24,1,2垂径定理习题课
- 格式:doc
- 大小:92.50 KB
- 文档页数:2
BB24.1.2 垂直于弦的直径——垂径定理(第一课时)一、知识探究1、圆既是 图形,又是 图形。
对称轴是 ,对称中心是 。
2、按要求作图(1)作⊙O 的任意一条弦AB ;(2)过圆心O ,作垂直于弦AB 的直径CD ,交AB 于点E 。
观察并回答:问题1:通过观察,在该图中有没有相等的线段:问题2:通过观察,在该图中有没有相等的弧: 证明过程:已知:CD 是⊙O 的直径,且CD ⊥AB 。
求证:AE=BE结论:垂径定理: 的直径 ,并且 。
几何语言的写法:∵ ∴强调:(1) ;(2) ;(3) (4) ;(5) 二、例题解析例1:在⊙O 中,弦AB 长8cm ,圆心O 到AB 的距离为3cm ,则⊙O 半径为例2:⊙O 的半径为5,M 是⊙O 内一点,OM=3,则过M 点的最短弦的长为例3:如图:已知线段AB 交⊙O 于C 、D 两点,若AC=BD ,求证:OA=OB 。
三、课堂练习:1、在⊙O 中,弦AB 长8cm ,⊙O 半径为5cm ,圆心O 到AB 的距离为2、在⊙O 中,⊙O 半径为5cm ,圆心O 到弦AB 的距离3cm ,则弦AB 的长为3、在半径为R 的⊙O 中,有长为R 的弦AB ,那么O 到AB 的距离为4、如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆与C 、D 两点。
求证:AC=BD 。
5、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD=10cm ,AP ∶PB=1∶5 ,求的⊙O 半径。
24.1.2 垂直于弦的直径——垂径定理的推论(第二课时)一、知识回顾垂径定理: 的直径 ,并且 。
按要求作图(1)在⊙O (2)作弦(3)连接问题1:⊙O 的直径CD 与弦AB 有怎样的位置关系: 问题2:该图中有没有相等的弧 证明过程:已知:CD 是⊙O 的直径,并且平分弦AB ,求证:CD ⊥AB 。
结论:垂径定理的推论: 的直径 ,并且 三、例题解析例1:已知⊙O 的半径OA=10㎝,弦AB=16㎝,P 为弦AB 上的一个动点,则OP 的最短距离为典型练习:1、下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2、下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧3、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) (A )5OM 3≤≤ (B )5OM 4≤≤ (C )5OM 3<< (D )5OM 4<<4、如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距离5cm ,则弦AB 的长为______________ . 四、课堂练习1、已知:如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为(1) (2) (3)2、如图,在⊙O 中,直径AB 丄弦CD 于点M ,AM=18,BM=8,则CD 的长为__________ . 3、如图,∠PAC=30°,在射线AC 上顺次截取AD=3cm ,DB=10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,则线段EF 的长是_________ cm .4、已知圆的半径为5cm ,一弦长为8cm ,则弦的中点到弦所对弧的中点的距离为__ _____。
人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的1.2节《垂直于弦的直径》是本章的重要内容。
这部分主要介绍了垂径定理及其推论,为后续学习圆的性质和圆的方程打下基础。
本节内容通过探究垂直于弦的直径的性质,引导学生利用几何推理证明结论,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本几何知识,对圆的基本概念和性质有所了解。
但学生在解决几何问题时,往往缺乏推理证明的能力。
因此,在教学过程中,教师需要关注学生的思维过程,引导学生掌握几何推理的方法。
三. 说教学目标1.知识与技能:掌握垂径定理及其推论,能运用垂径定理解决简单几何问题。
2.过程与方法:通过观察、探究、推理,培养学生的逻辑思维能力和几何直观能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作探究的精神。
四. 说教学重难点1.教学重点:垂径定理及其推论的证明和应用。
2.教学难点:垂径定理的证明,以及如何引导学生运用几何推理方法。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂讨论。
2.教学手段:利用多媒体课件辅助教学,直观展示几何图形的性质和推理过程。
六. 说教学过程1.导入新课:通过回顾圆的基本性质,引出垂直于弦的直径的性质。
2.探究垂直于弦的直径的性质:让学生分组讨论,观察几何图形,引导学生发现垂直于弦的直径的性质。
3.推理证明:引导学生运用几何推理方法,证明垂径定理及其推论。
4.应用拓展:举例说明垂径定理在解决实际问题中的应用。
5.总结归纳:对本节课的主要内容进行总结,强调垂径定理及其推论的重要性。
七. 说板书设计板书设计如下:垂直于弦的直径性质:垂直于弦的直径平分弦,且平分弦所对的弧。
八. 说教学评价本节课通过课堂提问、学生作业、小组讨论等方式进行教学评价。
主要评价学生在掌握垂径定理、运用几何推理方法以及解决实际问题方面的表现。