初等数论最大公因数
- 格式:ppt
- 大小:2.19 MB
- 文档页数:23
初等数论(4)(第一章数的整除性第四节最大公因数(1))定义1 整数a1,a2, ,a k的公共因数称为a1,a2, ,a k的公因数。
不全为零的整数a1,a2, ,a k的公因数中最大的一个叫做a1,a2, ,a k的最大公因数,记为(a1,a2, ,a k)。
由于每个非零整数的因数的个数是有限的,所以最大公因数是存在的,并且是正整数。
如果(a1,a2, ,a k)=1,则称a1,a2, ,a k是互质的;如果(a i , a j)=1,1 ≤i ≤k,1 ≤ j ≤k,i≠ j,则称a1,a2, ,a k是两两互质的。
显然,由a1,a2, ,a k两两互质可以推出(a1,a2, ,a k)= 1,反之则不然,例如(2,6,15)=1,但(2,6)= 2。
定理1 下面的等式成立:(ⅰ)(a1,a2, ,a k)=(|a1|,|a2|, ,|a k|);(ⅱ)(a,1)=1,(a,0)=|a|,(a,a)=|a|;(ⅲ)(a,b)=(b,a);(ⅳ)若p是质数,a是整数,则(p,a)=1或p∣a;(ⅴ)若a = bq + r,则(a,b)=(b,r)。
证明(ⅰ)我们先证明a1,a2, ,a k与|a1|,|a2|, ,|a k|的公因数相同。
设d是a1,a2, ,a k 任一公因数,由定义d∣ a i,i = 1,2,……,n。
因而d∣| a i | ,i = 1,2,……,n。
故d是|a1|,|a2|, ,|a k|的一个公因数,同样的方法可证|a1|,|a2|, ,|a k|的任一个公因数都是a1,a2, ,a k的一个公因数.即a1,a2, ,a k与|a1|,|a2|, ,|a k|的公因数相同。
由此可直接得(a1,a2, ,a k)=(|a1|,|a2|, ,|a k|);(ⅱ)、(ⅲ)、(ⅳ)显然。
(ⅴ)如果d∣a,d∣b,则有d∣r = a -bq,反之,若d∣b,d∣r,则d∣a = bq + r。
最大公因数和最小公倍数定义最大公因数和最小公倍数是数学中两个重要的概念。
它们可以帮助我们解决许多实际问题,例如求解分数的最简形式、解决整数倍数关系等等。
本文将从定义、性质和求解方法等方面介绍最大公因数和最小公倍数的相关知识。
最大公因数定义两个或多个整数的最大公因数,简称最大公因数,是能够整除每一个给定整数的最大正整数。
最大公因数一般用符号“gcd”表示,例如gcd(a,b)表示整数a和b的最大公因数。
性质最大公因数有以下几个重要性质:1.gcd(a,b) = gcd(b,a):最大公因数具有交换律。
2.gcd(a,b) = gcd(a-b,b):欧几里得算法,也称为辗转相除法,利用这一性质求解最大公因数。
3.若c是a和b的公因数,且c是a和b的最大公因数,则c是a和b的最大公因数的倍数。
求解方法求解最大公因数有多种方法,这里介绍两种常用的方法:欧几里得算法和素因数分解法。
欧几里得算法欧几里得算法是一种通过不断求出两个数的余数来迭代计算最大公因数的方法。
算法的步骤如下:1.用较大的数除以较小的数,得到商和余数。
2.用较小的数除以余数,再次得到商和余数。
3.重复上述过程,直到余数为0为止。
4.最大公因数就是最后一次运算中的被除数。
例如,求解gcd(12, 8):12 ÷ 8 = 1 余 48 ÷ 4 = 2 余 0最大公因数为4。
素因数分解法素因数分解法是通过将两个数分别分解成素数因子的乘积,并取两个数相同部分的乘积作为最大公因数。
算法的步骤如下:1.将两个数分别进行素因数分解,得到各自的素因子乘积。
2.取两个数相同部分的乘积作为最大公因数。
例如,求解gcd(12, 8):12 = 2² × 38 = 2³相同部分为2²,最大公因数为4。
最小公倍数定义两个或多个整数的最小公倍数,简称最小公倍数,是能够同时整除每一个给定整数的最小正整数。
最小公倍数一般用符号“lcm”表示,例如lcm(a,b)表示整数a和b的最小公倍数。
序言数论是研究整数性质的一门很古老的数学分支,其初等部分是以整数的整除性为中心的,包括整除性、不定方程、同余式、连分数、素数(即整数)分布以及数论函数等内容,统称初等数论(Elementary Number Theory)。
初等数论的大部份内容早在古希腊欧几里德的《几何原本》中就已出现。
欧几里得证明了素数有无穷多个,他还给出求两个自然数的最大公约数的方法,即所谓欧几里得算法。
我国古代在数论方面亦有杰出之贡献,现在一般数论书中的“中国剩余定理”正是我国古代《孙子算经》中的下卷第26题,我国称之为“孙子定理”。
近代初等数论的发展得益于费马、欧拉、拉格朗日、勒让德和高斯等人的工作。
1801年,高斯的《算术探究》是数论的划时代杰作。
“数学是科学之王,数论是数学之王”。
-----高斯由于自20世纪以来引进了抽象数学和高等分析的巧妙工具,数论得到进一步的发展,从而开阔了新的研究领域,出现了代数数论、解析数论、几何数论等新分支。
而且近年来初等数论在计算器科学、组合数学、密码学、代数编码、计算方法等领域内更得到了广泛的应用,无疑同时间促进着数论的发展。
数论是以严格和简洁著称,内容既丰富又深刻。
我将会介绍数论中最基本的概念和理论,希望大家能对这门学问产生兴趣,并且对中小学时代学习过的一些基本概念,例如整除性、最大公因子、最小公倍数、辗转相除法等,有较深入的了解。
第一章整数的整除性§1.1整除的概念一、基本概念1、自然数、整数2、正整数、负整数3、奇数、偶数一个性质:整数+整数=整数整数-整数=整数整数*整数=整数二、整除1、定义:设a,b是整数,b≠0。
如果存在一个整数q使得等式:a=bq成立,则称b能整除a或a能被b整除,记作b∣a;如果这样的q不存在,则称b不能整除a。
2、整除的性质(1)如果b∣a,c∣b,则c∣a.(2)如果b∣a,则cb∣ca.(3)如果c∣a,则对任何整数d,c∣da.(4)如果c∣a,c∣b,则对任意整数m,n,有c∣ma+nb.(5)如果a∣b,b∣a,则a=±b.3、质数、合数质数(素数)是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除(除0以外)的数称之为素数(质数)。
初中数学什么是最大公因式
最大公因数(Greatest Common Divisor,简称GCD)是指两个或多个数中最大的能够同时整除它们的数。
也可以理解为一组数中的最大公约数。
求解最大公因数的方法有多种,以下是常见的几种方法:
1. 列举法:
列举法是最简单直观的方法,通过列举两个或多个数的因数,找到它们的公共因数,然后找出最大的公共因数作为最大公因数。
2. 质因数分解法:
质因数分解法是一种较为常用和高效的方法。
将两个或多个数进行质因数分解,然后找出它们的公共质因数,并将这些公共质因数相乘,即可得到最大公因数。
3. 辗转相除法(欧几里得算法):
辗转相除法是一种递归的方法,通过反复将两个数中较大的数除以较小的数,然后将除数作为新的被除数,余数作为新的除数,反复进行除法运算,直到余数为0。
此时,最后的非零余数即为最大公因数。
4. 更相减损术:
更相减损术是一种古老的方法,通过反复将两个数中较大的数减去较小的数,直到两个数相等。
此时,两个数的差即为最大公因数。
需要注意的是,以上方法可以用于两个数的最大公因数求解,对于多个数的最大公因数求解,可以通过多次求两个数的最大公因数来进行。
最大公因数在数学中有着广泛的应用,如化简分数、约分、求解线性方程组、化简代数表达式等。
希望这个解答对您有所帮助。
如果您还有任何问题,请随时提问。
最大公因数和最小公倍数总结一、最大公因数(GCD)1.定义:最大公因数,也被称为最大公约数,是指一组数中能够同时整除所有这些数的最大的正整数。
2.求解方法:-因数分解法:将各个数进行因数分解后,最大公因数是所有数的因数中的最小公因数。
-辗转相除法:将两个数进行相除,余数为0时,被除数即为最大公因数;余数不为0时,将除数作为被除数,余数作为除数进行下一次相除,直到余数为0为止。
二、最小公倍数(LCM)1.定义:最小公倍数是指能够同时整除一组数的最小的正整数。
2.求解方法:-因数分解法:将各个数进行因数分解后,最小公倍数是所有数的因数的最大公倍数。
-辗转相乘法:将两个数进行相乘,再除以它们的最大公因数,得到的商即为最小公倍数。
三、最大公因数和最小公倍数的性质1.互质关系:如果两个数的最大公因数是1,则它们被称为互质数或互质的。
互质数的最小公倍数等于它们的乘积。
2.二者关系:两个数的乘积等于它们的最大公因数与最小公倍数的乘积。
3.分数化简:当分数的分子和分母有相同的因数时,可以将分子和分母都除以最大公因数,使分数化简为最简形式。
4.方程求解:在求解含有多个未知数的方程时,可以通过求解各个未知数的最大公因数来减少未知数的个数,进而简化方程。
四、应用举例1.分数化简:将分数4/8化简为最简形式。
首先可以找到4和8的最大公因数为4,然后将分子和分母都除以4,得到1/2,即为最简形式。
2.方程求解:解方程2x+3y=10。
首先可以观察到2和3的最大公因数为1,因此可以将方程同时除以最大公因数1,得到2x+3y=10。
这样一来,只剩下两个未知数x和y,方程的求解就更加简化了。
通过对最大公因数和最小公倍数的学习和理解,我们可以更加灵活地运用它们解决实际问题。
在数学中,最大公因数和最小公倍数是数论的基础,更是数学计算的重要工具。
掌握了最大公因数和最小公倍数的求解方法和应用技巧,对数学学科的理解和运用都将得到很大的提升。
第一章考点1、会求最大公因数与最小公倍数解法:最大公因数用辗转相除法最小公倍数为两个数的乘积除以两者的最大公约数,所以也是要先求出两者的最大公约数2、判别一个数是为质数还是合数判别法:用小于√x的所有质数除此数,看能否被整除3、证明整除(最好用同余证)例1证:73|8n+2+92n+1(n∈N)解:法一 8n+2+92n+1=64×8n+9×81n=64×8n+9×(73+8)n=64×8n+9×(C0n73n+C1n73n-1×8+…+C n n8n)=64×8n+9(73q+8n)( q∈Z)=73×8n+9q×73所以73|8n+2+92n+1法二 8n+2+92n+1≡64×8n+9×81n≡64×8n+9×8n≡73×8n≡0(mod73)所以73|8n+2+92n+1例2已知17|2x+3y,证明17|9x+5y解:因为9x+5y=17(x+y)- 4(2x+3y) 且17|2x+3y所以17|9x+5y例3设k为正奇数,证:1+2+3+....+9|1k+2k+3k+ (9)证:记S=1k+2k+3k+ (9)则2S=(1k+9k)+(2k+8k)+…+(9k+1k)=(1+9)q1 (q1∈Z)所以10|2S又因为2S=(0k+9k)+(1k+8k)+…+(9k+0k)=(0+9)q2(q2∈Z)所以9|2S又因为(9,10)=1所以90|2S 即45|S从而1+2+3+....+9|1k+2k+3k+ (9)4、证明某种类型的质数有无穷多个例:证明4n+1形的质数的个数为无穷。
(最后一节课讲的)第三章同余考点:1、同余的性质;(应用在同余解题中)P482、简化剩余系和欧拉函数;(求简化剩余系的个数)P583、欧拉定理和费马定理对循环小数的应用;(利用欧拉定理解题;判断是纯循环还是混循环,若是混循环,从第几位开始)P61具体分析:一、同余的性质1、a≡a (mod m)2、若a≡b (mod m),则b≡a (mod m)3、若a≡b (mod m) b≡c (mod m) 则 a≡c (mod m)4、i.若a1≡b1 (mod m) a2≡b2 (mod m) 则 a1+a2≡b1+b2 (mod m)ii. a+b≡c (mod m) 则 a≡c-b (mod m)5、a1≡b1 (mod m) a2≡b2 (mod m) 则 a1a2≡b1b2 (mod m)特别的,若a≡b (mod m) 则 ak≡bk (mod m)6、若a≡b (mod m) 且a=a1d b=b1d (d,m)=1 则 a1≡b1 (modm)7、i.若a≡b (mod m) k>0 则 ak≡bk (mod mk)ii.若a≡b (mod m) d为a,b及m的任一正公因数,则a/d≡b/d (mod m/d)8、若a≡b (mod m) i=1、2…k 则a≡b(mod m1m2…m k)例:一个小于4000的四位数,被3、4、5、7、9除皆余2,求这个数。