细胞生物学第五章跨膜运输习题及答案 done
- 格式:docx
- 大小:23.52 KB
- 文档页数:5
细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是(C )。
A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合。
这种跨膜转运方式称为(B )。
A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是(A )。
A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠(B )。
A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是(B)。
A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为(C )。
A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后(D)。
A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高。
那么,该物质进入细胞的可能方式为(A )。
A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是(D )。
A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用。
细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是C ;A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合;这种跨膜转运方式称为B ;A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是A ;A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠B ;A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是B;A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为C ;A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后D;A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高;那么,该物质进入细胞的可能方式为A ;A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是D ;A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用;2、离子通道有两个显著的特征:离子选择和门控性;3、多数动物病毒进入细胞的主要方式是细胞以内吞作用使病毒进入细胞;但有些有包膜的病毒,以其包膜与细胞膜融合的方式进入细胞;4、在大分子与颗粒性物质跨膜运输中,胞饮泡的形成需要网格格蛋白,而吞噬泡的形成需要微丝及其结合蛋白;三、判断题1、载体蛋白既能进行主动运输,又能进行被动运输,而通道蛋白只能进行被动运输;2、V型质子泵利用ATP水解供能从细胞质基质中将H+逆着电化学梯度泵入细胞器,以维持细胞质基质pH中性和细胞器内的pH酸性,而F型质子泵以相反的方式发挥其生理作用;3、所有胞吞的物质最终都会进入溶酶体被降解;x4、葡萄糖从小肠上皮细胞游离面进入细胞内,然后从基底面出细胞进入血液;动物细胞对葡萄糖的这种吸收过程就是一个典型的跨细胞转运过程;x5、抑制Na+-K+泵的功能,对动物细胞吸收营养没有影响; x6、若硝酸银浓度过大,则对细胞具有很强的毒性;若红细胞被硝酸银毒死后,其在低渗溶液中仍将溶血; x7、对于具有抗药性的肿瘤细胞或疟原虫,其质膜上的ABC转运蛋白比没有抗药性的细胞表达量要高; x8、主动运输都需要消耗能量,且都有ATP提供;x9、在受体介导的胞吞作用过程中,受体一旦被胞吞进入胞内体,最后都会在溶酶体中降解;x10、V型质子泵广泛存在于胞内体和溶酶体等细胞器的膜上,能利用ATP水解功能将质子从这些细胞器转运到细胞质基质;x四、名词解释1、协同运输symporter1、协同运输又称协同转运,是指一种物质的逆浓度梯度跨膜运输依赖于另一种物质的顺浓度梯度的跨膜运输的物质运输方式,不直接消耗能量但是需要间接地消耗能量;协同转运又可分为同向转运和反向转运;同向转运的物质运输方向和离子转移方向相同;2、ABC super family2、ABC超家族,是一类ATP驱动的膜转运蛋白,利用ATP水解释放的能量将多肽及多种小分子物质进行跨膜转运;ABC超家族包含有几百种不同的转运蛋白,广泛分布于从细菌到人类的各种生物中,所有ABC蛋白一般都含有4个核心结构域:两个跨膜结构域T,形成运输分子的跨膜通道;两个胞质测ATP结合域A,具有ATP酶活性3、P type proton pump & V type proton pump3、P型质子泵,是存在于植物细胞、真菌和细菌的细胞质膜上的H+转运通道,将H+泵出细胞,建立和维持跨膜的H+电化学梯度,并用力啊驱动转运溶质摄入细胞,例如,细菌对糖和氨基酸的摄入主要是由H+驱动的同向协同运输完成的;V型质子泵是存在于动物细胞的胞内体膜、溶酶体膜、破骨细胞和某些肾小管细胞的质膜,以及植物、酵母及其他真菌细胞的液泡膜上;转运H+中不形成磷酸化的中间体,其功能是从细胞质基质中泵出H+进入细胞器,保持特定的pH值;二者的关系P型质子泵和V型质子泵都只转运质子,且都属于ATP驱动泵,利用ATP水解释放的能量将H+进行跨膜转运4、载体蛋白carrier protein和通道蛋白channel protein4、二者转运机制不同;载体蛋白与特异底物结合,通过自身构象的改变实现对物质的跨膜转运,既能以被动运输方式又能以主动运输方式转运底物;而通道蛋白以被动运输方式,通过形成选择性或门控性亲水通道实现对特异溶质的跨膜转运;通道蛋白转运速率比载体蛋白高五、问答题1、将蛙卵和红细胞放到纯水中,红细胞将会涨破但蛙卵却能维持常态;两种细胞内有几乎相等的离子浓度,同样的渗透压作用于两者,为什么红细胞在水中破裂而蛙卵却不然1、红细胞在水中破裂而蛙卵细胞却不破裂的原因如下:1红细胞膜上有很多水孔蛋白;水孔蛋白是内在膜蛋白的一个家族,提供了水分子快速跨膜运动的通道;水孔蛋白能使红细胞适应所处环境中血浆渗透压力的变化,通过调节水的运输使红细胞表现为膨胀或皱缩;2红细胞细胞质膜上水孔蛋白的密度很高,每个红细胞表面有200000个水孔蛋白,因而纯水能够迅速进入红细胞而将其涨裂;蛙卵细胞表面很少水孔蛋白,纯水无法大量进入细胞,而使细胞维持原来大小;2、举例说明大分子物质通过受体介导的内吞作用进入细胞的过程;2、1受体介导的内吞作用大分子物质内吞首先同细胞膜上的特异性受体结合,然后内陷形成包被小窝,继而形成包被膜泡进入细胞;这种胞吞作用是高度特异性的,能使细胞摄入大量特定的分子,而不需要摄入很多细胞外液,具有浓缩的效果,提高了物质运输效率;2受体介导的内吞作用的过程举例如细胞对胆固醇的摄取;通常血中胆固醇与蛋白质结合,以低密度脂蛋白LDL的形式存在和运输;当细胞需要胆固醇时,LDL颗粒可与细胞膜上LDL受体特异结合,这种结合可诱使尚未结合的LDL受体向包被小窝处移动来与LDL结合,并引起包被小窝继续内陷,形成包被膜泡;这样与受体结合的LDL颗粒很快被摄入细胞,接着包被小泡迅速地脱去网格蛋白衣被,并与细胞内其他囊泡融合,形成胞内体;在胞内体内的LDL颗粒与受体分开,受体随转移囊泡返回到细胞膜,完成受体的再循环;LDL颗粒则被溶酶体酶水解为游离的胆固醇进入细胞质,用于合成新的细胞膜;。
《细胞生物学》题库参考答案第五章物质运输1. 试述协助扩散与简单扩散的区别。
⑴简单扩散(自由扩散)和协助扩散是被动运输的两种形式。
二者转运的动力都来自物质的浓度梯度,不需要细胞提供代谢能量。
⑵二者的主要区别:简单扩散,只有小分子量的不带电或疏水分子以简单扩散的方式跨膜。
不依赖于膜蛋白,所以不具有特异性。
扩散的速度正比于膜两侧该离子的浓度梯度。
协助扩散,与简单扩散不同,分子的协助扩散依赖于特定的内在膜蛋白,常称之为单向转运蛋白质。
分子结合到膜一侧的蛋白质上,该蛋白质发生构象变化将该分子转运到膜的另一侧并释放。
转运蛋白对于某特定分子或一组结构相似分子具有专一性。
2. 试述Na-K泵及钙泵的工作原理。
⑴Na-K泵即Na+-K+ATP酶,一般认为是由2个大亚基、2个小亚基组成的4聚体。
Na+-K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+、K+的亲和力发生变化。
在膜内侧Na+与酶结合,激活A TP酶活性,使A TP分解,酶被磷酸化,构象发生变化,于是与Na+结合的部位转向膜外侧;这种磷酸化的酶对Na+的亲和力低,对K+的亲和力高,因而在膜外侧释放Na+、而与K+结合。
K+与磷酸化酶结合后促使酶去磷酸化,酶的构象恢复原状,于是与K+结合的部位转向膜内侧,K+与酶的亲和力降低,使K+在膜内被释放,而又与Na+结合。
其总的结果是每一循环消耗一个ATP;转运出三个Na+,转进两个K+。
⑵钙离子泵对于细胞是非常重要的,因为钙离子通常与信号转导有关,钙离子浓度的变化会引起细胞内信号途径的反应,导致一系列的生理变化。
通常细胞内钙离子浓度(10-7M)显著低于细胞外钙离子浓度(10-3M),主要是因为质膜和内质网膜上存在钙离子转运体系,细胞内钙离子泵有两类:其一是P型离子泵,其原理与钠钾泵相似,每分解一个ATP分子,泵出2个Ca2+。
另一类叫做钠钙交换器(Na+-Ca2+ exchanger),属于反向协同运输体系(antiporter),通过钠钙交换来转运钙离子。
细胞生物学第五章课后思考题第五章物质的跨膜运输1. Which of the following statements are correct? Explain your answers. 以下哪种状况是对的?解释你的回答。
A. The plasma membrane is highly impermeable to all charged molecules. 质膜对所有带电荷的分子是高度不通透的。
错。
质膜含有许多带电荷分子提供选择通透性的蛋白质。
相反,缺少蛋白质的纯净脂双层对所有带电荷分子是高度不通透的。
B. Channels must first bind to solute molecules before they can select those that they allow to pass.通道蛋白首先必须与溶质分子结合,然后才能选择它们允许通过的溶质分子。
错。
通道蛋白不结合通过它的溶质。
通道蛋白质的选择性是靠内孔的大小和孔入口处带电荷区域吸引和排斥具有适当电荷的离子而实现的。
C. Transporters allow solutes to across a membrane at much faster rates do channels. 载体蛋白允许溶质穿过膜的速率比通道蛋白的快得多。
错。
载体蛋白比较缓慢。
它们具有类似酶的性质,即它们结合溶质并在它们的功能循环期间需要进行构象的变化。
这限制了转运的最大速率(大约1000个溶质分子/s),而通道蛋白能通过高达1000000个溶质分子/s 。
D. Certain H+ pump are fueled by light energy. 某些H+泵由光来供能。
对。
一些光合细菌的细菌紫膜质利用可见光获得的能量迁移H+。
E. A symport would function as an antiport if its orientation in the membrane were reversed (i.e., if the portion of the molecule normally exposed the the cytosol faced the outside of the cell instead).如果分子在膜内的取向被颠倒(也就是如果分子通常暴露于胞质溶胶的部分改为面向细胞外面),则同向转运将起对向运输的作用。
第五章物质的跨膜运输与信号传递所谓被动运输是通过 ca. 内吞与外排b. 受体介导的内吞作用c. 自由扩散或易化扩散d. 泵,例如钙泵影响物质在膜上自由扩散的因素有( )。
aa. 在油/水分配系数高的, 易扩散b. 电离度大的, 易扩散c. 水合度大的, 易扩散d. 水、氨基酸、Ca2+ 、Mg2+ 等小分子, 易扩散下列运输过程属于协助扩散的是()I. O2II. 甘油 III. 以缬氨霉素为载体的K+运输IV. 钙泵V. 以短菌杆肽为载体的运输A. I+IIB. I+II+IIIC. III+IVD. III+VE. IV+V下列分子中,不能通过无蛋白脂双层膜的是 da. 二氧化碳b. 乙醇c. 尿素d. 葡萄糖细胞膜上有些运输蛋白形成跨膜的水性通道,允许适当大小的带电荷溶质按以下哪种方式过膜 ba. 主动运输b. 协助扩散c. 简单扩散d. 协同运输小肠上皮细胞吸收葡萄糖是通过( )来实现的。
ba. Na+ -泵b. Na+ 通道c. Na+ -偶联运输d. Na+ 交换运输参与被动运输的重要运输蛋白有I. 载体蛋白( carrier protein ) II. 笼形蛋白 ( Clathrin ) III.通道蛋白( Channel protein ) IV. 边周蛋白( peripheral protein ) V. 门通道蛋白( Gated channel protein )a. I+II+IVb. I+II+IIIc. I+IV+Vd. I+III+V动物细胞质膜上特征性的酶是( )。
da. 琥珀酸脱氢酶b. 磷酸酶c. 苹果酸合成酶d. Na+ -K+ -ATPase。
下列哪种运输方式不消耗细胞内的ATP? ba. 胞吐b. 易化扩散c. 离子泵d. 次级主动运输以下哪些可作为细胞主动运输的直接能量来源 cI. 离子梯度 II. NADH III. ATP IV. NADPHa. IIIb. II+IVc. I+IIId. II+III下列哪些物质运输过程需消耗能量分子 cI. 伴随运输 II. 自由扩散 III. 协助扩散IV. 主动运输V Na+-K+泵a. I+IVb. IV+Vc. I+IV+Vd. I+III+V以下哪一种运输器或运输方式不消耗能量()A. 电位门通道B. 内吞(endocytosis)作用C. 外排(exocytosis)作用D. 协同运输E. 主动运输下列关于信息分子的描述中,不正确的一项是( )。
第五章物质的跨膜运输1 物质跨膜运输有哪三种门路?ATP 驱动泵可分哪些种类?答:物质跨膜运输有简单扩散、被动运输和主动运输三种门路。
ATP 驱动泵可分P 型泵、 V 型质子泵和 F 型质子泵以及ABC超家族,此中P 型泵包含Na+— K+ 泵、 Ca+泵和P 型 H+泵。
各样 ATP 驱动泵的比较:种类运输物质构造与功能特色P 型H+、Na+、K+ 、Ca+往常有大小两个亚基,大亚基被磷酸化,小亚基调理运输F 型H+有多个跨膜亚基,成立H+ 的电化学梯度,合成ATPV 型H+有多个跨膜亚基,亚基的细胞质部分可将ATP水解,并利用开释的能量将有 H+ 运输到囊泡中形成酸性环境存在部位H+ 泵:存在于植物、真菌和细菌的质膜;Na+/K+ 泵、Ca+泵、H+/ K+ 泵:存在于哺乳动物胃细胞表层质膜细菌的质膜、线粒体内膜、叶绿体的类囊体膜植物、酵母和其余真菌的液泡膜;动物溶酶体和内体的膜;破骨细胞和肾管状细胞平分泌酸性物质的质膜ABC 型离子和各样小分子两个膜构造域形成水性细菌质膜、哺乳动物的内质通道,两个细胞质 ATP 网膜和细胞质膜联合构造域与 ATP 水解及物质运输相偶联2.简述钠钾泵的构造特色及其转运体制。
答: Na+ —K+ 泵位于动物细胞的质膜上,由2 个α和 2 个β亚基构成四聚体。
Na+—K+ 泵的转运体制总结以下:在细胞内侧α亚基与Na+相联合促使ATP 水解,α亚基上的一个天冬氨酸残基磷酸化惹起α亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与α亚基的另一位点联合,使其失掉磷酸化,α亚基的构象再次发生变化,将K+ 泵入细胞,达成整个循环。
3、简述葡萄糖载体蛋白的构造特色及其转运体制。
答:葡萄糖载体蛋白,简称为 GLUT ,是一个蛋白质家族,包含十多种葡糖糖转运蛋白,他们拥有高度同源的氨基酸序列,都含有 12 次跨膜的α螺旋。
GLUT 中多肽跨膜部分主要由疏水性氨基酸残基构成,但有些α螺旋带有 Ser 、Thr 、Asp 和 Glu 残基,他们的侧链能够同葡萄糖羟基形成氢键。
第五章跨膜运输细胞膜是防止细胞外物质自由进入细胞的屏障,它保证了细胞内环境的相对稳定,使各种生化反应能够有序运行。
但是细胞必须与周围环境发生信息、物质与能量的交换,才能完成特定的生理功能。
因此细胞必须具备一套物质转运体系,用来获得所需物质和排出代谢废物,据估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的15~30%,细胞用在物质转运方面的能量达细胞总消耗能量的三分之二。
细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。
载体蛋白又称做载体(carrier)、通透酶(permease)和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧,载体蛋白有的需要能量驱动,如:各类APT驱动的离子泵;有的则不需要能量,以自由扩散的方式运输物质,如:缬氨酶素。
通道蛋白与所转运物质的结合较弱,它能形成亲水的通道,当通道打开时能允许特定的溶质通过,所有通道蛋白均以自由扩散的方式运输溶质。
第一节被动运输一、简单扩散也叫自由扩散(free diffusing),特点是:①沿浓度梯度(或电化学梯度)扩散;②不需要提供能量;③没有膜蛋白的协助。
某种物质对膜的通透性(P)可以根据它在油和水中的分配系数(K)及其扩散系数(D)来计算:P=KD/t,t为膜的厚度。
脂溶性越高通透性越大,水溶性越高通透性越小;非极性分子比极性容易透过,小分子比大分子容易透过。
具有极性的水分子容易透过是因水分子小,可通过由膜脂运动而产生的间隙。
非极性的小分子如O2、CO2、N2可以很快透过脂双层,不带电荷的极性小分子,如水、尿素、甘油等也可以透过人工脂双层,尽管速度较慢,分子量略大一点的葡萄糖、蔗糖则很难透过,而膜对带电荷的物质如:H+、Na+、K+、Cl—、HCO3—是高度不通透的(图5-1)。
事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。
第五章:物质的跨膜运输与信号传递1.比较主动运输与被动运输的特点及其生物学意义。
答:被动运输是指通过简单扩散或者协助扩散实现物质有高浓度向低浓度方向的跨膜转运。
动力来自物质的浓度梯度不需要细胞代谢的能量。
被动运输为那些无需耗能跨膜的物质提供了一个快速跨膜的通道。
主动运输是指由载体蛋白介导的物质逆浓度梯度或电化学梯度,从浓度低的一侧香浓度高的一侧进行跨膜转运的方式。
与能量偶联,为细胞提供需要的物质和维持细胞渗透压(Na-K泵制造反向压力)等。
2.小肠上皮细胞膜上的载体蛋白转运葡萄糖,什么时候是协同运输,什么时候是协助扩散?答:葡萄糖通过Na驱动的同向转运方式进入小肠上皮细胞是协同运输;由GLUT蛋白所介导的细胞对葡萄糖的摄取使葡萄糖进入血液是协助扩散。
3.两类膜转运蛋白工作原理的主要差别如何?答:两类膜转运蛋白是指载体蛋白和通道蛋白。
载体蛋白(carrier proteins),它既可介导被动运输,又可介导逆浓度梯度或电化学梯度的主动运输,如:氨基酸、核糖等通过载体蛋白选择结合跨膜转运,每种载体蛋白只能与特定的溶质分子结合。
通道蛋白(channel proteins),只能介导顺浓度梯度或电化学梯度的被动运输。
选择性开启离子通道。
通道蛋白所介导的被动运输不需要与溶质分子结合,横跨形成亲水通道,允许适宜大小的分子和带电荷的离子通过。
4.说明Na+-K+泵的工作原理及其生物学意义。
答:钠钾泵:(Na+—K+泵)❖在细胞内侧a亚基与Na结合促进ATP水解, a亚基上的一个天门冬氨基酸残基磷酸化引起a亚基构象发生变化,将Na泵出细胞;❖同时细胞外的K与a亚基的另一个位点结合,使其去磷酸化,a亚基构象再度发生变化将K泵进细胞,完成整个循环。
❖每消耗一个ATP分子,泵出3个Na和泵进2个K5.以动物细胞摄入LDL为例,概述受体介导胞吞的组成结构、运行过程及生理意义。
答:低密度脂蛋白LDL,先与细胞表面的互补性受体相结合,形成受体-配体复合物并引起细胞膜的局部内化作用,先是质膜在网格蛋白的参与作用下内陷形成有被小窝,然后是深陷的小窝脱离质膜形成有被小泡。
第五章一、名词解释载体蛋白、通道蛋白、协助扩散、协同转运、钙泵、受体介导的胞吞作用、组成型/调节型胞吐作用二、填空1.细胞内外的离子差别分布主要由两种机制所调控:一是取决于一套特殊的的活性,二是取决于质膜本身的脂双层所具有的特征。
2、膜转运蛋白可分为两类和。
3.离子通道按照激活信号的不同,可分为、、;4、被动运输分为和两种形式。
5.根据主动运输过程所需要能量来源的不同,主动运输可分为三种基本类型、、。
6、根据泵蛋白的结构和功能,A TP驱动泵可以分为4类:、、、和。
7、举三个P—型离子泵的例子_____, ______,______。
8、静息电位是指细胞在静息状态下的膜电位,的工作使细胞内外的Na+和K+浓度远离平衡态分布,从而产生了静息电位。
9.胞吞作用有两种类型:、。
根据胞吞的物质是否有专一性,可将胞吞作用分为和受体介导的胞吞作用。
受体介导的胞吞作用是一种机制。
10、胞吐作用的两个途径:、。
其中的途径确保细胞分裂前质膜的生长。
三、单项选择1.载体蛋白通过( )改变来运输物质。
A、通道的大小B、与转运物质结合力的大小C、受体D、构象2、小肠上皮细胞是通过( )机制运输吸收葡萄糖。
A.被动运输B.协助扩散C、同向协同运输D.反向协同运输4、钙泵的主要作用是( )。
A、降低细胞质中的Ca2+浓度B、增加细胞质中的Ca2+浓度C、帮助Ca2+富集到内质网腔D、降低线粒体中Ca2+浓度5、低密度脂蛋白的运输方式是( )。
A、非特异性的胞吞作用B、受体介导的胞吞作用C、协助运输D.组成型胞吐途径6、协同运输所需要的能量来自于( )。
A.耦联转运蛋白B.ATP直接供能C.光能驱动的能量D.其他一种溶质的电化学梯度四、判断题1.载体蛋白与溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运,而通道蛋白不需要与溶质分子结合,所以跨膜转运时不发生构象的改变。
( )2.协助扩散就是协同运输.是物质从高浓度侧转运到低浓度侧.不需要消耗能。
第五章物质跨膜运输一、名词解释1. 渗透2. 载体蛋白3. 离子通道4. 协同运输5. 简单扩散6. 协助扩散7. 配体门通道8. 离子门通道二、选择题:请在以下每题中选出正确答案,每题正确答案为1-6个,多选和少选均不得分1. 以下哪一种运输器或运输方式不消耗能量A.电位门通道B.内吞(endocytosis)C.外排(exocytosis)D.协同运输2. 红细胞膜上的带3蛋白是一种A.离子泵B.ABC转运器C.离子通道D.离子载体3. 动物小肠细胞对葡萄糖的吸收依靠A.钠离子梯度驱动的同向协同(symport)B.钠离子梯度驱动的反向协同(antiport)4. 植物细胞和细菌的协同运输常利用哪一种的浓度梯度来驱动。
A.钙离子B.质子C.钠离子D.钾离子5. 人类多药抗性蛋白(multidrug resistance protein, MDR)属于A.V型离子泵B.P型离子泵C.F型离子泵D.ABC转运器6. V型质子泵位于许多细胞器的膜上,用以维持细胞器内部的酸性环境,以下哪一种细胞器内的pH值低于显著细胞质的pH值A.溶酶体B.内吞体C.植物液泡D.线粒体7. 神经递质在神经肌肉-接点处的释放是对哪一种离子浓度的变化的直接响应。
A.钙离子B.质子C.钠离子D.钾离子8. 肌质网上的钙离子泵属于A.V型离子泵B.P型离子泵C.F型离子泵9. 钠钾泵A.通过自磷酸化发生构象改变B.每消耗一个ATP,转出2个钠离子,转进3个钾离子C.参与形成膜静息电位D.参与维持细胞离子平衡10. 以下哪些可作为细胞主动运输的直接能量来源A.离子梯度B.NADHC.A TPD.光11. 以下哪一种蛋白质不属于配体门通道A.五羟色胺受体B.γ-氨基丁酸受体C.乙酰胆碱受体D.表皮生长因子受体12. 以下哪类物质难以透过无蛋白的人工膜A.离子B.丙酮C.水D.二氧化碳13. 短杆菌肽A(granmicidin)不能转运以下哪一种离子A.钙离子B.质子C.钠离子A.钾离子14. 缬氨霉素属于离子载体,可转运那一种离子A.钙离子B.质子C.钠离子D.钾离子15. 通道蛋白A.运输物质时不需要能量B.对运输的物质没有选择性C.逆浓度梯度转运物质D.是跨膜蛋白构成的亲水通道三、是非题1. 通道蛋白(channel protein)仅在对特定刺激发生反应时打开,其他时间是关闭的。
细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是(C )。
A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合。
这种跨膜转运方式称为(B )。
A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是(A )。
A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠(B )。
A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是( B)。
A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为(C )。
A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后( D)。
A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高。
那么,该物质进入细胞的可能方式为(A )。
A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是(D )。
A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用。
《细胞生物学》习题集参考答案第一章绪论一.填空题1.胡克,1665,原生动物,红细胞2.细胞的发现,细胞学说的建立,细胞学经典时期,实验细胞学时期3.能量守恒定律,细胞学说,达尔文进化论4.遗传信息的形成,膜的形成5.细胞内基因选择性表达特异功能蛋白质, 生物发育6.碱基互补配对7.全能性8.体细胞9.染色体DNA与蛋白质相互作用关系;细胞增殖、分化、凋亡(程序性死亡)的相互关系及调控;细胞信号转导研究或细胞结构体系的组装二.选择题1.C 2:D 3:C 4:D 5. B三:判断题1.√2。
√3。
√4:×(原生质包括细胞内所有的生活物质)5.×四.名词解释1.细胞生物学是应用现代物理学与化学的技术成就和分子生物学的概念与方法,以细胞作为生命活动的基本单位的思维为出发点,探索生命活动规律的学科,其核心问题将遗传与发育在细胞水平上结合起来。
2.生物大分子是指细胞中存在的那些分子质量巨大、结构复杂、具有生物活性的有机化合物,如以蛋白质、核酸、多糖及脂类等四大类为典型的生物大分子,它们是由多个氨基酸或核苷酸等小分子聚合而成的,具有广泛的生物活性,既是细胞的结构成分,又是细胞和种生命活动的执行者或体现者。
五.简答题1.Science Nature /Nature Cell Biology /Cell /Molecular Cell/ Developmental Cell /Cancer Cell/ Neuron/Journal of Cell Biology /Gene and Biology /Journal of Cell Science(参看课本P14)国内的相关学术刊物《中国科学》.《科学通报》.《分子细胞生物学报》.《细胞生物学杂志》.《遗传学报》.《动物学报》.《微生物学报》等(参看课本P14-15)2.(1)细胞结构功能→细胞生命活动。
细胞生命活动的研究,将进一步加深对细胞结构与功能的了解;(2)细胞中单一基因与蛋白→基因组与蛋白质组及在细胞生命活动中的协同作用,特别是复合体的相互作用;(3)细胞信号转导途径→信号调控网络;(4)体外(in vitro)研究→体内(in vivo)研究;(5)静态研究→活细胞的动态研究;(6)实验室研究为主→计算生物学更多地介入并与之结合;(7)细胞生物学与生物学其他学科的渗透→与数、理、化及纳米科学等多学科的交叉。
第五章物质的跨膜运输与信号转导学习要求:1.掌握物质跨膜运输的各种方式及原理2.掌握细胞信号转导的各种途径及相关知识。
3.理解细胞内信号转导的复杂网络系统,并建立细胞内信号转导的复杂网络系统的整体的、概括的印象。
概要:1.物质跨膜运输的各种方式及原理和相互间的区别细胞膜是细胞与细胞外环境之间的一种选择性通透屏障,物质的跨膜运输对细胞的生存和生长是至关重要的。
物质的跨膜运输可分为:被动运输和主动运输两类方式。
被动运输包括简单扩散和载体介导的协助扩散,物质运输的方向是由高浓度向低浓度,不消耗ATP。
负责物质跨膜转运的蛋白可分为两类:载体蛋白和通道蛋白。
载体蛋白即可介导被动运输也可介导主动运输;通道蛋白质能介导被动运输。
每种载体蛋白能与特定的溶质分子结合,通过一系列的构象改变介导溶质分子的跨膜运输;通道蛋白所介导的被动运输不需要与溶质分子结合,通道蛋白多为多次跨膜的离子通道,具有选择性和门控特性的特点。
主动运输是由蛋白质所介导的物质你浓度梯度或电化学梯度的跨膜转运方式,需要与某种释放能量的过程相偶联。
主动运输可分为由ATP直接供能和间接供能以及光驱动的三种类型。
由于离子的选择性跨膜运输,产生了膜电位,这对细胞的生命活动是非常重要的。
真核细胞除通过简单扩散、协助扩散和主动运输对小分子物质进行运输外,还可以通过胞吞作用和胞吐作用完成大分子与颗粒性物质的跨膜运输。
胞吞作用又可分为胞饮作用和吞噬作用。
2.细胞信号转导的各种方式及原理多细胞生物是一个繁忙而有序的细胞社会,其中进行复杂细胞通信和信号转导。
细胞接受外界信号,通过一整套特定的机制,实现信号的跨膜转导最终调节特异敏感基因的表达,引起细胞的应答反应,这是细胞信号系统的主线,这种反应系列称为细胞信号通路。
根据其受体存在的部位不同可分为细胞内受体介导的信号转导核细胞表面受体介导的信号转导两大类型。
细胞内受体一般都有三个结构域:位于C端的激素结合位点,位于中部的DNA或Hsp90结合位点,以及N 端的转录激活结构域。
第五章1. 比较载体蛋白和通道蛋白的特点。
答:载体蛋白和通道蛋白都是膜转运蛋白,两者以不同的方式辨别溶质(即决定运输某种溶质而不运输另外的溶质),通道蛋白根据溶质大小和电荷进行辨别,主要转运离子,载体蛋白只容许与载体蛋白上结合部位相合适的溶质分子通过。
与载体蛋白相比,通道蛋白具有极高的转运速率(比已知任何一种载体蛋白最快转运速率要高1000倍以上),通道蛋白转运没有饱和值而载体蛋白转运过程有类似于酶和底物作用的饱和动力学特征,通道蛋白是门控开放而载体蛋白介导溶质转运时发生构象转变是随机发生的。
2. 比较主动运输与被动运输的特点及其生物学意义。
答:主动运输和被动运输的特点:(1)浓度梯度:主动运输是物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧跨膜转运的方式;而被动运输是物质顺浓度梯度或电化学梯度由高浓度向低浓度方向的跨膜转运。
(2)是否需能:主动运输需要代谢能(由ATP水解直接提供能量)或与释放能量的过程相偶联(协同运输);而被动运输不需要提供能量。
(3)膜转运蛋白:主动运输需要载体蛋白介导;被动运输有些需要载体介导(协助扩散、水孔蛋白),有的不需要(简单扩散)。
被动运输意义:保证细胞或细胞器从周围环境中或表面摄取必要的营养物质及将分泌物、代谢物以及一些离子排到细胞外。
主动运输意义:(1)保证细胞或细胞器从周围环境中或表面摄取必要的营养物质,即使这些营养物质在周围环境中或表面的浓度低;(2)能够将细胞内的各种物质,如分泌物、代谢物以及一些离子排到细胞外,即使这些营养物质在细胞外的浓度比细胞内的浓度高得多;(3)能够维持一些无机离子在细胞内恒定和最适的浓度,特别是K+、Ca2+和H+的浓度。
3. 简述Na+-K+泵的工作原理及其生物学意义。
答:Na+-K+泵具有ATP酶活性,由大小两个亚基组成,小亚基(β亚基)是个糖蛋白,大亚基(α亚基)是跨膜蛋白,在其胞质面有一个A TP结合位点和三个高亲和Na+结合位点,在膜的外表面有二个K+高结合位点和一个乌本苷的结合位点。
第五章细胞的内膜系统与囊泡转运练习题及答案第五章细胞的内膜系统与囊泡转运一、名词解释1.内膜系统( endomembrane svstem)2.糙面内质网(rough endoplasmic reticulum,RER)3.光面内质网(smooth endoplasmic reticulum,SER)4.微粒体( microsome)5.网质蛋白( reticulo- -plasmin)6.分子伴侣( molecular chaper7.囊泡( vesicle)8.囊泡转运( vesicular transport)9.门控运输(gated transport)10.穿膜运输(transmembrane transport)11.网格蛋白( clathrin)12.衔接蛋白( adaptin)13.发动蛋白( dynamin)14.OPI有被小泡(COP I-coated vesicle)15.COPⅡ有被小泡(COPⅡ- coated vesicle)二、单项选择题1.光面内质网的主要功能是A.合成蛋白质B.脂类物质合成C.蛋白质加工D.蛋白质分泌E.氧化代谢2.吞噬溶酶体在完成对大部分底物的消化分解后,不能被消化、分解的部分成为A.内体C.微体D.脂质体E.自噬体3.在高尔基复合体中,溶酶体水解酶形成的分选信号是A. MTSC. M-6-PD. RGDE. NLS4.初级溶酶体内的酶是A.有活性的中性水解酶B.有活性的碱性水解酶C.有活性的酸性水解酶D.无活性的中性水解酶E.无活性的酸性水解酶5.光面内质网的功能不包括A.合成分泌性蛋白B.参与糖原分解C.参与脂类代谢D.合成甾体类激素E.参与脂类转运6.高尔基复合体的主要功能是A.合成蛋白质B.合成脂类C.合成糖类D.合成甾体激素E.参与蛋白质的修饰与加工7.可与外核膜相连的细胞器是A.内质网B.高尔基复合体D.线粒体E.过氧化物酶体8.肌细胞中与Ca2+的摄取和释放以及传导兴奋作用有关的细胞器是A.微管、微丝B.溶酶体C.糙面内质网D.光面内质网E.过氧化物酶体9.下列能够协助核编码蛋白质进入线粒体的是A.核输入信号B.基质导入序列C.分子伴侣核输出信号D.细胞周期蛋白E.核输出信号10.高尔基复合体的小囊泡主要来自A.溶酶体B.内质网C.内体D.吞噬体E.微粒体11.内质网驻留蛋白进入高尔基复合体后会形成包被小泡,并将其从高尔基复合体运输到内质网中,此种包被小泡的主要包被成分为A.ClathrinB. COPIC. COPIID. KDELE.Sar12.内质网的标志酶是A.糖基转移酶B.酸性水解酶C.酸性磷酸酶D.葡萄糖-6-磷酸酶E.过氧化氢酶13.细胞内蛋白质定向转运的机制是蛋白质含有特殊的A.M-6-P分选信号B.信号序列C.RGD序列D.寡糖链E.编码序列14.内质网中能识别错误折叠的蛋白并促使其重新折叠的分子伴侣是A. BiB.易位子C.Hsp90D. PDIE. Hsp7015.下列不参与多肽从胞质溶胶转移到内质网膜上合成的过程的是A.信号识别颗粒B.停靠蛋白质C.信号肽D.易位子E.Bip16.分泌蛋白的运输途径为A.囊泡运输B.门控运输C.穿膜运输D.自由扩散E.易化扩散17.下列不属于糙面内质网功能的是A.蛋白质合成B.蛋白质的分选与包装C.多肽链的折叠与组装D.蛋白质的糖基化修饰E.蛋白二硫键的形成18.与矽肺发生密切相关的细胞器是A.溶酶体B.过氧化物酶体C.线粒体D.高尔基复合体E.内质网19.附着于糙面内质网表面的颗粒物质是A.微体B.微粒体C.核糖体D.酶颗粒E.基粒20.细胞中,由双层膜围成的细胞器是A.内质网B.线粒体C.溶酶体D.高尔基复合体E.内体21.哺乳动物精子的顶体是一种特化的A.分泌泡B.线粒体C.溶酶体D.高尔基复合体22.蛋白质的N-连接糖基化是将寡糖连接到氨基酸残基A.AspB.AsnC.SerD. ThrE.Gln23.溶酶体的标志酶是A.氧化酶B.过氧化氢酶C.酸性磷酸酶D.糖基转移酶E.葡萄糖-6-磷酸酶24.下列细胞器中含有尿酸氧化酶结晶的是A.过氧化物酶体B.线粒体C.溶酶体D.高尔基复合体E.内体25.溶酶体酶的最适pH为A.4.0B.5.0C.6.0D.7.0E.8.026.蛋白质的0—连接糖基化将寡糖连接到A.—OHB.—SHC.—NH2D.— COOH27.过氧化物酶体的标志酶是A.氧化酶B.过氧化氢酶C.酸性磷酸酶D.过氧化物酶E.蛋白二硫键异构酶28.下列细胞器膜上含有质子泵的是A.过氧化物酶体B.内质网C.溶酶体D.高尔基复合体E.细胞核29.下列蛋白不是在糙面内质网上合成的是A.分泌蛋白B.细胞膜受体C.溶酶体蛋白D.组蛋白E.Bip30.下列细胞器中,有极性的是A.过氧化物酶体B.内质网C.溶酶体D.高尔基复合体E.线粒体31.在蛋白质合成运输过程中,如果一种多肽只有N端起始转移信号肽而没有停止转,那么它合成后一般进入到A.内质网腔B.细胞核C.内质网膜D.线粒体内膜E.溶酶体32.下列细胞器中,具有蛋白质分选功能的是A.溶酶体B.光面内质网C.高尔基复合体D.糙面内质网E.线粒体33.细胞内合成脂类的重要场所是A.糙面内质网B.光面内质网C.高尔基复合体D.胞E.细胞膜34.分选信号为甘露糖6-磷酸的是A.溶酶体水解酶B.糖基转移酶C.过氧化物酶D.网质蛋白E. LDI R35.膜蛋白在膜上的插入是有方向性的,确定其插入方向性的细胞内区域是A.胞质溶胶B.高尔基复合体C.内质网D.质膜E.运输小泡36.从骨髓瘤细胞中提取的免疫球蛋白分子的N端比分泌到细胞外的免疫球蛋白分子的N端氨基酸序列多出一截,最有可能的原因是A.分泌到细胞外的免疫球蛋白分子的N端直接被泛素化降解B.是由于免疫球蛋白在细胞内较稳定,而在细胞外不稳定造成的C.分泌到细胞外的免疫球蛋白分子N端信号肽被信号肽酶切除D.它们由不同的基因编码E.细胞中的蛋白分子N端在内质网中被加上了一段信号肽37.在高尔基复合体TGN区,网格蛋白有被小泡由外向内生物分子的排列序列为A.网格蛋白→受体→衔接蛋白→配体分子B.网格蛋白→衔接蛋白→受体→配体分子C.网格蛋白→配体分子→衔接蛋白→受体D.配体分子→衔接蛋白→受体→网格蛋白E.衔接蛋白→配体分子→受体→网格蛋白38.负责从顺面高尔基网到内质网进行囊泡运输的是A.网格蛋白有被小泡B.COPI有被小泡C.COPⅡ有被小泡D.三者都可以E.三者都不可以39.分泌蛋白信号肽的切除发生在A.胞质溶胶B.高尔基复合体C.内质网D.溶酶体E.线粒体40.高尔基复合体中,N-连接和O-连接的糖基化最后一步都是加上唾液酸残基,由此可推测催化唾液酸转移的酶最有可能存在于高尔基复合体的A. CGNB.顺面膜囊C.中间膜囊D.反面膜囊和TGNE.小囊泡41.少量溶酶体酶泄露到胞质溶胶中并不会引起细胞损伤的主要原因是A.溶酶体酶迅速被特异的机制召回溶酶体中B.胞质中的一些蛋白因子与溶酶体酶结合抑制其活性C.胞质溶胶中的pH为7.0左右,溶酶体酶的活性大大降低D.溶酶体酶进入胞质溶胶随即被降解成无活性的肽段E.溶酶体酶在胞质溶胶中被泛素化降解42.糖原代谢受阻引起Ⅱ型糖原累积病是由于缺乏A.葡萄糖-6-磷酸酶B.糖基转移酶C.a-糖苷酶D.氨基己糖酶AE.糖基化酶43.如果一种多肽含有多个起始转移序列和多个停止转移序列,那么下列说法最确切的是A.该多肽将转移到内质网上继续合成B.该多肽合成结束后将最终被定位在内质网中C.该多肽将最终成为多次跨膜的膜蛋白D.该多肽将最终被运送至溶酶体而被降解E.该多肽将最终被分泌到细胞外44.下列蛋白不属于分子伴侣的是A Grp94 B.Bip C. PDI D.泛素 E.Hsp7045.下列膜性细胞器不属于内膜系统的是A.内质网B.溶酶体C.运输小泡D.线粒体E.高尔基复合体46.COPI有被小泡主要负责的蛋白质转运过程是A.高尔基复合体到内质网B.质膜到内体C.高尔基复合体到内体D.内质网到高尔基复合体E.内体到溶酶体47.高尔基复合体的功能不包括A.蛋白质的分泌B.糖蛋白的加工修饰D.蛋白质的合成C.蛋白质的水解E.蛋白质的分选48.转录因子在细胞质中合成后进入细胞核的方式是A.囊泡运输B.门控运输C.穿膜运输D.易化扩散E.协同运输49.LDL受体在细胞质中合成后运输到细胞膜上发挥作用的方式是A.囊泡运输B.门控运输C.穿膜运输D.易化扩散E.ATP驱动泵50.内体性溶酶体的形成过程不包括A.酶蛋白的N-糖基化与内质网转运B.酶蛋白在高尔基复合体内的加工与转移C.溶酶体酶前体从与之结合的M-6-P膜受体上解离D.酶蛋白的分选与转运E.晚期内体与吞噬体融合51.COPⅡ有被小泡的形成需要激活的蛋白是A.网格蛋白B.衔接蛋白C.发动蛋白D.Rab蛋白E.Sar蛋白52.线粒体蛋白在细胞质中合成后进入线粒体的方式是A.囊泡运输B.门控运输C.穿膜运输D.ATP驱动泵E.自由扩散53.网格蛋白参与的囊泡运输过程是A.高尔基复合体到内质网B.内质网逃逸蛋白的捕捉C.内体到质膜D.内质网到高尔基复合体E.高尔基复合体到溶酶体54.下列由溶酶体酶的异常释放或外泄造成的疾病是A.泰-萨病B.Ⅱ型糖原累积症C.痛风D. Zellweger脑肝肾综合征E.蚕豆病55.COPI有被小泡主要负责的转运过程是A.高尔基复合体到内质网B.高尔基复合体到内体C.质膜到内体D.内质网到高尔基复合体E.内体到溶酶体56.下列小G蛋白中,参与了囊泡融合的是A.Rab蛋白B.Raf蛋白C.Ras蛋白D.ARF蛋白E.Ran蛋白57.受体介导的胞吞作用不具有的特点是A.有受体参与B.发生在有被小窝处C.对被摄取物有选择性D.有网格蛋白参与E.有COPI蛋白参与58.缺乏可导致 Zellweger脑肝肾综合征发生的是A.葡萄糖-6-磷酸酶B.过氧化氢酶C.氨基己糖酶AD.糖基转移酶E.a-糖苷酶59.参与囊泡融合的蛋白是A.衔接蛋白B.发动蛋白C. SNARES蛋白D.COPI蛋白E.COPⅡ蛋白60.下列关于内质网应激的错误叙述是A.与内质网内Ca2+平衡紊乱有B.未折叠或错误折叠蛋白在内质网腔中积累聚集C.其发生与营养不足、缺氧有关D.可导致细胞凋亡E.可激活MAPK信号通路三、多项选择题1.下列属于蛋白质分选信号序列的是A.信号斑B.密码子C.M-6-P受体D.SRPE.信号肽2.网格蛋白包被小泡的形成,需要参与的蛋白是A.网格蛋白B.衔接蛋白C.发动蛋白D.质膜上存在特定受体E.Sar蛋白3.光面内质网的功能包括A.合成分泌性蛋白B.参与糖原分解C.参与脂类代谢D.Ca2+的储存E.参与脂类转运4.胞内蛋白质运输的主要运输途径包括A.囊泡运输B.门控运输C.穿膜运输D.离子通道蛋白介导的运输E.自由扩散5.下列属于内膜系统的细胞器有B.高尔基复合体C.溶酶体D.细胞膜E.线粒体6.承担细胞内物质定向运输的囊泡类型包括A.网格蛋白有被小泡B.液泡C.内体D.COP I有被小泡E.COP Ⅱ有被小泡7.属于高尔基复合体功能的是A.蛋白质的分泌B.蛋白质的糖基化C.蛋白质的水解D.蛋白质的合成E.蛋白质的分选8.主要由网格蛋白有被小泡负责的囊泡运输是A.高尔基复合体到内质网B.质膜到内体C.高尔基复合体到溶酶体D.内质网到高尔基复合体E.内体到溶酶体9.下列属于糙面内质网功能的是A.蛋白质合成B.蛋白质的分选与包装多肽链的折叠C.多肽链的折叠与组装D.蛋白质的运输E.蛋白质的糖基化10.在LDL的内吞过程中,内吞泡的形成需要B.衔接蛋白C.发动蛋白D.LDL受体E.Sar蛋白参考答案名词解释1.内膜系统( endomembrane system):是细胞质中在结构、功能及其发生上相互密切关联的膜性结构细胞器之总称,主要包括:内质网、高尔基复合体、溶酶体、各种转运小泡以及核膜等2.糙面内质网( rough endoplasmic reticulum,RER):又称颗粒内质网,以内质网膜胞质面有核糖体颗粒附着为主要形态特征,多呈排列较为整齐的扁平囊状3.光面内质网( smooth endoplasmic reticulum,SER):又称无颗粒内质网,表面没有核糖体附着电镜下呈表面光滑的管、泡样网状形态结构,常与糙面内质网相互连通。
第五章:物质的跨膜运输与信号传递
1.比较主动运输与被动运输的特点及其生物学意义。
答:被动运输是指通过简单扩散或者协助扩散实现物质有高浓度向低浓度方向的跨膜转运。
动力来自物质的浓度梯度不需要细胞代谢的能量。
被动运输为那些无需耗能跨膜的物质提供了一个快速跨膜的通道。
主动运输是指由载体蛋白介导的物质逆浓度梯度或电化学梯度,从浓度低的一侧香浓度高的一侧进行跨膜转运的方式。
与能量偶联,为细胞提供需要的物质和维持细胞渗透压(Na-K泵制造反向压力)等。
2.小肠上皮细胞膜上的载体蛋白转运葡萄糖,什么时候是协同运输,什么时候是协助扩散?
答:葡萄糖通过Na驱动的同向转运方式进入小肠上皮细胞是协同运输;由GLUT蛋白所介导的细胞对葡萄糖的摄取使葡萄糖进入血液是协助扩散。
3.两类膜转运蛋白工作原理的主要差别如何?
答:两类膜转运蛋白是指载体蛋白和通道蛋白。
载体蛋白(carrier proteins),它既可介导被动运输,又可介导逆浓度梯度或电化学梯度的主动运输,如:氨基酸、核糖等通过载体蛋白选择结合跨膜转运,每种载体蛋白只能与特定的溶质分子结合。
通道蛋白(channel proteins),只能介导顺浓度梯度或电化学梯度的被动运输。
选择性开启离子通道。
通道蛋白所介导的被动运输不需要与溶质分子结合,横跨形成亲水通道,允许适宜大小的分子和带电荷的离子通过。
4.说明Na+-K+泵的工作原理及其生物学意义。
答:钠钾泵:(Na+—K+泵)
❖在细胞内侧a亚基与Na结合促进ATP水解, a亚基上的一个天门冬氨基酸残基磷酸化引起a亚基构象发生变化,将Na泵出细胞;
❖同时细胞外的K与a亚基的另一个位点结合,使其去磷酸化,a亚基构象再度发生变化将K泵进细胞,完成整个循环。
❖每消耗一个ATP分子,泵出3个Na和泵进2个K
5.以动物细胞摄入LDL为例,概述受体介导胞吞的组成结构、运行过程及生理意义。
答:低密度脂蛋白LDL,先与细胞表面的互补性受体相结合,形成受体-配体复合物并引起细胞膜的局部内化作用,先是质膜在网格蛋白的参与作用下内陷形成有被小窝,然后是深陷的小窝脱离质膜形成有被小泡。
即完成胞吞过程(后又脱包被,胞内体作用等)。
其生理意义应该是:作为一种选择性浓缩机制,既保证了细胞大量的摄入特定的大分子,同时又避免了吸入胞外大量的液体。
6.比较两种胞吐突进的特点及功能。
答:两种途径是:组成型和调节性胞吐途径。
(1)组成型的胞吐途径(细胞中普遍存在)
主要是由高尔基体成熟面的网状区(TGN)分泌的囊泡移动到质膜与之融合,以囊泡形式外排。
为质膜更新提供新合成的膜蛋白和膜脂;并分泌外排新合成的可溶性蛋白,在胞外形成质膜外周蛋白、胞内基质、胞外营养成分和信息分子。
(2)调节型的胞吐途径(仅存在于某些特化的分泌细胞)
存在于某些特化的分泌细胞,这些分泌细胞产生的分泌物(eg激素、粘液或消化酶)储存在分泌泡内,当细胞受到胞外信号分子(激素、神经递质)刺激后,分泌泡与质膜融合并将内含物释放出去。
7.试述细胞信号通路上的信号分子、受体、第二信使、分子开关的各种类型及各自特点。
答:信号分子:
(1)亲脂性信号分子:受体多在胞质或胞核中。
(2)亲水性信号分子:受体多在质膜表面。
(3)气体性信号分子:NO。
受体:识别和选择性接受某种配体的大分子
(1)细胞内受体:位于细胞质基质或核基质中,主要识别和小的结合脂溶性信号分子
(2)细胞表面受体:主要有以下三种
1.离子通道偶联受体:存在于神经、肌肉等可兴奋细胞间的突触信号传
递。
2.G蛋白偶联受体(无组织特异性)
3.酶联受体(无组织特异性)
第二信使:第一信使分子(激素或其他配体)与细胞表面受体结合以后,在细胞内产生或释放到细胞内的小分子。
常见的第二信使有以下几种:
1.cAMP:激活cAMP信号通路(cAMP激活PKA)
2.IP3和DAG:激活磷脂酰肌醇信号通路(IP3开启内质网Ca2+通道;DAG
和Ca2+共同激活PKC)
3.Ca2+
分子开关:
1.GTPase开关蛋白:结合GTP则活化开启;结合GDP则失活关闭。
2.蛋白激酶:使靶蛋白磷酸化而开启;去磷酸化而关闭。
8.甾类激素是如何通过胞内受体介导的信号通路去调节基因表达?
答:当抑制性蛋白(例如:Asp90)与受体结合后,使其处于非活化状态;而当甾类激素等配体与受体结合时,导致抑制性蛋白脱离,暴露出受体上DNA结合位点而被激活。
受体结合的DNA序列是转录增强子,可增加某些相邻基因的转录水平。
甾类激素诱导的基因活化分两个阶段:
1)初级反应阶段:直接活化少数特殊基因,发生迅速
2)延迟的次级反应:由初级反应的基因产物,再活化其他基因,对初级反应起放大作用。
9.以突触处神经递质作用为例,说明离子通道偶联受体介导的信号通路特点。
答:离子通道偶联受体本身具信号结合点,又是离子通道,其跨膜信号转导无需中间步骤。
神经递质(胞外化学信号)与受体结合而引起通道蛋白变构,导致离子通道开启,使突触后细胞膜出现过膜离子流(如Na+和Ca2+),从而将胞外化学信号转换成胞内电信号,导致突触出后细胞的兴奋。
当胆碱脂酶将神经递质水解后,离子通道关闭,信号传递中断。
(详见教材P242图8-22)
10.概述G蛋白偶联受体介导的信号通路的组成、特点及主要功能。
答:G蛋白偶联受体介导的信号通路整体的传递过程:细胞外配体—→细胞表面受体—→G蛋白(分子开关)—→第二信使—→靶蛋白(酶或离子通道)—→细胞应答
根据第二信使的不同,信号通路可以分为两类:
(1)cAMP信号通路
cAMP的产生有腺苷酸环化酶催化完成,而该酶的活性由激活性激素(肾上
腺素、胰高血糖素)或抑制性激素(前列腺素、腺苷)调控。
激素-→G蛋白偶联受体-→G蛋白-→腺苷酸环化酶-(激素作用)→cAMP-
→cAMP依赖的蛋白激酶A(PKA)
产生PKA后,他可以激活下游的靶酶以及开启基因表达:(前者是快速反应,
后者是慢速反应)
a.活化的PKA—>靶酶蛋白磷酸化—>细胞代谢核细胞行为(如肾上腺素
刺激骨骼肌细胞导致糖原分解)
b.活化的PKA—>基因调控蛋白—>基因转录
(2)磷脂酰肌醇信号通路(IP3和DAG作双信使)
胞外信号-→G蛋白偶联受体
-→G蛋白-→磷脂酶C(PLC)
-→磷脂酰肌醇(PIP2)→三磷酸肌醇-→开启Ca2+通道-→钙调蛋白结合-→细胞反应(两种第二信使)→二酰基甘油-→蛋白激酶C(PKC)-→系列磷酸化级联反应
↓↓激活
使得抑制蛋白的磷酸化调节基因转录
↓脱离
基因调控蛋白
↓活化
基因转录
11.简述受体酪氨酸激酶介导的信号通路的特点。
答:此题内容考试不作要求。
12.体外培养的正常细胞须贴壁生长、分裂,而癌细胞却能悬浮培养,为什么?
答:癌细胞丧失了细胞间的接触性抑制。
(癌细胞的特征等详见第十二章习题)
13.试总结细胞信号通路的主要规律及基本特征。
答:总结一下有如下几点:
(1)受体与配体结合而激活产生生物学效应;
(2)信号通路中的蛋白质活性往往由磷酸化和去磷酸化进行调控:如分子开关。
(3)从细胞信号传导到细胞应答到一系列生理生化反应的发生是经历了一个信号级联放大的过程。
(此题为个人意见仅供参考)。