2013年浙江省舟山市数学中考真题(word版含答案)
- 格式:doc
- 大小:4.20 MB
- 文档页数:10
【2013版中考12年】某某省某某市、某某市2002-2013年中考数学试题分类解析 专题03 方程(组)和不等式(组)一、选择题1. (2002年某某某某、某某4分)不等式3x 1->0的解是【 】A.x <31-B.x <31C.x >31-D.x >31【答案】D 。
【考点】解一元一次不等式。
【分析】13x 1x 3>>⇒。
故选D 。
2. (2002年某某某某、某某4分)二元二次方程组22x y 5x y 1⎧+=⎨-=⎩的一个解是【 】A.x 1y 2=-⎧⎨=-⎩B. x 1y 2=-⎧⎨=⎩C. x 1y 2=⎧⎨=-⎩D. x 1y 2=⎧⎨=⎩【答案】A 。
【考点】方程组的解。
3. (2003年某某某某、某某4分)若x 1,x 2是一元二次方程3x 2+x―1=0的两个根,则1211x x +的值是【 】A .2 B.1 C .-1 D .3 【答案】B 。
【考点】一元二次方程根与系数的关系,代数式求值,整体思想的应用。
∴1212121x x 113===11x x x x 3-++⋅-。
故选B 。
4. (2003年某某某某、某某4分)如图,用8块相同的长方形地砖拼成一个矩形地面,则每块长方形地砖地长和宽分别是【】A .48cm,12cm B.48cm,16cm C.44cm,16cm D. 45cm,15cm【答案】D。
5. (2004年某某某某、某某4分)若方程x2-4x+m=0有两个相等的实数根,则m的值是【】A.4B.-4C. 14D.14【答案】A。
【考点】一元二次方程根的判别式。
6. (2005年某某某某、某某4分)已知关于x的一元二次方程x2-2x+a=0有实数根,则实数a的取值X围是【】A .a≤1 B.a<1 C. a≤-1 D. a≥1【答案】A。
【考点】一元二次方程根的判别别式。
7. (2005年某某某某、某某4分)方程组x y 7xy 12+=⎧⎨=⎩的一个解是【 】A .x 2y 5=⎧⎨=⎩B .x 6y 2=⎧⎨=⎩ C.x 4y 3=⎧⎨=⎩ D.x 3y 4=-⎧⎨=-⎩8. (2005年某某某某、某某4分)“某市位处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××。
ABOCD(第3题)水平面主视方向(第5题)一、选择题(本题有10个小题,每小题3分,共30分)1. -6的绝对值是A . -6B .6C .61 D .61- 2. 一元二次方程0)1(=-x x 的解是A . 0=xB . 1=xC . 0=x 或1=xD .0=x 或1-=x 3. 如图,点A 、B 、C 、D 、O都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为A . 30°B . 45°C .90°D . 135°4. 下列计算正确的是A . 32x x x =⋅B . 2x x x =+C . 532)(x x =D . 236x x x =÷5. 两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是A . 两个外离的圆B . 两个外切的圆C . 两个相交的圆D . 两个内切的圆 6. 如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为A . 6B . 8C .10D . 127. 如图,边长为4的等边△ABC 中,DE 为中位线,2011年浙江舟山中考数学试题(满分120分,考试时间120分钟)(第6题) ABO(第10题)FABCHEG①②③④ ⑤则四边形BCED 的面积为 A .32 B .33 C .34 D .368. 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是8375285842587036折线统计图本数月份A . 极差是47B . 众数是42C . 中位数是58D . 每月阅读数量超过40的有4个月9. 一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是A . 2010B . 2011C . 2012D . 201310. 如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为A .48cmB .36cmC .24cmD .18cm二、填空题(本题有6个小题,每小题4分,共24分)11. 当x 时,分式x31有意义. 12. 从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是_________.(第14题) ABCD(第15题)c+(第16题) ADCOE13. 分解因式:822-x =____________.14. 如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = 度.15. 如图,已知二次函数c bx x y ++=2的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.16. 如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 分别交OC 于点E ,交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①2AEC DEO S S ∆∆=;②AC =2CD ;③线段DO 是DE 与DA 的比例中项;④AB CE CD ⋅=22.其中正确结论的序号是__________. 8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17. (1)计算:202(3)+--(2)化简:2()(2)a b a a b ++-18. 解不等式组:⎩⎨⎧≤-+>+1)1(2,13x x x 并把它的解在数轴上表示出来.19. 如图,已知直线x y 2-=经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数2ky x=(0≠k )的图象上. (1)求点P ′的坐标;(2)求反比例函数的解析式,并直接写出当2y <2时自变量x20. 根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1) 求第六次人口普查小学学历的人数,并把条形统计图补充完整; (2) 求第五次人口普查中,该市常住人口每万人中具有初中学历的人数;(第19题)xk 第五次人口普查中某市常住人口学历状况扇形统计图38%小学高中32%初中17%其他3%大学第六次人口普查中某市常住人口学历状况条形统计图(3)第六次人口普查结果与第五次相比,每万人中初中学历人数增加了多少人?21.目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,在高速公路段行驶了4.5小时;沿同一高速路段返回时平均速度提高了10千米/小时,比去时少用了半小时.(1)求舟山与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见下表:我省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:5++=baxy,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.22.如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线;(2)若点E是BC上一点,已知BE=6,tan∠ABC=23,tan∠AEC=53,求圆的直径.大桥名称舟山跨海大桥杭州湾跨海大桥大桥长度48千米36千米过桥费100元80元(第22题)ACED23. 以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH .(1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明); (2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°), ① 试用含α的代数式表示∠HAE ; ② 求证:HE =HG ;③ 四边形EFGH 是什么四边形?并说明理由.24. 已知直线3+=kx y (k <0)分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.(1)当1-=k 时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1).(第23题图1)AB CDHE FG A BCDHEFG(第23题图2)E BFGD HAC(第23题图3)① 直接写出t =1秒时C 、Q 两点的坐标;② 若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值.(2)当43-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D (如图2), ①求CD 的长; ②设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?(第24题图1)(第24题图2)参考答案浙江舟山、嘉兴一、选择题二、填空题11.x ≠312.1313.2(x +2)(x -2)14.11015.316.①④三、解答题:17.(1)原式=2. (2)原式=222a b +. 18.不等式组的解是-2<x ≤1. 19.(1)P ′(2,4).(2)反比例函数的解析式是28y x=.自变量x 的取值范围是x <0或x >4. 20.(1)130万人, (2)3200人 (3)800人.21.(1)舟山与嘉兴两地间的高速公路路程为360千米. (2)a =0.4. 22.(1)证明略 (2)圆的直径为10. 23(1)四边形EFGH 是正方形. (2)①∠HAE =90°+α.②证明略24.(1)①C (1,2),Q (2,0). ②分两种情形讨论:情形一:当△AQC ∽△AOB 时,t =1.5. 情形二:当△ACQ ∽△AOB 时,t =2. (2)①CD 1516=.36 25秒时,h的值最大.②当t为。
【2013版中考12年】某某省某某市、某某市2002-2013年中考数学试题分类解析专题10 四边形一、选择题1. (2005年某某某某、某某4分)挪威数学家阿贝尔,年轻时就利用阶梯形,发现了一个重要的恒等式——阿贝尔公式:右图是一个简单的阶梯形,可用两种方法,每一种把图形分割成为两个矩形。
利用它们之间的面积关系,可以得到:a1b1+a2b2=【】A. a1(b1-b2)+(a1+a2)b12(b2-b1)+(a1+a2)b2C. a1(b1-b2)+(a1+a2)b22(b1-b2)+(a1+a2)b1【答案】C。
【考点】矩形的面积。
2. (2007年某某某某、某某4分)下图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是【】A.这两个四边形面积和周长都不相同B.这两个四边形面积和周长都相同C.这两个四边形有相同的面积,但I的周长大于Ⅱ的周长D.这两个四边形有相同的面积,但I的周长小于Ⅱ的周长【答案】D。
【考点】网格问题,勾股定理。
3. (2008年某某某某、某某4分)如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为【】A.43B.34C.45D.35【答案】D。
【考点】正方形的性质,两圆外切的性质,勾股定理,锐角三角函数定义。
4. (2011年某某某某、某某3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD 面积是11cm2,则①②③④四个平行四边形周长的总和为【】(A)48cm (B)36cm(C)24cm (D)18cm【答案】A。
【考点】菱形的性质,平行四边形的性质。
二、填空题1.(2008年某某某某、某某5分)如图,菱形ABCD中,已知∠ABD=20°,则∠C的大小是▲ 度.【答案】140。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析专题05 数量和位置变化一、选择题的自变量x的取值范围是【】1. (2003年浙江舟山、嘉兴4分)函数y=x2A .x≤2 B.x<2 C.x≥2 D .x>2【答案】C。
【考点】函数自变量的取值范围,二次根式有意义的条件。
2. (2004年浙江舟山、嘉兴4分)为解决药价虚高给老百姓带来的求医难的问题,国家决定对某药品价格分两次降价。
若设平均每次降价的百分率为x,该药品的原价是m元,降价后的价格是y 元,则y与x之间的函数关系式是【】A.y=2m(1-x)B.y=2m(1+x)C.y=m(1-x)2D.y=m(1+x)2【答案】C。
【考点】由实际问题列函数关系式(增长率问题)。
3. (2004年浙江舟山、嘉兴4分)如图,等腰直角三角形ABC(∠C=Rt∠)的直角边长与正方形MNPQ的边长均为4cm,CA与MN在直线l上,开始时A点与M点重合;让△ABC向右平移;直到C 点与N点重合时为止。
设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致是【】A. B. C. D.【答案】B。
【考点】平移问题的函数图象,正方形和等腰直角三角形的性质。
4. (2007年浙江舟山、嘉兴4分)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为【】A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)【答案】C。
【考点】平面直角坐标系中各象限点的特征。
时,5. (2008年浙江舟山、嘉兴4分)一个函数的图象如图,给出以下结论:①当x0函数值最大;②当0x 2<<时,函数y 随x 的增大而减小;③存在00x 1<<,当0x x =时,函数值为0.其中正确的结论是【 】A .①②B .①③C .②③D .①②③【答案】C 。
2013年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不得分)1.(4分)﹣2的绝对值是()A.2B.﹣2C.0D.【考点】15:绝对值.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)计算3a•(2b)的结果是()A.3ab B.6a C.6ab D.5ab【考点】49:单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:3a•(2b)=3×2a•b=6ab.故选:C.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.3.(4分)地球半径约为6400000米,则此数用科学记数法表示为()A.0.64×109B.6.4×106C.6.4×104D.64×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 400 000=6.4×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图象判定则可.【解答】解:从正面可看到从左往右三列小正方形的个数为:1,1,2.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(4分)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解答】解:根据题意可得:袋子中有3个白球,2个黄球和1个红球,共6个,从袋子中随机摸出一个球,它是黄球的概率2÷6=.故选:B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(4分)绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选:D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.7.(4分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°【考点】MP:圆锥的计算.【分析】设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,然后设正圆锥的侧面展开图的圆心角是n°,利用弧长的计算公式即可求解.【解答】解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选:D.【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(4分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.【考点】E6:函数的图象.【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【解答】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.【点评】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.9.(4分)小敏在作⊙O的内接正五边形时,先做了如下几个步骤:(1)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()A.BD2=OD B.BD2=OD C.BD2=OD D.BD2=OD 【考点】MM:正多边形和圆.【分析】首先连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,然后由勾股定理可求得BM与OD的长,继而求得BD2的值.【解答】解:如图2,连接BM,根据题意得:OB=OA=1,AD⊥OB,BM=DM,∵OA的垂直平分线交OA于点M,∴OM=AM=OA=,∴BM==,∴DM=,∴OD=DM﹣OM=﹣=,∴BD2=OD2+OB2===OD.故选:C.【点评】此题考查了勾股定理、线段垂直平分线的性质以及分母有理化的知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(4分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:50【考点】GA:反比例函数的应用.【专题】16:压轴题.【分析】第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.【解答】解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b得k1=10,b=30∴y=10x+30(0≤x≤7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入y=得k=700,∴y=,将y=30代入y=,解得x=;∴y=(7≤x≤),令y=50,解得x=14.所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间段内,故不可行;选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤时间段内,故不可行;选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x ≤时间段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.故选:A.【点评】本题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题.同学们在解答时要读懂题意,才不易出错.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣y2=(x+y)(x﹣y).【考点】54:因式分解﹣运用公式法.【分析】因为是两个数的平方差,所以利用平方差公式分解即可.【解答】解:x2﹣y2=(x+y)(x﹣y).故答案是:(x+y)(x﹣y).【点评】本题考查了平方差公式因式分解,熟记平方差公式的特点:两项平方项,符号相反,是解题的关键.12.(5分)分式方程=3的解是x=3.【考点】B3:解分式方程.【专题】11:计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(5分)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有22只,兔有11只.【考点】9A:二元一次方程组的应用.【分析】设鸡有x只,兔有y只,就有x+y=33,2x+4y=88,将这两个方程构成方程组求出其解即可.【解答】解:设鸡有x只,兔有y只,由题意,得:,解得:,∴鸡有22只,兔有11只.故答案为:22,11.【点评】本题考查了列二元一次方程解生活实际问题的运用,二元一次方程的解法的运用,根据条件找到反映全题题意的等量关系建立方程是关键.14.(5分)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.【考点】G6:反比例函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】根据反比例函数的性质得出B点坐标,进而得出A点坐标.【解答】解:如图所示:∵点A与双曲线y=上的点B重合,点B的纵坐标是1,∴点B的横坐标是,∴OB==2,∵A点可能在x轴的正半轴也可能在负半轴,∴A点坐标为:(2,0),(﹣2,0).故答案为:2或﹣2.【点评】此题主要考查了勾股定理以及反比例函数的性质等知识,根据已知得出BO的长是解题关键.15.(5分)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.【考点】KH:等腰三角形的性质.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP7P8,∠AP8P7,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.16.(5分)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8.【考点】RB:几何变换综合题.【专题】16:压轴题.【分析】如解答图所示,本题要点如下:(1)证明矩形的四个顶点A、B、C、D均在菱形EFGH的边上,且点A、C分别为各自边的中点;(2)证明菱形的边长等于矩形的对角线长;(3)求出线段AP的长度,证明△AOP为等腰三角形;(4)利用勾股定理求出线段OP的长度;(5)同理求出OQ的长度,从而得到PQ的长度.【解答】解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠P AF+∠P AE=2∠P AB+2∠P AD=2(∠P AB+∠P AD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.【点评】本题是几何变换综合题,难度较大.首先根据题意画出图形,然后结合轴对称性质、矩形性质、菱形性质进行分析,明确线段之间的数量关系,最后由等腰三角形和勾股定理求得结果.三、解答题(本大题共有8小题,第17--20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出毕必要的文字说明、演算步骤或证明过程)17.(8分)(1)化简:(a﹣1)2+2(a+1)(2)解不等式:+≤1.【考点】4I:整式的混合运算;C6:解一元一次不等式.【专题】11:计算题.【分析】(1)原式第一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:(1)原式=a2﹣2a+1+2a+2=a2+3;(2)去分母得:3(x+1)+2(x﹣1)≤6,去括号得:3x+3+2x﹣2≤6,解得:x≤1.【点评】此题考查了整式的混合运算,以及解一元一次不等式,涉及的知识有:完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值.【解答】解:(1)由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得,解得:,故y与x的函数关系式为:y=2x+2;(2)∵32元>8元,∴当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.【点评】本题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.19.(8分)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n∁n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.【考点】8A:一元一次方程的应用;LB:矩形的性质;Q2:平移的性质.【专题】2A:规律型.【分析】(1)根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出AB1和AB2的长;(2)根据(1)中所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.【解答】解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.【点评】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.20.(8分)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)利用条形统计图可得喜欢羽毛球的人数有30人,根据扇形统计图可得喜欢羽毛球的人数有15%,利用30÷15%即可得到被调查的总人数;用总人数﹣喜欢乒乓球的人数﹣喜欢篮球的人数﹣喜欢羽毛球的人数﹣喜欢排球的人数可得喜欢跳绳的人数,再补图即可;(2)计算出调查的人数中喜欢篮球和排球的人数所占百分比,再乘以1200即可.【解答】解:(1)这次被调查的学生总数:30÷15%=200(人),跳绳人数:200﹣70﹣40﹣30﹣12=48,如图所示:(2)1200××100%=312(人).答:全校有1200名同学,估计全校最喜欢篮球和排球的共有312名同学.【点评】本题考查的是条形统计图和扇形统计图的综合运用,以及样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度363636368686(1)求AM的长.(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.【考点】T8:解直角三角形的应用.【分析】(1)根据AM=AE+DE求解即可;(2)先根据角平分线的定义得出∠EAD=∠BAC=52°,再过点E作EG⊥AD于G,由等腰三角形的性质得出AD=2AG,然后在△AEG中,利用余弦函数的定义求出AG的长,进而得到AD的长度.【解答】解:(1)由题意,得AM=AE+DE=36+36=72(cm).故AM的长为72cm;(2)∵AD平分∠BAC,∠BAC=104°,∴∠EAD=∠BAC=52°.过点E作EG⊥AD于G,∵AE=DE=36,∴AG=DG,AD=2AG.在△AEG中,∵∠AGE=90°,∴AG=AE•cos∠EAG=36•cos52°=36×0.6157=22.1652,∴AD=2AG=2×22.1652≈44(cm).故AD的长约为44cm.【点评】本题考查了解直角三角形在实际生活中的应用,其中涉及到角平分线的定义,等腰三角形的性质,三角函数的定义,难度适中.22.(12分)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD 中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.【考点】LO:四边形综合题.【专题】16:压轴题;23:新定义.【分析】(1)答案不唯一,根据已知举出即可;(2)①求出△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,推出==,==,==,==,求出B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,MN=GN=GH=HE=4,B1Q=B2O=B3Z=B4K=4,根据已知判断即可;②设AM=h,根据△ABC∽△AB3C3,得出==,求出MN=GN=GH=HE =h,分为两种情况:当B3C3=2×h时,当B3C3=×h时,代入求出即可.【解答】解:(1)答案不唯一,如a=2,b=4;(2)①以B1C1为一边的矩形不是方形.理由是:过A作AM⊥BC于M,交B1C1于E,交B2C2于H,交B3C3于G,交B4C4于N,则AM⊥B4C4,AM⊥B3C3,AM⊥B2C2,AM⊥B1C1,∵由矩形的性质得:BC∥B1C1∥B2C2∥B3C3∥B4C4,∴△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,∴==,==,==,==,∵AM=20,BC=25,∴B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,∴MN=GN=GH=HE=4,∴B1Q=B2O=B3Z=B4K=4,即B1C1≠2B1Q,B1Q≠2B1C1,∴以B1C1为一边的矩形不是方形;②∵以B3C3为一边的矩形为方形,设AM=h,∴△ABC∽△AB3C3,∴==,则AG=h,∴MN=GN=GH=HE=h,当B3C3=2×h时,==;当B3C3=×h时,==.综合上述:BC与BC边上的高之比是或.【点评】本题考查了相似三角形的性质和判定和矩形的性质的应用,注意:相似三角形的对应高的比等于相似比.23.(12分)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD 交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.【考点】KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.【专题】16:压轴题.【分析】(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB 的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值.【解答】(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sin B==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.24.(14分)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)解方程(x﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),确定点B的坐标为(3,0);将y=(x﹣3)(x+1)配方,写成顶点式为y=x2﹣2x﹣3=(x﹣1)2﹣4,即可确定顶点D的坐标;(2)①根据抛物线y=(x﹣3)(x+1),得到点C、点E的坐标.连接BC,过点C作CH⊥DE于H,由勾股定理得出CD=,CB=3,证明△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q的坐标(﹣9,0),运用待定系数法求出直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6,解方程组,即可求出点P的坐标;②分两种情况进行讨论:(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,所以点M不存在.【解答】解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,∴CG=FG+FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=5,∴M(5,12);(Ⅱ)当点M在对称轴左侧时.∵∠CMN=∠BDE<45°,∴∠MCN>45°,而抛物线左侧任意一点M,都有∠MCN<45°,∴点M不存在.综上可知,点M坐标为(,﹣)或(5,12).【点评】本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.。
2013 年浙江省初中毕业生学业考试(舟山卷)数学 试题卷考生须知:1.全卷满分 120 分,考试时间 120 分钟.试题卷共 6 页,有三大题,共 24 小题.2.全卷答案一定做在答题纸卷Ⅰ、卷Ⅱ的相应地点上,做在试题卷上无效.参照公式:二次函数 y = ax 2+ bx + c (a ≠0)图象的极点坐标是(-b , 4ac b 2 ).2a4a 温馨提示:请认真审题,仔细答题,答题前认真阅读答题纸上的“注意事项”.卷Ⅰ(选择题)一、选择题 (本大题有 10 小题,每题3 分,共 30 分.请选出各小题中独一的正确选项,不选、多项选择、错选,均不得分)1.- 2 的相反数是(▲ )(A )2(B )- 2(C )1(D )-1222.如图,由三个小立方块搭成的俯视图是(▲ )正面(A )( B )(C )( D )3.据舟山市旅行局统计,2012 年舟山市共招待境内外旅客约2771 万人次.数据 2771 万用科学计数法表示为(▲ )( A )2771× 107( B ) 2.771× 107( C )2.771× 106 ( D ) 2.771× 1054.在某次体育测试中,九( 1)班 6 位同学的立定跳远成绩(单位:m )分别为: 1.71, 1.85, 1.85,1.95,2.10,2.31,则这组数据的众数是(▲)( A )1.71 ( B ) 1.85 ( C )1.90(D ) 2.315.以下运算正确的选项是(▲ )( A )x 2 +x 3= x 5 ( B ) 2x 2- x 2= 1 ( C ) x 2?x 3= x 6( D ) x 6÷ x 3= x 36.如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获取较佳视觉成效,字样在罐头侧面所形成的弧的度数为 30o ,则“蘑菇罐头”字样的长度为(▲ )( A ) cm(B )7cm 44(C )7cm( D ) 7πcm2罐头横截面7.以下说法正确的选项是(▲ )( A )要认识一批灯泡的使用寿命,应采纳普查的方式①( B )若一个游戏的中奖率是 1%,则做 100 次这样的游戏必定会中奖( C )甲、乙两组数据的样本容量与均匀数分别同样,若方差22甲= 0.1,乙= 0.2,则甲组数据比乙组数SS据稳固( D )“掷一枚硬币,正面向上”是必定事件8.若一次函数 y = ax + b ( a ≠ 0)的图象与 x 轴的交点坐标为(-2,0),则抛物线 y = ax 2+ b 的对称轴为( ▲ )( A )直线 x =1( B )直线 x =- 2( C )直线 x =- 1( D )直线 x =- 49.如图,⊙ O 的半径 OD ⊥弦 AB 于点 C ,连接 AO 并延伸交⊙ O 于点 E ,连接 EC .若 AB = 8,CD = 2,则 EC 的长为( ▲)E(A )2 15(B )8O( C )210(D )213A C BD 10.对于点 A ( x 1 , y ), B ( x , y ),定义一种运算: A + B =( x + x+ y122○12)+(y 12 ).比如, A (- 5,4), B○C ,D ,E ,F ,知足 ○ ○( 2,- 3), A + B = (-5+ 2)+ (4- 3)=- 2.若互不重合的四点C+D =D +E○ ○,则 C , D , E ,F 四点(▲ )=E + F =F + D( A )在同一条直线上(B )在同一条抛物线上( C )在同一反比率函数图象上(D )是同一正方形的四个极点卷Ⅱ(非选择题)二、填空题 (本大题有 6 小题,每题 4 分,共 24 分)11.二次根式x3 中, x 的取值范围是▲ 时.12.一个布袋中装有3 个红球和4 个白球,这些除颜色外其余都同样.从袋子中随机摸出一个球,这个球 是白球的概率为▲ .13.分解因式: ab 2- a = ▲ .14.在同一平面内,已知线段AO = 2,⊙ A 的半径为 1,将⊙ A 绕点 O 按逆时针方向旋转60o 获取的像为⊙ B ,则⊙ A 与⊙ B 的地点关系为 ▲.15.杭州到北京的铁路长1487 千米.火车的原均匀速度为 x 千米 /时,加速后均匀速度增添了70 千米 /时,由杭州到北京的行驶时间缩短了 3 小时,则可列方程来▲ .DC16.如图,正方形 ABCD 的边长为 3,点 E ,F 分别在边 AB , BC 上, AE =BF = 1,小球 P 从点 E 出发沿直线向点F 运动,每当遇到正方形的边时反弹,反弹时F反射角等于入射角.当小球P 第一次遇到点 E 时,小球 P 所经过的行程为 ▲.AEB8 小题,第 17~ 19 题每题 6 分,第 20、 21 题每题 8 分,第三、解答题 (本大题有 22、 23 题每题 10 分,第24题12 分,共 66 分)友谊提示:做解答题,别忘了写出必需的过程;作图(包含增添协助17.( 1)计算:|― 4|― 9 + (- 2)0;(2)化简: a(b + 1)― ab ― 1.18.如图,△ ABC 与△ DCB 中, AC 与 BD 交于点 E ,且∠ A =∠ D ,AB =DC .( 1)求证:△ ABE ≌ DCE ;(2)当∠ AEB = 50o ,求∠ EBC 的度数?ADEBC19.如,一次函数 y= kx+ 1(k≠ 0)与反比率函数y=m( m≠ 0)的象有公共点A( 1, 2).直 l x y⊥ x 于点 N( 3, 0),与一次函数和反比率函数的象分交于点B, C.( 1)求一次函数与反比率函数的分析式;B ( 2)求△ ABC 的面?A1CO1Nxl20.认识学生零花的使用状况,校委随机了本校部分学生每人一周的零花数,并制了如所示的两个(部分未达成).依据中信息,回答以下:该校部分学生每人一周零花费数额条形统计图该校部分学生每人一周y学生人数 (人 )零花费数额扇形统计图201820 元50 元161420%40 元1225%108630 元42零花费020304050 数额元O x( )(1)校委随机了多少学生?你全条形;(2)表示“ 50 元”的扇形的心角是多少度?的学生每人一周零花数的中位数是多少元?(3)四川雅安地震后,全校 1000 名学生每人自地捐出一周零花的一半,以增援灾区建.估量全校学生共捐钱多少元?21.某学校的校是伸(如1),伸中的每一行菱形有20 个,每个菱形 30 厘米.校关,每个菱形的角度数60o(如 2);校翻开,每个菱形的角度数从60o小 10o(如3).:校翻开了多少米?(果精准到1米,参照数据:sin5o≈ 0.0872, cos5o≈ 0.9962,sin10o≈ 0.1736, cos10o≈0.9848 ).AA160o10oB D⋯B1 D 1⋯C C1(图 1)20个20 个(图 2)(图 3)22.小明在做课本“目标与评定”中的一道题:如图1,直线 a,b 所成的角跑到画板外面去了,你有什么方法量出这两条直线所成的角的度数?(1)①请你帮小明在图 2 的画板内画出你的丈量方案(简要说明画法过程);②说出该画法的依照的定理.(2)小明在此基础上又进行了更深入的研究,想到两个操作:①在图 3 的画板内,在直线 a 和 b 上各取一点,使这两点与直线 a、 b 的交点组成等腰三角形(此中交点为顶角的极点),(图 1)画出该等腰三角形在画板内的部分;②连接 AD 并延伸交直线 a 于点 B,请写出图 3 中全部与∠ PAB 相等的角,并说明原因;( 3)在图 3 的画板内,作出“直线a, b 所成的跑到画板外面去的角”的均分线(画板内的部分),只需求作出图形,并保存作图印迹.请你帮小明达成上边两个操作过程.a b a b(一定要有方案图,全部的线不可以画到画板外,只好画在画板内).(图 2)(图 3)23.某镇水库的可用水量为12000 立方米,假定年降水量不变,能保持该镇16 万人 20 年的用水量.实行城市化建设,新迁入 4 万人后,水库只够保持居民15 年的用水量.( 1)问:年降水量为多少万立方米?每人年均匀用水量多少立方米?( 2)政府呼吁节俭用水,希望将水库的保用年限提升到25年,则该镇居民人均每年需节俭多少立方米才能实现目标?( 3)某公司投入1000 万元设施,每日能淡化5000 立方米海水,淡化率为70%.每淡化 1 立方米海水所需的花费为 1.5元,政府补助0.3 元.公司将淡化水以 3.2元 /立方米的价钱销售,每年还需各项支出 40 万元.按每年实质生产300 天计算,该公司起码几年后能回收成本(结果精准到个位)?24.如图,在平面直角坐标系xOy 中,抛物线 y=1(x― m)2―1m2+ m 的极点为 A,与 y 轴的交点为 B,44连接 AB ,AC⊥ AB,交 y 轴于点 C,延伸 CA 到点 D,使 AD= AC,连接 BD.作 AE∥ x 轴,DE ∥ y 轴.(1)当 m=2 时,求点 B 的坐标;(2)求 DE 的长 ?(3)①设点 D 的坐标为( x, y),求 y 对于 x 的函数关系式?②过点 D 作 AB 的平行线,与第( 3)①题确立的函数图象的另一个交点为P,当 m 为什么值时,以, A, B,D ,P 为极点的四边形是平行四边形?yBOxDA EC2013 年浙江省初中毕业生学业考试(舟山卷)数学参照答案一.选择题l . A2.A3. B 4.B5.D6.B7.C8. C9. Dl0. A二、填空题11. x ≥ 3; l2. 4 ; 13. a(b +1)(b - 1);14.外切; 15.1487- 1487 = 3;16. 6, 6 57xx 70三、解答题17.( 1) 2;( 2) a -118.( 1)略;( 2)∠ EBC = 25o19.( 1) y =x + 1, y = 2 ;( 2) S △ABC =10x320.( 1)略;( 2)圆心角 36o ,中位数是 30 元;;( 3) 16250 元21. 5 米.22.解:( 1)方法 1:①如图 2,画 PC ∥a ,量出直线 b 与 PC 的夹角度数即为直线 a , b 所成角的度数②两直线平行,同位角相等 方法 2:①如图 2,在直线 a , b 上各取一点 A , B ,连接 AB ,测得∠ 1,∠ 2 的度数,则 180o ―∠ 1―∠ 2 即为直线 a , b 所成角的度数 ②三角形内角和为180o( 2)如图 3,以 P 为圆心,随意长为半径画弧,分别交直线b ,PC于点B ,D ,连接BD 并延伸交直线 a 于点 A ,则 ABPQ 就是所求作的图形。
2013九年级数学中考适应性测试题(舟山市陀区附答案)2013年普陀区初中九年级学业考试适应性测试数学试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题。
2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效,考试时不能使用计算器。
参考公式:二次函数图象的顶点坐标是。
温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”。
卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.2的相反数是(▲)A.-2B.2C.-D.2.下列计算正确的是(▲)A.B.9=3C.3-1=-3D.2+3=53.据交通运输部统计,2013年春运期间,全国道路、水路、民航、铁路运送旅客总量超过了3400000000人次,该数用科学记数法可表示为(▲)A.B.C.D.4.如图是由个相同的正方体搭成的几何体,则其俯视图是(▲)5.使分式无意义的的值是(▲)A.B.C.D.6.如图,已知,若,,则等于(▲)A.B.C.D.7.市委、市政府打算在2015年底前,完成国家森林城市创建.这是小明随机抽取我市10个小区所得到的绿化率情况,结果如下表:小区绿化率(%)20253032小区个数2431则关于这10个小区的绿化率情况,下列说法错误的是(▲)A.中位数是25%B.众数是25%C.极差是13%D.平均数是26.2% 8.将一个半径为R,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r,则R与r的关系正确的是(▲)A.R=8rB.R=6rC.R=4rD.R=2r9.甲、乙两车分别从相距的两地同时出发,它们离A地的路程随时间变化的图象如图所示,则下列结论不正确的是(▲)A.甲车的平均速度为;B.乙车行驶小时到达地,稍作停留后返回地;C.经小时后,两车在途中相遇;D.乙车返回地的平均速度比去地的平均速度小。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析专题02 代数式和因式分解一、选择题1. (2003年浙江舟山、嘉兴4分)下列计算正确的是【】A .a+a=a2 B. (3a)2=6a2 C.(a+1)2=a2+1 D.a·a=a2【答案】D。
2. (2003年浙江舟山、嘉兴4分)已知a2b3=,则a bb+的值为【】A . 32B.43C.53D .353. (2004年浙江舟山、嘉兴4分)要使二次根式x1-有意义,那么x的取值范围是【】A.x>-1B. x<1C.x≥1 D .x≤14. (2004年浙江舟山、嘉兴4分)计算:1a1(1)a a-÷-的正确结果是【】A.a+1B.1C.a-1D.-15. (2005年浙江舟山、嘉兴4分)下列运算中,正确的是【】A .x2+x2=2x4 B. x2+x2=x4 C.x2x3=x6 D. x2x3=x5【答案】D。
【考点】合并同类项,同底幂乘法。
有意义,则字母x的取值范围是【】6. (2006年浙江舟山、嘉兴4分)要使根式x3A.x≠3 B.x≤3 C.x>3 D.x≥3【答案】D。
【考点】二次根式有意义的条件。
7. (2006年浙江舟山、嘉兴4分)下列计算正确的是【】.A.(ab)2=ab2 B.a2·a3=a4 C.a5+a5=2a5 D.(a2)3=a68. (2007年浙江舟山、嘉兴4分)因式分解(x-1)2-9的结果是【】A .(x+8)(x+1)B .(x+2)(x -4)C .(x -2)(x+4)D .(x -10)(x+8) 【答案】B 。
【考点】应用公式法因式分解,整体思想的应用。
9. (2008年浙江舟山、嘉兴4分)下列运算正确的是【 】 A .235a a a =B .22(ab)ab =C .329(a )a =D .632a a a ÷=10.(2009年浙江舟山、嘉兴4分)下列运算正确的是【 】A .()2a b 2a b --=--B .()2a b 2a b --=-+C .()2a b 2a 2b --=--D .()2a b 2a 2b --=-+【答案】D 。
浙江省舟山市中考数学试卷(2015)一、选择题(每小题3分,共30分)2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()3.截至今年4月10日,舟山全市需水量为84 327 000m3,数据84 327 000用科学记数法表4.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进5.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()D7.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()CD9.数学活动课上,四位同学围绕作图问题:“如图,已知直线l 和l 外一点P ,用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q .”分别作出了下列四个图形.其中作法错误的是( )CD10.如图,抛物线y=﹣x 2+2x+m+1交x 轴与点A (a ,0)和B (b ,0),交y 轴于点C ,抛物线的顶点为D ,下列四个命题: ①当x>0时,y >0; ②若a=﹣1,则b=4;③抛物线上有两点P (x 1,y 1)和Q (x 2,y 2),若x 1<1<x 2,且x 1+x 2>2,则y 1>y 2; ④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当m=2时,四边形EDFG 周长的最小值为6. 其中真命题的序号是( )二、填空题(每小题4分,共24分) 11.因式分解:ab ﹣a= .12.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式.13.把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是.14.一张三角形纸片ABC,AB=AC=5,折叠该纸片使点A落在BC的中点上,折痕经过AC上的点E,则AE的长为.15.如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=(用含a的代数式表示).(2)设该格点多边形外的格点数为c,则c﹣a=.16.如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1,点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0).设点M转过的路程为m(0<m<1),随着点M的转动,当m从变化到时,点N相应移动的路经长为.三、解答题(6,6,6,8,8,10,10)17.1)计算:|﹣5|+×2﹣1;(2)化简:a(2﹣a)+(a+1)(a﹣1).18.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.19.如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,(1)观察图形,写出图中所有与∠AED相等的角.(2)选择图中与∠AED相等的任意一个角,并加以证明.20.舟山市2010﹣2014年社会消费品零售总额及增速统计图如图:请根据图中信息,解答下列问题:(1)求舟山市2010﹣2014年社会消费品零售总额增速这组数据的中位数.(2)求舟山市2010﹣2014年社会消费品零售总额这组数据的平均数.(3)用适当的方法预测舟山市2015年社会消费品零售总额(只要求列式说明,不必计算出结果).21.如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.22.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数.(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?23.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC 的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=AB,试探究BC,CD,BD的数量关系.参考答案与试题解析一、选择题(每小题3分,共30分)2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()3.截至今年4月10日,舟山全市需水量为84 327 000m3,数据84 327 000用科学记数法表4.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进∴次品所占的百分比是:×5.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()D=,:∵<,最接近的整数是=67.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()AC ABCD==的半径为,CD9.数学活动课上,四位同学围绕作图问题:“如图,已知直线l 和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()C D10.如图,抛物线y=﹣x2+2x+m+1交x轴与点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中真命题的序号是()﹣时有=1DE=;=周长的最小值为,故本选项错误.二、填空题(每小题4分,共24分)12.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式y=(x﹣6)2﹣36.13.把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是..故答案为:.14.一张三角形纸片ABC,AB=AC=5,折叠该纸片使点A落在BC的中点上,折痕经过15.如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=82﹣2a(用含a的代数式表示).(2)设该格点多边形外的格点数为c,则c﹣a=118.S=a+b16.如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1,点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0).设点M转过的路程为m(0<m<1),随着点M的转动,当m从变化到时,点N相应移动的路经长为.时,连接APM=××=时,连接×NO=相应移动的路经长为=故答案为三、解答题(6,6,6,8,8,10,10)17.1)计算:|﹣5|+×2﹣1;×18.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.,是分式方程的解,x=.19.如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,(1)观察图形,写出图中所有与∠AED相等的角.(2)选择图中与∠AED相等的任意一个角,并加以证明.20.舟山市2010﹣2014年社会消费品零售总额及增速统计图如图:请根据图中信息,解答下列问题:(1)求舟山市2010﹣2014年社会消费品零售总额增速这组数据的中位数.(2)求舟山市2010﹣2014年社会消费品零售总额这组数据的平均数.(3)用适当的方法预测舟山市2015年社会消费品零售总额(只要求列式说明,不必计算出=292.621.如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.y=,y=|322.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数.(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′BOD=,×=121223.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?)代入得,,=1224.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC 的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=AB,试探究BC,CD,BD的数量关系.AC==AC===x(x=x===1 ==,∴BD。
以往浙江省舟山市中考数学真题及答案一、选择题(共10小题,每小题3分,满分30分)1.(-2)0等于( A )A.1 B.2 C.0 D.-2【考点】零指数幂.【专题】计算题.【分析】根据0指数幂的定义直接解答即可.【解答】解:(-2)0=1.故选A.【点评】本题考查了0指数幂,要知道,任何非0数的0次幂为1.2.下列图案中,属于轴对称图形的是( A )A. B. C. D.【考点】轴对称图形.【专题】【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知B、C、D都不是轴对称图形,只有A是轴对称图形.故选A.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( C )A.0.35×108B.3.5×107C.3.5×106D.35×105【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,因为350万共有7位,所以n=7-1=6.【解答】解:350万=3 500 000=3.5×106.故选C.【点评】本题考查了科学记数法表示较大的数,准确确定n是解题的关键4.如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于( B )A.15°B.20°C.30°D.70°【考点】切线的性质.【专题】【分析】由BC与⊙0相切于点B,根据切线的性质,即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度数,然后由OA=OB,利用等边对等角的知识,即可求得∠A的度数.【解答】解:∵BC与⊙0相切于点B,∴OB⊥BC,∴∠OBC=90°,∵∠ABC=70°,∴∠OBA=∠OBC-∠ABC=90°-70°=20°,∵OA=OB,∴∠A=∠OBA=20°.故选B.【点评】此题考查了切线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用,注意圆的切线垂直于经过切点的半径定理的应用.5.若分式12xx-+的值为0,则( D )A.x=-2 B.x=0 C.x=1或2 D.x=1 【考点】分式的值为零的条件.【专题】概念题.【分析】先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式12xx-+的值为0,∴-=⎧⎨+≠⎩x10x20,解得x=1.故选D.【点评】本题考查的是分式的值为0的条件,根据题意列出关于x的不等式组是解答此题的关键.6.如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( C )米.A.a sin40°B.a cos40° C.a tan40° D.tan40a【考点】解直角三角形的应用.【专题】【分析】直接根据锐角三角函数的定义进行解答即可.【解答】解:∵△ABC中,AC= a米,∠A=90°,∠C=40°,∴AB=a tan40°.故选C.【点评】本题考查的是解直角三角形的应用及锐角三角函数的定义,熟知锐角三角函数的定义是解答此题的关键.7.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为( B )A.15πcm2B.30πcm2C.60πcm2D.391 cm2【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可.【解答】解:这个圆锥的侧面积=π×3×10=30πcm2,故选B.【点评】考查圆锥的计算;掌握圆锥的侧面积计算公式是解决本题的关键.8.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是( C )A.14B.310C.12D.34【考点】列表法与树状图法.【专题】新定义.【分析】首先根据题意画出树状图,由树状图即可求得所有等可能的结果与与2组成“V 数”的情况,利用概率公式即可求得答案.【解答】解:画树状图得:∵可以组成的数有:321,421,521,123,423,523,124,324,52 4,125,325,425,其中是“V数”的有:423,523,324,524,325,425,∴从1,3,4,5中任选两数,能与2组成“V数”的概率是:61 122=.故选C.【点评】此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9.如图,已知△ABC中,∠CAB=∠B=30°,AB=2 3,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为( A )A.33-B.31-C.33- D33-【考点】翻折变换(折叠问题).【专题】【分析】首先过点D作DE⊥AB′于点E,过点C作CF⊥AB,由△ABC中,∠CAB=∠B=30°,AB=23,利用等腰三角形的性质,即可求得AC的长,又由折叠的性质,易得∠CDB′=90°,∠B′=30°,B′C=AB′-AC=232-,继而求得CD与B′D 的长,然后求得高DE的长,继而求得答案.【解答】解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=23,∴AC=BC,∴AF=12AB=3,∴AC32 cos3AFCAB===∠,由折叠的性质得:AB′=AB=23,∠B′=∠B=30°, ∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′-AC=232-,∴CD=12B′C= 31-,B′D=B′C•cos∠B′=3(232)33-⨯=-,∴•(31)(33)33=2232'---=='-CD B DDEB C,∴S阴影=12AC•DE=1333322--⨯⨯=.故选A.【点评】此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.10.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A 时运动停止.设点P 运动的路程长为长为x,AP 长为y,则y 关于x 的函数图象大致是( D )A .B .C .D . 【考点】动点问题的函数图象. 【专题】【分析】根据题意设出点P 运动的路程x 与点P 到点A 的距离y 的函数关系式,然后对x 从0到222a a +时分别进行分析,并写出分段函数,结合图象得出得出答案.【解答】解:设动点P 按沿折线A →B →D →C →A 的路径运动,∵正方形ABCD 的边长为a,∴2a,则当0≤x <a 时,y=x,当a ≤x <(2)a 时,2222()()22a y a a x =++-当a (2x <a (2,22(2)y a x a a =+--当a (2x ≤a (2)时,(222)y a x =+-,结合函数解析式可以得出第2,3段函数解析式不同,得出A 选项一定错误, 根据当a ≤x <(2)a 时,函数图象被P 在BD 中点时,分为对称的两部分,故B 选项错误,再利用第4段函数为一次函数得出,故C 选项一定错误, 故只有D 符合要求,故选:D .【点评】此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.二、填空题(共6小题,每小题4分,满分24分) 11.当a=2时,代数式3a-1的值是 5 . 【考点】代数式求值. 【专题】【分析】将a=2直接代入代数式即可求出代数式3a-1的值. 【解答】解:将a=2直接代入代数式得,3a-1=3×2-1=5. 故答案为5.【点评】本题考查了代数式求值,要学会替换,即将字母换成相应的数.12.因式分解:a 2-9= (a+3)(a-3) . 【考点】因式分解-运用公式法. 【专题】【分析】a 2-9可以写成a 2-32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a 2-9=(a+3)(a-3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键. 13.在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D,若CD=4,则点D 到斜边AB 的距离为 4 .【考点】角平分线的性质.【专题】计算题.【分析】根据角平分线的性质定理,解答出即可;【解答】解:如右图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故答案为:4.【点评】本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等.14.如图是嘉兴市某6天内的最高气温折线统计图,则最高气温的众数是 9℃.【考点】众数;折线统计图.【专题】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:9℃出现了2次,出现次数最多,故众数为9,故答案为:9.【点评】本题属于基础题,考查了确定一组数据的众数的能力.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.如图,已知⊙O的半径为2,弦AB⊥半径OC,沿AB将弓形ACB翻折,使点C与圆心O重合,则月牙形(图中实线围成的部分)的面积是423 3π+.【考点】扇形面积的计算;翻折变换(折叠问题).【专题】【分析】首先求出AB=23,∠AOB=120°,再利用S弓形ACB=S扇形AOB-S△AOB,以及月牙形的面积是S圆-2S弓形ACB即可得出答案.【解答】解:连接OA,OB,∵OC⊥AB于E,根据题意,得OE=12OC=12OB=1,则∠ABO=30°,BE=413-=, ∴AB=23,∠AOB=120°.S弓形ACB=S扇形AOB-S△AOB120414=336023AB EOππ⨯=-⨯-则月牙形(图中实线围成的部分)的面积是:S圆-2S弓形ACB=4442(3)=2333πππ=--+,故答案为:4233π+.【点评】此题主要考查了扇形面积求法以及不规则图形面积计算方法,根据已知图象得出月牙形的面积=S圆-2S弓形ACB是解题关键.16.如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:①AG AB =FG FB ;②∠ADF=∠CDB;③点F是GE的中点;④AF= 2 3 AB;⑤S△ABC=5S △BDF,其中正确结论的序号是①②④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【专题】【分析】由△AFG∽△BFC,可确定结论①正确;由△ABG≌△BCD,△AFG≌△AFD,可确定结论②正确;由△AFG≌△AFD可得FG=FD>FE,所以点F不是GE中点,可确定结论③错误;由△AFG≌△AFD可得AG=12AB=12BC,进而由△AFG∽△BFC确定点F为AC的三等分点,可确定结论④正确;因为F为AC的三等分点,所以S△ABF=13S△ABC,又S△BDF=12S△ABF,所以S△ABC=6S△BDF,由此确定结论⑤错误.【解答】解:依题意可得BC∥AG,∴△AFG∽△BFC,∴AG FG BC FB=,又AB=BC,∴AG FG AB FB=.故结论①正确;如上图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,∠=∠⎧⎪=⎨⎪∠=∠=︒⎩34AB BCBAG CBD 90 , ∴△ABG ≌△BCD (ASA ), ∴AG=BD,又BD=AD,∴AG=AD ; 在△AFG 与△AFD 中,AG=AD ∠FAG=∠FAD=45° AF=AF , ∴△AFG ≌△AFD (SAS ),∴∠5=∠2, 又∠5+∠3=∠1+∠3=90°,∴∠5=∠1, ∴∠1=∠2,即∠ADF=∠CDB . 故结论②正确;∵△AFG ≌△AFD,∴FG=FD,又△FDE 为直角三角形,∴FD >FE, ∴FG >FE,即点F 不是线段GE 的中点. 故结论③错误;∵△ABC 为等腰直角三角形,∴AC=2AB ; ∵△AFG ≌△AFD,∴AG=AD=12AB=12BC ; ∵△AFG ∽△BFC,∴AG BC =AF FC ,∴FC=2AF, ∴AF=13AC=23AB .故结论④正确;∵AF=13AC,∴S △ABF =13S △ABC ;又D 为中点,∴S △BDF =12S △ABF , ∴S △BDF =16S △ABC ,即S △ABC =6S △BDF .故结论⑤错误.综上所述,结论①②④正确, 故答案为:①②④.【点评】本题考查了等腰直角三角形中相似三角形与全等三角形的应用,有一定的难度.对每一个结论,需要仔细分析,严格论证;注意各结论之间并非彼此孤立,而是往往存在逻辑关联关系,需要善加利用.三、解答题(共8小题,满分66分) 17.计算:(1)25163-+-(2)(x+1)2-x (x+2)【考点】整式的混合运算;实数的运算. 【专题】计算题. 【分析】(1)根据绝对值、平方根、平方的定义分别计算,然后再进行加减运算;(2)先根据完全平方公式和单项式乘以多项式法则将原式展开,再合并同类项.【解答】解:(1)原式=5+4-9=0;(2)原式=x 2+2x+1-x 2-2x=1.【点评】本题考查了整式的混合运算、实数的运算,要熟悉其运算法则. 18.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集. 【专题】计算题.【分析】根据一元一次不等式的解法,去括号,移项,合并同类项,系数化为1即可得解.【解答】解:去括号得,2x-2-3<1,移项、合并得,2x<6,系数化为1得,x<3.在数轴上表示如下:【点评】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.19.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【考点】菱形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【解答】(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°-∠ABO=40°.【点评】本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.【考点】条形统计图;用样本估计总体;扇形统计图. 【专题】 【分析】(1)根据扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,即可得出被抽取的总天数;(2)利用轻微污染天数是50-32-8-3-1-1=5天;表示优的圆心角度数是850×360°=57.6°,即可得出答案;(3)利用样本中优和良的天数所占比例得出一年(365天)达到优和良的总天数即可. 【解答】解:(1)∵扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天); (2)轻微污染天数是50-32-8-3-1-1=5天; 表示优的圆心角度数是8 50 ×360°=57.6°, 如图所示:(3)∵样本中优和良的天数分别为:8,32,∴一年(365天)达到优和良的总天数为:8+32 50 ×365=292(天). ∴估计该市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 21.如图,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于点A (2,3)和点B,与x 轴相交于点C (8,0). (1)求这两个函数的解析式; (2)当x 取何值时,y 1>y 2.【考点】反比例函数与一次函数的交点问题. 【专题】计算题.【分析】(1)将A 、B 中的一点代入2my x=,即可求出m 的值,从而得到反比例函数解析式,把 A (2,3)、C (8,0)代入y 1=kx+b,可得到k 、b 的值; (2)根据图象可直接得到y1>y2时x 的取值范围. 【解答】解:(1)把 A (2,3)代入2my x=,得m=6. 把 A (2,3)、C (8,0)代入y 1=kx+b,得 k=-12k =-,b=4,∴这两个函数的解析式为1142y x =-+,26y x=;(2)由题意得121426y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得1161x y =⎧⎨=⎩,2223x y =⎧⎨=⎩,当x <0 或 2<x <6 时,y 1>y 2. 【点评】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.22.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x 辆车时,每辆车的日租金为 1400-50x 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏? 【考点】二次函数的应用. 【专题】 【分析】(1)根据当全部未租出时,每辆租金为:400+20×50=1400元,得出公司每日租出x 辆车时,每辆车的日租金为:1400-50x ;(2)根据已知得到的二次函数关系求得日收益的最大值即可;(3)要使租赁公司日收益不盈也不亏,即:y=0.即:50 (x-14)2+5000=0,求出即可. 【解答】解:(1)∵某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆; ∴当全部未租出时,每辆租金为:400+20×50=1400元, ∴公司每日租出x 辆车时,每辆车的日租金为:1400-50x ; 故答案为:1400-50x ; (2)根据题意得出:y=x (-50x+1400)-4800,=-50x 2+1400x-4800,=-50(x-14)2+5000.当x=14时,在范围内,y 有最大值5000.∴当日租出14辆时,租赁公司日收益最大,最大值为5000元.(3)要使租赁公司日收益不盈也不亏,即:y=0.即:50(x-14)2+5000=0,解得x 1=24,x 2=4,∵x=24不合题意,舍去.∴当日租出4辆时,租赁公司日收益不盈也不亏.【点评】本题考查了列代数式及二次函数的应用和一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出代数式或函数关系式是解题关键.23.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB ′C ′,即如图①,我们将这种变换记为[θ,n]. (1)如图①,对△ABC 作变换[60°,3]得△AB ′C ′,则S △AB ′C ′:S △ABC = 3 ;直线BC 与直线B ′C ′所夹的锐角为 60 度;(2)如图②,△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B 、C 、C ′在同一直线上,且四边形ABB'C'为矩形,求θ和n 的值;(3)如图③,△ABC 中,AB=AC,∠BAC=36°,BC=l,对△ABC 作变换[θ,n]得△AB ′C ′,使点B 、C 、B ′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n 的值.【考点】相似三角形的判定与性质;解一元二次方程-公式法;平行四边形的性质;矩形的性质;旋转的性质.【专题】代数几何综合题.【分析】(1)由旋转与相似的性质,即可得S △AB ′C ′:S △AB C=3,然后由△ABN 与△B ′MN 中,∠B=∠B ′,∠ANB=∠B ′NM,可得∠BMB ′=∠BAB ′,即可求得直线BC 与直线B ′C ′所夹的锐角的度数;(2)由四边形 ABB ′C ′是矩形,可得∠BAC ′=90°,然后由θ=∠CAC ′=∠BAC ′-∠BAC,即可求得θ的度数,又由含30°角的直角三角形的性质,即可求得n 的值;(3)由四边形ABB ′C ′是平行四边形,易求得θ=∠CAC ′=∠ACB=72°,又由△ABC ∽△B ′BA,根据相似三角形的对应边成比例,易得AB 2=CB •BB ′=CB (BC+CB ′),继而求得答案.【解答】解:(1)根据题意得:△ABC ∽△AB ′C ′,∴S △AB ′C ′:S △ABC =2(3)3''==2A B AB(),∠B=∠B ′, ∵∠ANB=∠B ′NM,∴∠BMB ′=∠BAB ′=60°;故答案为:3,60;(2)∵四边形 ABB ′C ′是矩形,∴∠BAC ′=90°.∴θ=∠CAC ′=∠BAC ′-∠BAC=90°-30°=60°.在 Rt △ABC 中,∠ABB'=90°,∠BAB ′=60°,∴∠AB ′B=30°,∴n='AB AB=2;(3)∵四边形ABB ′C ′是平行四边形,∴AC ′∥BB ′,又∵∠BAC=36°,∴θ=∠CAC ′=∠ACB=72°.∴∠BB ′A=∠BAC=36°,而∠B=∠B,∴△ABC ∽△B ′BA,∴AB :BB ′=CB :AB,∴AB 2=CB •BB ′=CB (BC+CB ′),而 CB ′=AC=AB=B ′C ′,BC=1,∴AB 2=1(1+AB ), ∴15±=AB , ∵AB >0,∴15n ''+==B C BC . 【点评】此题考查了相似三角形的判定与性质、直角三角形的性质、旋转的性质、矩形的性质以及平行四边形的性质.此题综合性较强,难度较大,注意数形结合思想与方程思想的应用,注意辅助线的作法.24.在平面直角坐标系xOy 中,点P 是抛物线:2y x =上的动点(点在第一象限内).连接 OP,过点0作OP 的垂线交抛物线于另一点Q .连接PQ,交y 轴于点M .作PA 丄x 轴于点A,QB 丄x 轴于点B .设点P 的横坐标为m .(1)如图1,当2m =时,①求线段OP 的长和tan ∠POM 的值;②在y 轴上找一点C,使△OCQ 是以OQ 为腰的等腰三角形,求点C 的坐标;(2)如图2,连接AM 、BM,分别与OP 、OQ 相交于点D 、E .①用含m 的代数式表示点Q 的坐标;②求证:四边形ODME 是矩形.【考点】二次函数综合题.【专题】代数几何综合题.【分析】(1)①已知m 的值,代入抛物线的解析式中可求出点P 的坐标;由此确定PA 、OA 的长,通过解直角三角形易得出结论.②题干要求△OCQ 是以OQ 为腰的等腰三角形,所以分QO=OC 、QC=QO 、CQ=CO 三种情况来判断:QO=QC 时,Q 在线段OC 的垂直平分线上,Q 、O 的纵坐标已知,C 点坐标即可确定; QO=OC 时,先求出OQ 的长,那么C 点坐标可确定;CQ=CO 时,先求出CQ 的长,那么C 点坐标可确定.(2)①由∠QOP=90°,易求得△QBO ∽△MOA,通过相关的比例线段来表示出点Q 的坐标; ②在四边形ODME 中,已知了一个直角,只需判定该四边形是平行四边形即可,那么可通过证明两组对边平行来得证.【解答】解:(1)①把x =2y x =,得 y=2,∴P,2),∴OP= 6∵PA 丄x 轴,∴PA ∥MO .∴tan ∠P0M=tan ∠0PA=2OP AP =. ②设 Q (n,n 2),∵tan ∠QOB=tan ∠POM,∴2n n =-.∴n =∴Q(2-,12),∴当OQ=OC 时,则C 1(,C 2(0,; 当OQ=CQ 时,则C 3(0,1);当CQ=CO 时,则C 4(0,34)不合题意,舍去. 综上所述,所求点C 坐标为:C 1(,C 2(0,-,C3(0,1); (2)①∵P (m,m 2),设 Q (n,n 2),∵△APO ∽△BOQ,∴ =BQ BO AO AP∴22 n n m m -=,得1n m =-,∴Q (1m -,21m ). ②设直线PO 的解析式为:y=kx+b,把P (m,m2)、Q (-1 m ,1 m2 )代入,得: 2211m mk b k b mm ⎧=+⎪⎨=+⎪⎩ 解得b=1,∴M (0,1) ∵2 1 m==QB OB MO AO ,∠QBO=∠MOA=90°, ∴△QBO ∽△MOA∴∠MAO=∠QOB,∴QO ∥MA同理可证:EM ∥OD又∵∠EOD=90°,∴四边形ODME 是矩形.【点评】考查了二次函数综合题,该题涉及的知识点较多,有:解直角三角形、相似三角形、等腰直角三角形的判定、矩形的判定等重要知识点;(1)②题中,要注意分类进行讨论,以免出现漏解、错解的情况.。
罐头横截面2013年浙江省初中毕业生学业考试(舟山卷)数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题. 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效. 参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是(-2ba,244ac b a -).温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”.卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题3分,共30分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分) 1.-2的相反数是( ▲ ) (A )2(B )-2(C )12(D )-122.如图,由三个小立方块搭成的俯视图是( ▲ )3.据舟山市旅游局统计,2012年舟山市共接待境内外游客约2771万人次.数据2771万用科学计数法表示为( ▲ ) (A )2771×107(B )2.771×107 (C )2.771×106(D )2.771×1054.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( ▲ )(A )1.71 (B )1.85 (C )1.90 (D )2.31 5.下列运算正确的是( ▲ )(A )x 2+x 3=x 5 (B )2x 2-x 2=1 (C )x 2•x 3=x 6 (D )x 6÷x 3=x 3 6.如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为30º,则“蘑菇罐头”字样的长度为( ▲ ) (A )4πcm (B )74πcm(C )72πcm (D )7πcm 7.下列说法正确的是( ▲ )(A )要了解一批灯泡的使用寿命,应采用普查的方式①(B )若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖正面(A ) (B ) (C ) (D )(C )甲、乙两组数据的样本容量与平均数分别相同,若方差2S 甲=0.1,2S 乙=0.2,则甲组数据比乙组数据稳定(D )“掷一枚硬币,正面朝上”是必然事件8.若一次函数y =ax +b (a ≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y =ax 2+b 的对称轴为( ▲ )(A )直线x =1 (B )直线x =-2 (C )直线x =-1 (D )直线x =-49.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为(▲ ) (A )(B )8 (C )(D )10.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:A ○+B =(x 1+x 2)+(y 1+y 2).例如,A (-5,4),B (2,-3),A ○+B =(-5+2)+(4-3)=-2.若互不重合的四点C ,D ,E ,F ,满足C ○+D =D ○+E =E ○+F =F ○+D ,则C ,D ,E ,F 四点( ▲ ) (A )在同一条直线上(B )在同一条抛物线上(C )在同一反比例函数图象上(D )是同一正方形的四个顶点卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题4分,共24分) 11x 的取值范围为 ▲ .12.一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为 ▲ . 13.分解因式:ab 2-a = ▲ .14.在同一平面内,已知线段AO =2,⊙A 的半径为1,将⊙A 绕点O 按逆时针方向旋转60º得到的像为⊙B ,则⊙A 与⊙B 的位置关系为 ▲ .15.杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为 ▲ . 16.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到点E 时,小球P 所经过的路程为 ▲ .三、解答题(本大题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(1)计算:|―4(-2)0;(2)化简:a (b +1)―ab ―1.18.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB =50º,求∠EBC 的度数.192)(1(220.为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?21.某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60º(如图2);校门打开时,每个菱形的锐角度数从60º缩小为10º(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5º≈0.0872,cos5º≈0.9962,sin10º≈0.1736,cos10º≈0.9848).22.小明在做课本“目标与评定”中的一道题:如图1,直(元)该校部分学生每人一周零花钱数额扇形统计图C20个 (图2)1C 1B …20个 (图3)(图1)(图1)线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数? (1)①请你帮小明在图2的画板内画出你的测量方案(简要说明画法过程);②说出该画法的依据的定理.(2)小明在此基础上又进行了更深入的探究,想到两个操作:①在图3的画板内,在直线a 和b 上各取一点,使这两点与直线a 、b 的交点构成等腰三角形(其中交点为顶角的顶点),画出该等腰三角形在画板内的部分;②连结AD 并延长交直线a 于点B ,请写出图3中所有与∠P AB 相等的角,并说明理由;(3)在图3的画板内,作出“直线a ,b 所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.请你帮小明完成上面两个操作过程. (必须要有方案图,所有的线不能画到画板外,只能画在画板内).23.某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量. (1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?(图3)ab(图2) ab24.如图,在平面直角坐标系xOy中,抛物线y=14(x―m)2―14m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE(3x的函数关系式?②过点P,当m一、 选择题答案:A 答案:A 答案:B 答案:B 答案:C 答案:B 答案:C 答案:C 答案:D 答案:A 二、填空题 答案:x ≥3 答案:47答案:a (b +1)(b -1) 答案:外切 答案:1487x -148770x +=3三、解答题17.解:(1)()0424312--=-+=解:(2)()1111a b ab ab a ab a +--=+--=-. 18.(1)证明:A D AEB DEC AB DC ∠=∠∠=∠=,,,ABE DCE ∴△≌△.(2)解:ABE DCE BE CE ∴=△≌△,. ECB EBC ∴∠=∠.50EBC ECB AEB ∠+∠=∠=°,25EBC ∴∠=°.19.(1)点()1A ,2在一次函数1y kx =+的图象上,1k ∴=.∴一次函数的解析式为1y x =+.点()1A ,2在反比例函数my x=的图象上,2m ∴=.∴反比例函数的解析式为2y x=. (2)对于一次函数1y x =+,当3x =时,4y =, ∴点B 的坐标为(3,4), 对于反比例函数,当3x =时,23y =, ∴点C 的坐标为3⎛⎫⎪⎝⎭2,3.以BC 为底,则210433BC =-=,高为3-1=2, ∴ABC S △=110102233⨯⨯=.20.(1)1025%40÷=(人),条形统计图略;(2)440360÷⨯°36=°,中位数是30元;(3)每人一周平均零花钱2083018401050432540⨯+⨯+⨯+⨯=.(元),132.51000162502⨯⨯=(元). 答:估计共能获得捐款16250元. 21.解:连结AC ,BD 交于O. 四边形ABCD 是菱形,∴在Rt AOB △中,()0.3sin30BO =⨯°=0.15米, 在111Rt AO B △中,110.3sin5B O =⨯°=0.02616(米), ()0.150.0261640 4.9536-⨯=≈5(米).答:校门打开约5米. 22.解:(1)方法1:①如图2,画PC ∥a ,量出直线b 与PC 的夹角度数, 即为直线a ,b 所成角的度数. ②两直线平行,同位角相等. 方法2:①如图2,在直线a ,b 上各取一点A ,B ,连结AB ,测得∠1,∠2的度数,则180º―∠1―∠2即为直线a ,b 所成角的度数, ②三角形内角和为180º.(2)如图3,以P 为圆心,任意长为半径画弧,分别交直线b ,PC 于点B ,D ,连结BD 并延长交直线a 于点A ,则ABPQ 就是所求作的图形.(3)如图3,作线段AB 的中垂线,则MN 就是所求作的线.23.解:(1)设年降水量为x 万3m ,每人年平均用水量为y 3m ,根据题意得1200020162012000152015x y x y +=⨯⎧⎨+=⨯⎩,解得:20050x y =⎧⎨=⎩答:年降水量为200万3m ,每人年平均用水量为503m .(2)设该城镇居民年平均用水量为z 3m 才能实现目标,根据题意得 12000+25×200=20×25z ,解得:z =34, ∴50-34=16.答:该城镇居民人均每年需要节约163m 的水才能实现目标. (3)设n 年后企业能收回成本,由题意得 [3.2×5000×70%―(1.5―0.3)×5000]×30010000n―40n ≥1 000,解得n ≥18829. 答:至少9年后企业能收回成本. 24.解:(1)当m =2时,y =14(x ―2)2+1, 把x =0代入y =14(x ―2)2+1,得:y =2, ∴点B 的坐标为(0,2). (2)延长EA ,交y 轴于点F .∵AD =AC ,∠AFC =∠AED =90º,∠CAF =∠DAE , ∴△AFC ≌△AED , ∴AF =AE . ∵点A (m ,―14m 2+m )∴AF =AE =|m |,BF =m ―(―∵∠ABF =90º―∠BAF =∠∠AFB =∠DEA =90º, ∴△ABF ∽△DAE ,∴BF AF =AE DE ,即:214||mm =||m DE,∴DE =4.(3)①∵点A 的坐标为(m ,―14m 2+m ), ∴点D 的坐标为(2m ,―14m 2+m +4), ∴x =2m , y =―14m 2+m +4 ∴y =―14•22x ⎛⎫⎪⎝⎭+2x +4,∴所求函数的解析式为y =―116x 2+12x +4. ②作PQ ⊥DE 于点Q ,则△DPQ ≌△BAF (Ⅰ)当四边形ABDP 为平行四边形时(如图点P 的横坐标为3m 点P 的纵坐标为―14m 2+m +4―(14m 2)=―12把P (3m ,―12m 2+m +4)的坐标代入y =―116x 2+12x +4,得 ―12m 2+m +4=―116×(3m )2+12×(3m )+4. 解得:m =0(此时A ,B ,D ,P 在同一直线上,舍去)或m =8. (Ⅱ)当四边形ABDP 为平行四边形时(如图2), 点P 的横坐标为m , 点P 的纵坐标为―14m 2+m +4+(14m 2)=m +4. 把P (m ,m +4)代入y =―116x 2+12x +4,得 m +4=―116m 2+12m +4, 解得m =0(此时A ,B ,D ,P 在同一直线上,舍去)或m =―8 综上所述:m 的值8或―8.。