2011-2012第二学期线性代数B试卷A
- 格式:doc
- 大小:188.00 KB
- 文档页数:6
第 1 页 共 5 页上 海 海 事 大 学 试 卷2009 — 2010 学年第二学期期末考试试题答案《 线 性 代 数 》(B 卷)班级 学号 姓名 总分一、填空题(共9题10空,每空3分,共30分)请将正确答案写在题目后面的横线上。
1.()734=A , ()111=B ,则A B T = 。
⎪⎪⎪⎭⎫⎝⎛734734734 2.设21,αα是n 维向量,令1212ααβ-=,212ααβ+=,213ααβ-=,则向量组321,,βββ的线性相关性是 。
答案 线性相关3.已知实二次型),,(321x x x f = 31212322212232x x x x x x x ++++λ是正定二次型,则参数λ的取值范围为答案 <<-λ315315 4. 设3351110243152113------=D ,D 的),(j i 元的代数余子式记作ij A ,则3231A A += 答案 245.设3阶矩阵A 的特征值为2,3,λ. 若行列式48|2|-=A ,则λ= . 答案λ=-1.6.已知()1,1,1,2,()a a ,,1,2,()a ,1,2,3,()1,2,3,4线性相关,并且1≠a ,a = .--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------第 2 页 共 5 页答案 1/27.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=x A 10100002与⎪⎪⎪⎭⎫ ⎝⎛-=10000002y B 相似,则_________,==y x 。
答案 1,0==y x8.要使矩阵⎪⎪⎪⎭⎫ ⎝⎛---=43211211t A 的秩最小,则__________=t 。
线性代数(A 卷)一﹑选择题(每小题3分,共15分)1。
设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A )AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D )A B B A +=+2。
如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C ) n s - (D) 以上答案都不正确 3。
如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4。
设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫=⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A ) A 的行向量组和列向量组均线性相关 (B )A 的行向量组线性相关,列向量组线性无关 (C ) A 的行向量组和列向量组均线性无关 (D )A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2。
设100210341A -⎛⎫⎪=- ⎪⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5。
设A 为正交矩阵,则A = ;6。
设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7。
2011~2012学年秋季学期线性代数(B )(A 卷)课程考试试卷(解答)一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在每题的空中) 1. 设,A B 都是n 阶矩阵,且它们的行列式分别为3 2 A B ==-,,则AB 2= 62 n -⨯.2.若向量组T T T123(1,2,3),(2,3,4),(3,4,)t ααα===线性相关,则t = 5 .3. 设n 阶矩阵A 与B 相似,且3A E +不可逆,则B 的一个特征值为 3 -. 4.设3阶矩阵A 的特征值互不相同, 若行列式||0=A , 则A 的秩为 2 .5. 若二次型()()222212312332f x ,x ,x x t x t x =+--是正定的,那么t二、选择题(本题满分15分,共有5道小题,每道小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.已知四阶行列式312D 201321=-,则13332A A +的值为【 C 】. (其中ij A 为行列式D 中元素a ij 的代数余子式.)(A) 2; (B) 1; (C) 0; (D) 3. 2. 设12,,,s a a a 均为n 维列向量,下列选项不正确的是【 B 】.(A) 对于任意一组不全为0的数12,,,s k k k 都有s s k a k a k a 1122,0+++≠,则12,,,s a a a 线性无关;(B) 若12,,,s a a a 线性相关,则对于任意一组不全为0数12,,,s k k k 都有s s k a k a k a 1122,0+++=;(C) 12,,,s a a a 线性无关的充分必要条件是此向量组的秩为s ;(D) 若12,,,s a a a 线性无关的必要条件是其中任意两个向量线性无关.3.设3阶矩阵A 的特征值为123221λλλ==-=,,,对应的特征向量依次为123,,p p p ,令()123,,P =p p p ,则1-P AP =【D 】. (A) 200020001-⎛⎫ ⎪ ⎪ ⎪⎝⎭;(B)100020002⎛⎫⎪⎪ ⎪-⎝⎭;(C)200010002⎛⎫⎪ ⎪ ⎪-⎝⎭;(D) 200020001⎛⎫⎪- ⎪ ⎪⎝⎭.4.已知12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是其对应的齐次线性方程组0Ax =的一个基础解系,则Ax b =的通解为【 A 】.(A)k k k k R 112212121()(,)2ααββ+++∈; (B)k k k k R 112212121()(,)2ααββ++-∈。
20122013年理⼯线性代数考试A卷答案《线性代数》考试A 卷答案及评分标准⼀、填空题(共10⼩题,每⼩题2分,共20分)1.已知,A B 均为三阶矩阵,且 (,,),(,,)A B αβγαβδ==,及 2,3A B ==,则272.A B +=2.设,A B 均为三阶矩阵,且 4,2A B ==-,*A 为矩阵A 的伴随矩阵,则⾏列式18(3)27B A -*=-、 3.设矩阵2112A ??= ?-??,E 为2阶单位矩阵,矩阵B 满⾜2BA B E =+,则矩阵1111B -??=、4、设矩阵A 满⾜240A A E +-=,则 11()(2)2A E A E --=+、5.齐次线性⽅程组1231232302030x kx x x x x kx x ++=??++=??+=?只有0解,则k 应满⾜的条件就是 35k ≠、6.设向量组(1,0,1),(2,,1),T T k αβ==-(1,1,4)Ty =--线性相关,则 1k =、7.设3阶矩阵A 的特征值互不相同,若⾏列式0A =, 则矩阵A 的秩为 2 、 8.设3阶矩阵A 的特征值1,2,2,则⾏列式 143AE --=、9.⼆次型221231123(,,)22f x x x x x x x =++的规范形就是 222123y y y +-、10.当t 满⾜ 01t <<时,⼆次型22212312312(,,)2f x x x x x tx tx x =+++为正定⼆次型。
⼆、选择题(共10⼩题,每⼩题2分,共20分)1、若15423214j k a a a a a 就是五阶⾏列式A 的⼀项(除去符号),则有( B ) (A) 3,5j k ==,此项为正 (B) 3,5j k ==,此项为负 (C) 5,3j k ==,此项为正 (D) 以上全不对2.若三阶⾏列式D 的第三⾏的元素依次为1、2、3,它们的余⼦式分别为2、3、4,则⾏列式D =( C )(A) -8 (B) -20 (C) 8 (D) 20 3.已知向量组123,,ααα线性相关,234,,ααα线性⽆关,则: ( A ) (A)1α必能由234,,ααα线性表⽰。
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
4.0000000004321a a a a =( )(A) 4321a a a a (B ) -4321a a a a (C) 24321a a a a (D)-24321a a a a 6.设A 为n 阶行列式,则kA =( ) (A)A k (B)Ak⋅ (C ) A kn(D) A kn⋅7.设A ,B 均为n (n>2) 阶行列式,则( )(A)B A B A +=+ (B) B A B A -=-(C ) B A AB ⋅= (D)B A OBA O ⋅=9.已知333231232221131211a a a a a a a a a =3,则232333132222321221123111352352352a a a a a a a a a a a a ---=( ) (A) 18 (B ) -18 (C) -9 (D)2710.41332211000000a b a b b a b a =( )(A) 4321a a a a -4321b b b b (B) 4321a a a a +4321b b b b (C) (21a a -21b b )(43a a -43b b ) (D ) (41a a -41b b )(32a a -32b b )11.记行列式347534453542333322212223212---------------x x x xx x x x x x x x x x x x 为f(x),则方程f(x)=0根的个数为(A) 1 (B ) 2 (C) 3 (D)4 12.设A 为n 阶方阵,则A =0的必要条件是 (A) A 的两行元素对应成比例(B ) A 中必有一行为其余行的线性组合 (C) A 中有一行元素全为零(D) A 中任一行为其余行的线性组合13.是A 三阶矩阵,A =2,A 的伴随矩阵为*A ,则*A 2=( )(A) 4 (B) 8 (C) 16 (D ) 3215.如果D=333231232221131211a a a a a a a a a =M ≠0, 2322213332311312111222222222a a a a a a a a a D =,那么1D =( ) (A) 2M (B)-2M (C) 8M (D ) -8M16. 如果D=333231232221131211a a a a a a a a a =1,1D = 333231312322212113121111324324324a a a a a a a a a a a a ---,那么1D =( ) (A) 8 (B )-12 (C) 24 (D) -2417.已知11111321--x 是关于x 的一次多项式,该式中x 的系数为( ) (A) -1 (B) 2 (C) 3 (D ) 119.已知a ,b 为整数,且满足081100000=-a bb a,则( ) (A) a=1,b=0 (B )a=0,b=0 (C)a=0,b=1 (D) a=1,b=1 20.设A 为三阶矩阵,A =a, 则其伴随矩阵*A 的行列式*A=( )(A) a (B ) 2a (C) 3a (D) 4a 21.设A ,B ,C 为n 阶方阵,且ABC=I ,则( )(A) ACB=I (B)CBA=I (C) BAC=I (D ) BCA=I 22.设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则( ) (A )A A =* (B )1-*=n AA (C )nA A=*(D )1-*=AA23.设A ,B 均为n ×n 阶矩阵,则必有( )(A )B A B A +=+ (B )AB=BA(C )BA AB = (D )111)(---+=+B A B A24.设A ,B 为n 阶方阵,且AB= O ,则必有( )(A )若r(A)=n, 则B=O (B )若A ≠O, 则B=O(C )或者A= O , 或者B=O (D )O B A =+25.设A 是n ×m 阶矩阵,C 是n 阶可逆矩阵,r(A)=r ,B=AC ,r(B)= 1r ,则( ) (A ) r >1r (B ) r<1r(C ) r =1r (D )1r 和r 的关系依而定 26.若A 为n 阶可逆矩阵,则下列各式正确的是( ) (A )112)2(--=A A (B )O AA ≠*(C )AAA 11)(--*=(D )T T T A A ])[(])[(111---=27.设A ,B 均为n 阶非零矩阵,且AB =O,则A 和B 的秩( ) (A) 必有一个等于零 (B)一个等于n ,一个小于n (C) 都等于n (D ) 都小于n28.设n 阶方阵A 经初等变化后所得方阵记为B ,则( ) (A) B A = (B) B A ≠(C) B A ⋅>0 (D ) ,若0=A 则0=B 29.A ,B 均为n 阶矩阵,下列各式中成立的为( ) (A) 2222)(B AB A B A ++=+ (B) T T T B A AB =)((C) O B O A O AB ===或则, (D ) ,若0=+AB A 则00=+=B I A ,或30.设A ,B ,B A +,11--+B A 均为n 阶可逆矩阵,则111)(---+BA等于(A )11--+B A (B )B A + (C )B B A A 1)(-+ (D )1)(-+B A31.设n 元齐次线性方程组AX=0的系数矩阵A 的秩为r ,则AX=0有非零解的充分必要条件是( )(A) r=n (B ) r<n (C) r ≥n (D) r>n 32.设A 是n 阶可逆矩阵,*A 是A 伴随矩阵,则( )(A ) 1-*=n AA (B) A A =* (C) nA A =* (D) 1-*=A A33.设n 阶矩阵A 非奇异(n ≥2),*A 是A 伴随矩阵,则( ) (A ) ()A A A n 2-**= (B) ()A A A n 1+**= (C) ()A AAn 1-**= (D) ()A AAn 2+**=34.设n 维向量⎪⎭⎫⎝⎛=21,0,0,21 α, 矩阵A=I -αα',B=I+2αα',其中I 为n 阶单位矩阵,则(A )0 (B )-I (C )I (D )I+αα'35.设A ,B 为同阶可逆矩阵,则 (A) AB=BA(B) 存在可逆矩阵P 使得B AP P =-1 (C) 存在可逆矩阵C 使得B AC C =' (D) 存在可逆矩阵P 和Q 使得B PAQ = 36.下列命题中不正确的是( ) (A) 初等矩阵的逆也是初等矩阵 (B ) 初等矩阵的和也是初等矩阵 (C) 初等矩阵都是可逆的 (D) 初等矩阵的转置仍初等矩阵38.设A 是任一阶方阵,*A 是A 伴随矩阵,又k 为常数,且k ≠0,±1,则必有()*kA =(A) *A k (B ) *-A kn 1(C) *A k n (D) *-A k139.设A ,B ,C 为n 阶方阵,若AB=BA ,AC=CA ,则ABC 等于(A ) BAC (B )CBA (C )BCA (D )CAB40.622211211=a a a a 若,则12020221221112--a a a a 的值为( ) (A) -12 (B )12 (C) 18 (D) 0 41.设A ,B 都是n 阶矩阵,且AB =O,则下列一定成立的为( ) (A )A= O , 或者B=O (B )A ,B 都不可逆 (C )A ,B 中至少有一个不可逆 (D )A+B=O42.设A ,B 均为n 阶矩阵,且满足等式AB =O,则必有( ) (A ),0=A 或0=B (B )A= O , 或B=O(C )A+B=O (D )O B A =+ 44.设A ,B 均为n 阶可逆矩阵,则AB 的伴随矩阵*)(AB = (A) **B A (B) 11--B A AB(C) 11--A B (D ) **A B46.设A ,B 均为n 阶矩阵,且22))((B A B A B A -=-+,则必有( ) (A )A= B (B )A=I (C )AB=BA (D )B=I 47.设A 为n 阶矩阵,且0≠=a A ,*A 是A 的伴随矩阵,则*A=( )(A )1-n a (B )1+n a (C )n a (D )a48.已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=2111α,⎪⎪⎪⎭⎫ ⎝⎛=1302α,⎪⎪⎪⎭⎫ ⎝⎛=7033α与向量⎪⎪⎪⎭⎫ ⎝⎛-=2211β,⎪⎪⎪⎭⎫ ⎝⎛=5122β,⎪⎪⎪⎭⎫ ⎝⎛=333x β等秩,则x=( )(A) -1 (B) -2 (C) 3 (D ) 1 49.设有向量组()4,2,1,11-=α,()2,1,3,02=α,()14,7,0,33=α,()0,2,2,14-=α,()10,5,1,25=α,则该向量组的极大线性无关组是( )(A) ;321,,ααα (B ) ;421,,ααα (C) ;521,,ααα (D) ;5421,,,αααα 50.已知向量组4321,,,αααα线性无关,则向量组4312ααα++,42αα-,43αα+,2αα+,3212ααα++的秩是(A )1 (B )2 (C )3 (D )4 51.设A ,B 为n 阶方阵,A ≠0,AB=0则( )(A) B=0 (B ) 00==A B 或 (C) BA=0 (D) ()222B A B A +=-52.A ,B 为n 阶方阵,则( ) (A) A 或B 可逆,必有AB 可逆 (B ) A 或B 不可逆,必有AB 不可逆 (C) A 且B 可逆,必有A+B 可逆(D) A 且B 不可逆,必有A+B 不可逆53.A 为n 阶方阵,则下列矩阵中是对称矩阵的有( ) (A)A A '- (B)()阶矩阵为任意n C C CA ' (C )A A ' (D)A A '+254.设A 为三阶方阵,且2=A ,则*-+A A 14=( )(A) 214(B) 12 (C)6 (D ) 10855.设A ,B 为n 阶方阵,且()E AB =2,则下列各式中可能不成立的是( ) (A )1-=B A (B)1-=B ABA (C)1-=A BAB (D)E BA =2)( 56.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 57.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B =-1 (D ) 不一定 58.设A 为n ×n 阶矩阵,如果r(A)<n , 则(A) A 的任意一个行(列)向量都是其余行(列)向量的线性组合(B) A 的各行向量中至少有一个为零向量(C )A 的行(列)向量组中必有一个行(列)向量是其余各行(列)向量的线性组合 (D)A 的行(列)向量组中必有两个行(列)向量对应元素成比例 59.设向量组s ααα,,2,1 线性无关的充分必要条件是(A) s ααα,,2,1 均不为零向量(B) s ααα,,2,1 任意两个向量的对应分量不成比例 (C) s ααα,,2,1 中有一个部分向量组线性无关(D ) s ααα,,2,1 中任意一个向量都不能由其余S-1个向量线性表示60.向量组的秩就是向量组的 (A) 极大无关组中的向量 (B) 线性无关组中的向量 (C ) 极大无关组中的向量的个数 (D) 线性无关组中的向量的个数 61.下列说法不正确的是( ) (A ) 如果r 个向量r ααα,,2,1 线性无关,则加入k 个向量k βββ,,2,1 后,仍然线性无关 (B) 如果r 个向量r ααα,,2,1 线性无关,则在每个向量中增加k 个分量后所得向量组仍然线性无关 (C)如果r 个向量r ααα,,2,1 线性相关,则加入k 个向量后,仍然线性相关 (D)如果r 个向量r ααα,,2,1 线性相关,则在每个向量中去掉k 个分量后所得向量组仍然线性相关62.设n 阶方阵A 的秩r<n ,则在A 的n 个行向量中 (A ) 必有r 个行向量线性无关(B) 任意r 个行向量均可构成极大无关组 (C) 任意r 个行向量均线性无关(D) 任一行向量均可由其他r 个行向量线性表示 63.设方阵A 的行列式0=A ,则A 中 (A) 必有一行(列)元素为零 (B) 必有两行(列)成比例(C ) 必有一行向量是其余行(列)向量的线性组合 (D) 任一行向量是其余行(列)向量的线性组合 64.设矩阵A=),,,,(54321ααααα经过初等行变换后变为⎪⎪⎪⎭⎫⎝⎛-=311012110231111A ,则A 的秩为3,i α为A 的第i 列向量, 且( )成立 (A ) s αααα++=214 (B) s αααα++=21423 (C) s αααα++-=2142 (D)列向量组线性无关 65.设n 元齐次线性方程组的一个基础解系为η1 ,η2 ,η3 ,η4则()也是该齐次线性方程组的基础解系 (A )1443,3221,,ηηηηηηηη----(B )1443,3221,,ηηηηηηηη++++(C )4321321,211,,ηηηηηηηηηη++++++(D )1443,3221,,ηηηηηηηη--++66.设A 是m ×n 矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是( ) (A )A 的列向量线性无关 (B)A 的列向量线性相关 (C)A 的行向量线性无关 (D)A 的行向量线性相关67.n 元线性方程组AX=b ,r (A ,b )<n ,那么方程AX=b(A)无穷多组解 (B)有唯一解 (C)无解 (D )不确定 68.设向量组321,,ααα线性无关,则下列向量组中,线性无关的是(A) 133221,,αααααα-++(B) 3213221,,ααααααα++++(C ) 1332213,32,2αααααα+++(D) 321321321553,222,ααααααααα-++-++69.向量组s ααα,,,21 线性无关的充分条件是 (A)s ααα,,,21 均不为零向量(B)s ααα,,,21 中任意两个向量的分量均不成比例(C )s ααα,,,21 中任意一向量均不能由其余s-1个向量线性表示 (D)s ααα,,,21 中有一部分向量线性无关70.设m ααα,,,21 均为n 维向量, 那么下列结论正确的是( ) (A) 若02211=+++m m k k k ααα , 则m ααα,,,21 线性相关(B )若对任一组不全为零的数m k k k ,,,21 都有02211≠+++m m k k k ααα ,则m ααα,,,21 线性无关(C)若m ααα,,,21 线性相关则对任一组不全为零的数m k k k ,,,21 都有02211=+++m m k k k ααα(D) 若000021=+++m ααα , 则m ααα,,,21 线性无关 71.已知向量组4321,,,αααα线性无关则向量组 (A) 14433221,,,αααααααα++++线性无关 (B) 14433221,,,αααααααα----线性无关 (C) 14433221,,,αααααααα-+++线性无关 (D) 14433221,,,αααααααα--++线性无关72.当向量组m ααα,,,21 线性相关时, 使等式02211=+++m m k k k ααα 成立的常数m k k k ,,,21 为( )(A)任意一组常数(B)任意一组不全为零的常数(C )某些特定的不全为零的常数(D)唯一一组不全为零的常数 73.下列命题正确的是( )(A) 若向量组线性相关, 则其任意一部分向量也线性相关 (B) 线性相关的向量组中必有零向量(C) 向量组中部分向量线性无关, 则整个向量组必线性无关 (D ) 向量组中部分向量线性相关, 则整个向量组必线性相关74.如果向量b 可由向量组s ααα,,,21 线性表示, 则下列结论中哪个正确 (A )存在一组数s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立(B)存在一组不全为零的数使s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立 (C)存在一组全为零的数s k k k ,,,21 , 使等式s s k k k b ααα+++= 2211成立 (D)对b 的线性表达式唯一75.设向量组s ααα,,,21 的秩为r ,则 (A) 必定r<s(B) 向量组中任意小于r 个向量部分组无关 (C) 向量组中任意r 个向量线性无关 (D ) 向量组任意r+1个向量线性相关 76.设向量组Ⅰ: ⎪⎪⎪⎭⎫⎝⎛=3121111a a a α,⎪⎪⎪⎭⎫ ⎝⎛=3222122a a a α,⎪⎪⎪⎭⎫⎝⎛=3323133a a a α 向量组Ⅱ: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=413121111a a a a β,⎪⎪⎪⎪⎪⎭⎫⎝⎛=423222122a a a a β,⎪⎪⎪⎪⎪⎭⎫⎝⎛=433323133a aa a β, 则( ) (A) 向量组Ⅰ相关⇒Ⅱ相关 (B )Ⅰ无关⇒Ⅱ无关 (C)Ⅱ无关⇒Ⅰ无关 (D)Ⅰ相关⇒Ⅱ相关77.设向量组Ⅰ: ()1111,,c b a =α,()2222,,c b a =α,()3333,,c b a =α向量组Ⅱ:()11111,,,d c b a =β,()22222,,,d c b a =β,()33333,,,d c b a =β, 则( )(A) 向量组Ⅰ相关⇒Ⅱ相关 (B )Ⅰ无关⇒Ⅱ无关 (C)Ⅱ无关⇒Ⅰ无关 (D)Ⅰ相关⇒Ⅱ相关 78.若s ααα,,,21 为n 维向量组,且秩(s ααα,,,21 )=r, 则 (A) 任意r 个向量线性无关 (B ) 任意r+1个向量线性相关(C) 该向量组存在唯一极大无关组(D) 该向量组在s>r 时, 由若干个极大无关组79.设t ααα,,,21 和s βββ,,,21 为两个n 维向量组, 且秩(t ααα,,,21 )=秩(s βββ,,,21 )=r, 则 (A)两向量组等价, 也即可相互线性表出 (B)秩(t ααα,,,21 ,s βββ,,,21 )=r(C )当t ααα,,,21 被s βββ,,,21 线性表出时,两向量组等价 (D)当s=t 时,两向量组等价80.设向量s αααα+++= 21(s>1), 而s s ααβααβααβ-=-=-=,,,221 则( )(A )秩(s ααα,,,21 )=秩(s βββ,,,21 ) (B)秩(s ααα,,,21 )>秩(s βββ,,,21 ) (C)秩(s ααα,,,21 )<秩(s βββ,,,21 )(D)不能确定秩(s ααα,,,21 )与秩(s βββ,,,21 )间的关系 81.向量组s ααα,,,21 线性无关的充分条件是 (A) s ααα,,,21 均为非零向量(B) s ααα,,,21 中任意两个向量的分量不成比例(C ) s ααα,,,21 中任意一个向量不能被其余向量线性表示 (D) s ααα,,,21 中有一个部分组线性无关 82.设A 为n 阶方阵, 且r(A)=r<n, 则中 (A )必有r 个行向量线性无关 (B)任意r 个行向量线性无关 (C)任意r 个行向量构成极大无关组(D)任意一个行向量都能被其他r 个行向量线性表示 83.A 是m ×n 矩阵, r(A)=r 则A 中必( )(A)没有等于零的r-1阶子式至少有一个r 阶子式不为零 (B )有不等于零的r 阶子式所有r+1阶子式全为零 (C)有等于零的r 阶子式没有不等于零的r+1阶子式 (D)任何r 阶子式都不等于零任何r+1阶子式都等于零 84.设s ααα,,,21 和t βββ,,,21 均为nR 中向量,且秩(s ααα,,,21 )=秩(t βββ,,,21 )=r ,则( ) (A)两个向量组相等价(B)秩(s ααα,,,21 ,t βββ,,,21 )=r(C )当s ααα,,,21 能被t βββ,,,21 线性表示时两向量组等价 (D)当s=t 时两向量组等价 85.能表成向量()1,0,0,01=α,()1,1,1,02=α,()1,1,1,13=α的线性组合的向量是( ) (A) ()1,1,0,0 (B )()0,1,1,2 (C)()1,0,1,3,2- (D)()0,0,0,0,86.已知()3,2,11=α, ()2,1,32-=α,()x ,3,23=α 则x=( )时321,,ααα线性相关。
课程编号:A073122 北京理工大学2012-2013学年第一学期线性代数A 试题 A 卷班级 ________ 学号 _________ 姓名 __________ 成绩 ___________一、(10分)已知3阶方阵123035002A ⎛⎫⎪= ⎪ ⎪⎝⎭,计算行列式*123A I+。
二、(10分) 设423110, 2123A AX A X ⎛⎫ ⎪⎪==+ ⎪ ⎪-⎝⎭, 求X 。
三、(10分)已知线性空间4][x F 的自然基为231,,,x x x 。
(1) 证明:2231,12,123,1234x x x x x x ++++++为4][x F 的一个基;(2) 求自然基231,,,x x x 到基2231,12,123,1234x x x x x x ++++++的过渡矩阵,以及23()1h x x x x =--+在后一个基下的坐标。
四、(10分)已知123(1,0,1), (2,2,0), (0,1,1)TTTααα=-==。
(1) 求向量组123,,ααα的一个极大无关组;(2) 求生成子空间123(,,)L ααα的一个标准正交基。
五、(10分)设A 是5阶方阵,且已知存在5阶可逆矩阵P ,使得111112P AP --⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭试写出A 的初等因子,同时判断P 的哪几列是A 的特征向量。
六、(10分)在多项式空间4[]R x 中定义变换σ:233012330201()()a a x a x a x a a a x a a x σ+++=-+++(1)证明:σ是4[]R x 上的线性变换;(2)求σ在4[]R x 的自然基231,,,x x x 下的矩阵,并判断σ是否可逆。
七、(10分)假设A 是m n ⨯的实矩阵,证明:()()TA A A =秩秩八 (10分)已知(1,1,1)T ξ=-是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量, (1)确定参数a , b 及特征向量ξ所对应的特征值; (2)判断A 是否可以相似对角化,说明理由。
XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。
每小题2分,共10分)。
1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。
1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
2010-2011学年第二学期期末试卷-A 卷
线性代数B
课程号: 11020063B 课序号: 01-10 开课学院: 数学与数量经济学院
一、填空题(每小题3分,共15分)
1.行列式3332
31
232221
13
1211
a a a a a a a a a D ==1,33
32
3131
23222121
13
1211111-32-32-32a a a a a a a a a a a a D +++=,
则1D 的值为__________. 2.设A 为34⨯的矩阵且秩为2,又3维向量21,ηη是方程组b Ax =的两个不等的解,则对应的齐次方程组0=Ax 的通解为 .
3.设矩阵⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-=100010321A ,*
A 为A 的伴随矩阵,则=-*1)(A _____.
4.设21,αα是n 维向量,令1212ααβ-=,212ααβ+=,213ααβ-=,则向量组321,,βββ的线性相关性是 .
5.设3阶方阵B A 和,且它们的秩为3)(2)(==B r A r ,
,则秩 =)(**B A r __________. 二、单项选择题(每小题3分,共15分)
1.设D 是n 阶行列式,j i A 是D 中元素j i a 的代数余子式,则下面正确的是 .
(A)
01=∑=n
i ij ij
A a
;
(B)
01
=∑=n
j ij ij
A a
;
(C)
D A a
n
j ij ij
=∑=1
;
(D)
D A a
n
i i i =∑=1
21
2.已知A 为n 阶方阵,且满足E A 22=,E 为单位阵,则=--1
)
(E A .
(A ) A E +, (B ) A E -, (C ) E A -, (D ) A
3. 设⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t .
(A ) -4 (B ) -5 (C ) -6 (D ) 4
4. 设12,λλ是方阵A 的特征值,12,αα分别是对应于12,λλ的特征向量,则 . (A ) 12λλ=时,12,αα一定成比例;
(B ) 12λλ≠时,若312λλλ=+也是特征值,则对应特征向量为12αα+; (C ) 12λλ≠时,12αα+不可能是A 的特征向量; (D ) 10λ=时,应有10α=。
5.设⎪⎪⎪
⎭
⎫ ⎝⎛=50413102x A 可以相似对角化,则x 为 .
(A ) -3, (B ) 3, (C ) 0, (D )5
三、(10分)设⎪⎪
⎪
⎪
⎪
⎭
⎫
⎝
⎛+++=x x
x
A 111111111
求A
2010-2011学年第二学期期末试卷-A 卷
四、(10分) 设矩阵⎪⎪⎪
⎭
⎫ ⎝⎛=100021012A ,矩阵X 满足方程E XA AXA +=**2,其中*A 为A 的
伴随矩阵,求矩阵X 。
五、(10分)
已知()T
1,2,2
,11-=α,()T
5,2,3,12-=α,()T 4,0,5,23--=α,
()T 3,1,4,34--=α, ()T 5,5,5,15--=α,试求这个向量组的秩和一个极大无关
组,并把其余向量用此极大无关组线性表示。
六、(15分) 讨论λ为何值时,方程组⎪⎩⎪
⎨⎧=+++=+++=+++λ
λλλ321
321321)1(3)1(0)1(x x x x x x x x x 有无穷多解?并求出
其通解。
2010-2011学年第二学期期末试卷-A 卷
七、(15分) 设⎪⎪⎪
⎭
⎫ ⎝⎛----=020212022A ,求一个正交矩阵P ,使AP P AP P T =-1为一个对
角矩阵。
八、(10分)n R 中,向量组321,,ααα线性无关,A 为n 阶矩阵,使向量组3
21,,αααA A A 线性相关,问矩阵A 应满足什么条件,并给出证明。