+B.()()22x y x y y x -+=+- C.()2212x x x x -+=-- D.()22211x x x -+=- 7.如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,AB =12BC ,连接OE ,下列结论:①∠CAD =30°;②S ABCD =AB•AC;③OB =AB :④OE =14BC .其中成立的有( )A.①②③B.①②④C.①③④D.②③④8.下列所叙述的图形中,全等的两个三角形是( )A .含60︒角的两个直角三角形B .腰对应相等的两个等腰三角形C .边长均为5厘米的两个等边三角形D .一个钝角对应相等的两个等腰三角形9.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB ,其中正确的有( )A.2个B.3个C.4个D.1个10.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,D 、E 分别为AB 、AC 边上的中点,则DE 的长为()A.2B.3 D.411.如图,中,,,平分,于,则下列结论:①平分,②,③平分,④,其中正确的有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠C=90∘,∠A=30∘,CD=2,AB的垂直平分线MN交AC于D,连接BD,则AC的长是()A.4B.3C.6D.513.将一张多边形纸片沿图中虚线剪开,如果剪开后得到的两个图形的内角和相等,下列四种剪法中符合要求的是( )A. B. C. D.14.如图,AE∥BF,∠1=110°,∠2=130°,那么∠3的度数是()A.40°B.50°C.60°D.70°15.以下列数据为长度的三条线段,能组成三角形的是()A.2 cm、3cm、5cm B.2 cm、3 cm、4 cmC.3 cm、5 cm、9 cm D.8 cm、4 cm、4 cm二、填空题16.分式1x,223x y-,6()xx y-的最简公分母__________.17.因式分解:2x2﹣4x═_____.18.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为_______ .19.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是_____.20.如图,已知点P是射线BM上一动点(P不与B重合),∠AOB=30°,∠ABM=60°,当∠OAP=_____时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形.三、解答题21.先化简,再求值:2224111?[(1)()]442xx x x+--÷--,其中3x=-.22.计算:(1)(-2)3+6×2-1-(-3.5)0;(2)n(2n+1)(2n-1).23.已知ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边ADE.()1如图①,点D在线段BC上移动时,直接写出BAD∠和CAE∠的大小关系;()2如图②图③,点D在线段BC的延长线上或反向延长线上移动时,猜想DCE∠的大小是否发生变化,若不变请直接写出结论并选择其中一种图示进行证明;若变化,请分别写出图②、图③所对应的结论.24.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.如果点P在线段BC上以1cm/s 的速度由B点向C点运动,同时,点Q在线段CA上有C点向A点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(3)若点Q 以(2)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?25.如图,在三角形ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,若AC=4,BC=6,BE=5.(1)求点B 到直线AC 的距离;(2)求点A 到直线BC 的距离.【参考答案】***一、选择题16.26()x y x y -17.2x (x-2)18.419.25°20.75°或120°或90°三、解答题21.12x x ++,2. 22.(1)-6;(2)4n 3-n.23.(1)相等,理由详见解析;(2)不变,理由详见解析.【解析】【分析】(1)由等边三角形的性质可得∠BAC=∠DAE=60°,再由角的减法运算,可得∠BAD=∠CAE ;(2)由等边三角形的性质可得AD=AE ,AB=AC ,∠BAC=∠DAE=∠ACB=60°,可证△BAD ≌△CAE ,可得∠B=∠ACE=60°,即可求∠DCE=60°.【详解】解:()1相等理由如下:ABC ,ADE 是等边三角形AD AE ∴=,AB AC =,BAC DAE 60∠∠==, ∴∠BAC-∠DAC=∠DAE-∠DAC ,BAD CAE ∠∠∴=()2不变如图ABC ②,ADE 是等边三角形AD AE ∴=,AB AC =,BAC DAE ACB 60∠∠∠===,BAD CAE ∠∠∴=,BAD ∴≌()CAE SASB ACE 60∠∠∴==DCE 180ACB ACE 60∠∠∠∴=--=.【点睛】全等三角形的判定和性质、等边三角形的性质是本题的考点,熟练运用全等三角形的判定和等边三角形的性质是解题的关键.24.(1)全等,见解析;(2)v Q =1.5cm/s ;(3)经过24秒点P 与点Q 第一次在边AC 上相遇.【解析】【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度;(3)根据题意结合图形分析发现:由于点Q 的速度快,且在点P 的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.【详解】(1)全等,理由如下:∵t =1秒,∴BP =CQ =1×1=1厘米,∵AB =6cm ,点D 为AB 的中点,∴BD =3cm .又∵PC =BC ﹣BP ,BC =4cm ,∴PC =4﹣1=3cm ,∴PC =BD .又∵AB =AC ,∴∠B =∠C ,∴△BPD ≌△CPQ ;(2)假设△BPD ≌△CPQ ,∵v P ≠v Q ,∴BP≠CQ,又∵△BPD ≌△CPQ ,∠B =∠C ,则BP =CP =2,BD =CQ =3,∴点P ,点Q 运动的时间t =PBP V =2秒, ∴v Q =3=2CQ t =1.5cm/s ; (3)设经过x 秒后点P 与点Q 第一次相遇,由题意,得 1.5x =x+2×6,解得x =24,∴点P 共运动了24×1c m/s =24cm .∵24=16+4+4,∴点P 、点Q 在AC 边上相遇,∴经过24秒点P 与点Q 第一次在边AC 上相遇.【点睛】本题考查三角形综合题、主要是运用了路程=速度×时间的公式,三角形全等的判定和性质,解题的关键是熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.25.(1)点B 到直线AC 的距离为5;(2)点A 到直线BC 的距离为103.。
四川省德阳中江县联考2019年数学八上期末调研试卷一、选择题1.在下列代数式中,是整式的为( )A .1x x+ B .33x - C .2x x D .3(3)-- 2.若关于x 的方程223242ax x x x +=--+有增根,则a 的值为( ) A.4 B.6 C.6或-4 D.6或43.设a >b >0,a 2+b 2=4ab ,则a b a b +-的值为( )A.3 C.2 4.下列计算正确的是( ) A .a 5+a 2=a 7 B .2a 2﹣a 2=2 C .a 3•a 2=a 6D .(a 2)3=a 6 5.如果924a ka -+是完全平方式,那么k 的值是( )A .一12B .±12C .6D .±6 6.下列运算结果为x 6的是( ) A.x 3+x 3B.(x 3)3C.x·x 5D.x 12÷x 2 7.在△ABC 中,AB=AC=5,BC=8,AD ⊥BC ,垂足为D ,BE 是边AC 上的中线,AD 与BE 相交于点G ,那么AG 的长为 ( )A .1B .2C .3D .无法确定. 8.如图,Rt ABC ∆中,90BAC ∠=,AB AC =,将ABC ∆绕点C 顺时针旋转40得到出'''A B C ∆,'CB 与AB 相交于点D ,连接'AA ,则''B A A ∠的度数为( )A .10B .15C .20D .309.在△ABC 中,∠C =90°,AB =c ,∠A =30°,则AC =( )A .12cBC .2cD 10.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边.若∠A =100°,∠F =46°,则∠DEF 等于( )A .100°B .54°C .46°D .34°11.如图,ABC ∆中,AB=AC,D 、E 分别在边AB 、AC 上,且满足AD=AE.下列结论中:①ABE ACD∆≅∆;②AO平分∠BAC;③OB=OC;④AO⊥BC;⑤若12AD BD=,则13OD OC=;其中正确的有()A.2个B.3个C.4个D.5个12.如图,在Rt△ABC中,∠A=30°,DE是斜边AC的中垂线,分别交AB,AC于D、E两点,若BD=2,则AC的长是()A.B.C.D.13.下列各组数中,不能成为直角三角形的三条边长的是()A.3,4,5 B.7,24,25 C.6,8,10 D.9,11,1314.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则βα-的值为( )A.10°B.20°C.40°D.60°15.若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.4 D.5二、填空题16.已知:,则A=________,B=__________.17.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是_______.18.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是_____度.(用含α的代数式表示)19.已知AD是△ABC的高,∠BAD=70°,∠CAD=25°,则∠BAC的度数是_____20.如图,△ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线交AD于点E,EF⊥AB于点F.若EF =3,则ED的长度为______.三、解答题21.某图书馆计划选购甲、乙两种图书.甲图书每本价格是乙图书每本价格的2.5倍,如果用900元购买图书,则单独购买甲图书比单独购买乙图书要少18本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总费用不超过1725元,那么该图书馆最多可以购买多少本乙图书?22.(1)计算:;(2)因式分解:.23.如图,已知网格上小正方形的边长为1个单位长度,点A、B、C在格点上.(1)画出△ABC关于直线l对称的△A'B'C';(2)求出△ABC的面积.24.如图,将等腰直角三角形ABC的直角顶点置于直线m上,过,A B两点分别作直线m的垂线,垂足D E,请你写出图中的一对全等三角形,并写出证明过程.分别为点,25.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC= °,∠NOB= °.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【参考答案】***一、选择题16.217.-218.180°﹣2α19.95°或45°.20.3三、解答题21.(1)甲图书每本价格为75元,乙图书每本价格为30元;(2)图书馆最多可以购买30本乙图书. 22.(1);(2).23.(1)见解析;(2)见解析;【解析】【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求△ABC的面积即可.【详解】解:(1)△A'B'C'如图所示.(2)S △ABC =4×5-12×2×4-12×3×3-12×1×5=9. 【点睛】 本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.24.全等三角形为:ACD CBE ≌,证明见解析.【解析】【分析】全等三角形为:ACD CBE ≌,根据已知条件易证090ADC CEB ∠=∠=,CAD BCE ∠=∠,AC BC =,再利用AAS 即可证得ACD CBE ∆∆≌.【详解】全等三角形为:ACD CBE ≌证明如下:由题意知:90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒CAD BCE ∴∠=∠ ABC 为等腰直角三角形AC BC ∴=因为AD m BE m ⊥⊥,90ADC CEB ∠=∠=在ACD 与CBE △中,90ADC CEB CAD BCE AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ACD CBE ∴≌【点睛】本题考查了全等三角形的判定方法,判定三角形全等的方法有:SSS 、SAS 、ASA 、AAS 、HL (判定直角三角形全等).25.解:(1)50,40;(2)β=2α﹣40°;(3)不成立,此时此时α与β之间的数量关系为:2α+β=40°.。
2019-2020四川省德阳市中江县八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(3分)下列计算中,正确的是()A.(﹣3)﹣2=﹣B.x4•x2=x8C.(a2)3•a3=a9D.(a﹣2)0=12.(3分)下列图标中轴对称图形的个数是()A.1个B.2个C.3个D.4个3.(3分)如图,AC平分∠BAD,CM⊥AB于点M,CN⊥AN,且BM=DN,则∠ADC与∠ABC 的关系是()A.相等B.互补C.和为150°D.和为165°4.(3分)若4x2+(k﹣1)x+25是一个完全平方式,则常数k的值为()A.11 B.21 C.﹣19 D.21或﹣195.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±16.(3分)用一些不重叠的多边形把平面的一部分完全覆盖叫做平面镶嵌.则用一种多边形镶嵌时,下列多边形中不能进行平面镶嵌的是()A.三角形B.正方形C.正五边形D.正六边形7.(3分)如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.以上结论正确的有()个.A.1 B.2 C.3 D.48.(3分)一定能将三角形的面积分成相等的两部分的是三角形的()A.高线B.中线C.角平分线D.都不是9.(3分)若分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大到原来的3倍B.不变C.缩小到原来的D.缩小到原来的10.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠AED=70°,则∠DCB=()A.70°B.165°C.155°D.145°11.(3分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.6412.(3分)已知关于x的分式方程﹣1=的解是正数,则m的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠6二、填空题(本大题共8个小题,每小题3分,本大题满分24分)请把答案直接填在题中的横线上.13.(3分)将数0.000000015用科学记数法表示为.14.(3分)分解因式:9m3﹣m= .15.(3分)计算:(﹣8)2017×0.1252016+(π﹣3.14)0﹣()﹣1的结果为.16.(3分)在△ABC中,若AB=5,AC=3.则中线AD的长的取值范围是.17.(3分)等腰三角形一腰上的高线与另一腰夹角为50°,则该三角形的顶角为.18.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB 于点E,交BC于点D,CD=3,则BC的长为.19.(3分)已知x2+y2=25,xy=12,则x+y的值为.20.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是.三、解答题(共22分)21.(11分)(1)计算:x(4x﹣1)﹣(2x﹣3)(2x+3)+(x﹣1)2;(2)已知实数a,b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.22.(11分)解答题(1)解方程: +=;(2)化简求值:(m+2+),其中m=﹣1.四、作图题(共9分)23.(9分)如图所示,(1)写出顶点C的坐标;(2)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;(3)若点A2(a,b)与点A关于x轴对称,求a﹣b的值.五、证明题(要写出必要的推理过程,共17分)24.(7分)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.25.(10分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.六、应用题(共12分)26.(12分)为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200 米的道路进行了改造,铺设草油路面.铺设400 米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?2019-2020四川省德阳市中江县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(3分)下列计算中,正确的是()A.(﹣3)﹣2=﹣B.x4•x2=x8C.(a2)3•a3=a9D.(a﹣2)0=1【解答】解:A、(﹣3)﹣2=,故此选项错误;B、x4•x2=x6,故此选项错误;C、(a2)3•a3=a9,正确;D、(a﹣2)0=1(a≠2),故此选项错误;故选:C.2.(3分)下列图标中轴对称图形的个数是()A.1个B.2个C.3个D.4个【解答】解:图①是轴对称图形,图②是轴对称图形;图③是轴对称图形;图④不是轴对称图形,轴对称图形共3个,故选:C.3.(3分)如图,AC平分∠BAD,CM⊥AB于点M,CN⊥AN,且BM=DN,则∠ADC与∠ABC 的关系是()A.相等B.互补C.和为150°D.和为165°【解答】解:∵AC平分∠BAD,CM⊥AB于点M,CN⊥AN,∴CM=CN,∠CND=∠BMC=90°,∵BM=DN,在△CND与△CMB中,∵,∴△CND≌△CMB,∴∠B=∠CDN,∵∠CDN+∠ADC=180°,∴∠ADC+∠ABC=180°.故选B.4.(3分)若4x2+(k﹣1)x+25是一个完全平方式,则常数k的值为()A.11 B.21 C.﹣19 D.21或﹣19【解答】解:∵4x2+(k﹣1)x+25是一个完全平方式,∴k﹣1=±20,解得:k=21或﹣19,故选D5.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.6.(3分)用一些不重叠的多边形把平面的一部分完全覆盖叫做平面镶嵌.则用一种多边形镶嵌时,下列多边形中不能进行平面镶嵌的是()A.三角形B.正方形C.正五边形D.正六边形【解答】解:A、三角形能进行平面镶嵌,因为三角形的内角和为180°.180°×2=360°;B、正方形能进行平面镶嵌,因为正方形的内角和为90°.90°×4=360°;C、正五边形不能进行平面镶嵌,因为正五边形的内角和为108°.108°的整数倍不等于360°;D、正六边形能进行平面镶嵌,因为正六边形的内角和为120°.120°×3=360°;故选C.7.(3分)如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.以上结论正确的有()个.A.1 B.2 C.3 D.4【解答】证明:∵BE⊥AC于E,CF⊥AB于F,∴∠AFC=∠AEB=90°,故在Rt△AEB中,∠B=90°﹣∠A,在Rt△AFC中∠C=90°﹣∠A,∴∠B=∠C,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),故①选项正确,由AE=AF,AC=AB,得BF=CE,在△BDF和△CDE中,,∴△BDF≌△CDE,选项②正确,∵△ABE≌△ACF,∴AE=AF,AC=AB,连接AD,在Rt△AFD和Rt△AED中,,∴Rt△AFD≌Rt△AED(HL),∴∠DAF=∠DAE,即点D在∠BAC的平分线上,选项③正确,而点F不一定是AB的中点,故④错误.故选C.8.(3分)一定能将三角形的面积分成相等的两部分的是三角形的()A.高线B.中线C.角平分线D.都不是【解答】解:三角形的中线将三角形分成面积相等的两部分,故选B.9.(3分)若分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大到原来的3倍B.不变C.缩小到原来的D.缩小到原来的【解答】解:用3x和3y代替式子中的x和y得: =,则分式的值扩大为原来的3倍.故选:A.10.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠AED=70°,则∠DCB=()A.70°B.165°C.155°D.145°【解答】解:∵AD=AE,∠AED=70°,∴∠ADE=70°,∵AB∥ED,∴∠BAD=70°,∵AB=AC=AD,∴∠ABC=∠ACB,∠ACD=∠ADC,∴∠DCB=∠ACB+∠ACD=(360°﹣70°)÷2=145°.故选:D.11.(3分)如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .64【解答】解:∵△A 1B 1A 2是等边三角形, ∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°, ∴∠2=120°, ∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°, 又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°, ∵∠MON=∠1=30°, ∴OA 1=A 1B 1=1, ∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形, ∴∠11=∠10=60°,∠13=60°, ∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3, ∴∠1=∠6=∠7=30°,∠5=∠8=90°, ∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3, ∴A 3B 3=4B 1A 2=4, A 4B 4=8B 1A 2=8, A 5B 5=16B 1A 2=16,以此类推:A6B6=32B1A2=32.故选:C.12.(3分)已知关于x的分式方程﹣1=的解是正数,则m的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠6【解答】解:方程两边同时乘以x﹣1得,1﹣m﹣(x﹣1)+2=0,解得x=4﹣m.∵x为正数,∴4﹣m>0,解得m<4.∵x≠1,∴4﹣m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.二、填空题(本大题共8个小题,每小题3分,本大题满分24分)请把答案直接填在题中的横线上.13.(3分)将数0.000000015用科学记数法表示为 1.5×10﹣8.【解答】解:0.000000015=1.5×10﹣8.故答案为:1.5×10﹣8.14.(3分)分解因式:9m3﹣m= m(3m+1)(3m﹣1).【解答】解:原式=m(9m2﹣1)=m(3m+1)(3m﹣1)故答案为:m(3m+1)(3m﹣1)15.(3分)计算:(﹣8)2017×0.1252016+(π﹣3.14)0﹣()﹣1的结果为﹣9 .【解答】解:(﹣8)2017×0.1252016+(π﹣3.14)0﹣()﹣1=(﹣8×0.125)2016×(﹣8)+1﹣2=﹣8﹣1=﹣9.故答案为:﹣9.16.(3分)在△ABC中,若AB=5,AC=3.则中线AD的长的取值范围是1<AD<4 .【解答】解:延长AD至点E,使DE=AD,连接EC,∵BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD,∴CE=AB,∵AB=5,AC=3,CE=5,设AD=x,则AE=2x,∴2<2x<8,∴1<x<4,∴1<AD<4.故答案为:1<AD<4.17.(3分)等腰三角形一腰上的高线与另一腰夹角为50°,则该三角形的顶角为40°或140°.【解答】解:如图1,三角形是锐角三角时,∵∠ACD=50°,∴顶角∠A=90°﹣50°=40°;如图2,三角形是钝角时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故答案为:40°或140°.18.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB 于点E,交BC于点D,CD=3,则BC的长为9 .【解答】解:∵∠C=90°,∠B=30°,∴∠BAC=60°,∵D E是AB的垂直平分线,∴DB=DA,∴∠BAD=∠B=30°,∴∠CAD=30°,∴AD=2CD=6,∴DB=AD=6,∴BC=3+6=9,故答案为:919.(3分)已知x2+y2=25,xy=12,则x+y的值为±7 .【解答】解:∵(x+y)2=x2+y2+2xy=25+2×12=49,∴x+y=±7,故答案为:±720.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是120°.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故答案为:120°.三、解答题(共22分)21.(11分)(1)计算:x(4x﹣1)﹣(2x﹣3)(2x+3)+(x﹣1)2;(2)已知实数a,b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.【解答】解:(1)原式=4x2﹣x﹣(4x2﹣9)+(x2﹣2x+1)=4x2﹣x﹣4x2+9+x2﹣2x+1=x2﹣3x+10;(2)∵(a+b)2=1,∴a2+2ab+b2=1①,∵(a﹣b)2=25,∴a2﹣2ab+b2=25②,由 ①+ ②得:a2+b2=13,由① ﹣② 得:ab=﹣6,∴a2+b2+ab=13﹣6=7.22.(11分)解答题(1)解方程: +=;(2)化简求值:(m+2+),其中m=﹣1.【解答】解:(1)方程两边同时乘以x(x﹣2),得4+(x﹣2)=2xx=2检验:当x=2时,x(x﹣2)=0∴原分式方程无解.(2)原式=[+]×=×=×=﹣6﹣2m当m=﹣1时原式=﹣6﹣2×(﹣1)=﹣6+4=﹣2.四、作图题(共9分)23.(9分)如图所示,(1)写出顶点C的坐标;(2)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;(3)若点A2(a,b)与点A关于x轴对称,求a﹣b的值.【解答】解:(1)C(﹣2,﹣1).(2)△ABC关于y轴对称的△A1B1C1如图所示;如图,B1(﹣3,1).(3)∵A(1,2)与A2(a,b)关于x轴对称,可得:a=1,b=﹣2,∴a﹣b=3.五、证明题(要写出必要的推理过程,共17分)24.(7分)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.【解答】证明:过点E作EF⊥BC于点F,则∠EFB=∠A=90°,又∵BE平分∠ABC,∴∠ABE=∠FBE,∵BE=BE,∴△ABE≌△FBE(AAS),∴AE=EF,AB=BF,又点E是AD的中点,∴AE=ED=EF,∴Rt△CDE≌Rt△CFE(HL),∴CD=CF,∴BC=CF+BF=AB+CD.25.(10分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.【解答】证明:(1)∵△ACB和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,又∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE;(2)在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC﹣∠CED=120°﹣60°=60°.六、应用题(共12分)26.(12分)为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200 米的道路进行了改造,铺设草油路面.铺设400 米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?【解答】(1)解:设原计划每天铺设路面x米,根据题意可得:解得:x=80检验:x=80是原方程的解且符合题意,答:原计划每天铺设路面80米;原来工作400÷80=5(天);(2)后来工作(1200﹣400)÷[80×(1+20%)]=8(天).共支付工人工资:1500×5+1500×(1+20%)×8=21900(元)答:共支付工人工资21900元.。