初等数论第一章第1节 数的整除性
- 格式:ppt
- 大小:112.50 KB
- 文档页数:14
初等数论(1)----数的整除初等数论又称初等整数论,它的研究对象是整数集。
整数是小学就接触的一类数,但是关于数论的问题却是最难解决的。
1、整数的离散性:任何两个整数,x y 之间的距离至少为1,因此有不等式1x y x y <⇔+≤。
例如:(1)若222912842440a ab b bc c c -+-+-+=,求a b c ++的值.(2)求整数,,a b c ,使它们满足不等式222332a b c ab b c +++<++.作比较。
2、整数的奇偶性:将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m (m ∈Z ),任一奇数可表为2m+1或2m -1的形式.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)奇数±奇数=偶数;偶数±偶数=偶数; 奇数±偶数=奇数;偶数×偶数=偶数; 奇数×偶数=偶数;奇数×奇数=奇数;(4)两个整数的和与这两个整数的差有相同的奇偶性; (5)奇数的平方都可表为81m +形式,偶数的平方都可表为8m 或84m +的形式(m ∈Z ). (6)任意两个整数的平方和被4除余数不可能是3. (7)任意两个整数的平方差被4除余数不可能是2.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.例如: 1.(1)已知c b a ,,是整数,c b a ++是奇数,判断c b a -+,c b a +-,c b a ++-的奇偶性,说明理由。
(2)你能找到三个整数c b a ,,,使得关系式()()()()2010a b c a b c a b c b c a ++-++-+-=成立吗?如果能找到,请举一例,如果找不到,请说明理由.2、是否存在整数,m n ,满足222010m n +=?3、设1,2,3,,9的任一排列为1239,,,,a a a a ,求证:129(1)(2)(9)a a a ---是一个偶数. 类题:(1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,体现了整体处理的优点,但掩盖了“乘积”为偶数的原因. 解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.例4-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.例4-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.4、有n 个数12,,,n x x x ,它们中的每一个数或者为1,或者为1-,如果1234110n n n x x x x x x x x -++++=,求证:n 是4的倍数。
第一章 整数的唯一分解定理第一节 整除性教学重点:应用带余数除法定义1 设a ,b 是整数,b ≠ 0,如果存在整数c ,使得a = bc成立,则称a 被b 整除,a 是b 的倍数,b 是a 的约数(因数或除数),并且使用记号b ∣a ;如果不存在整数c 使得a = bc 成立,则称a 不被b 整除,记为b |/a . 如果a = bc 里的c 不存在,我们就说b 不能整除a 或a 不被b 整除,记作b |/a . 定理1 (传递性)若a 是b 的倍数,b 是c 的倍数,则a 是c 的倍数, 也就是b |a,c|b ⇒c|a.证 b |a,c|b 就是说存在两个整数1a ,1b 使得111111,(),a ab b bc a a b c a b ===成立因此但是是一个整数,故c|a 定理2 若a ,b 都是m 的倍数,则a ±b 也是m 的倍数.证 a ,b 是m 的倍数的意义就是存在两个整数a 1 , b 1,使得111111,.(),a a m b b m a b a b m a b a b m ==±=±±±因此但是整数,故是的倍数 .定理3 若1212,,,,,,n n a a a m q q q 都是的倍数,是任意个整数,1122.n n q a q a q a m +++ 则是的倍数注:1、显然每个非零整数a 都有约数 ±1,±a ,称这四个数为a 的平凡约数,a 的另外的约数称为非平凡约数.2、若整数a ≠ 0,±1,并且只有约数 ±1和 ±a ,则称a 是素数(或质数);否则称a 为合数.以后若无特别说明,素数总是指正素数.3、下面的结论成立:(ⅰ) a ∣b ⇔ ±a ∣±b ;·(ⅱ) a ∣b ,b ∣c ⇒ a ∣c ;(ⅲ) b ∣a i ,i = 1, 2, , k ⇒ b ∣a 1x 1 + a 2x 2 + + a k x k ,此处x i (i = 1, 2, , k )是任意的整数;(ⅳ) b ∣a ⇒ bc ∣ac ,此处c 是任意的非零整数;(ⅴ) b ∣a ,a ≠ 0 ⇒ |b | ≤ |a |;b ∣a 且|a | < |b | ⇒ a = 0;(ⅴi) b ∣a ,a ≠ 0 ⇒ ba ∣a . 定理4(带余数除法) 设a 与b 是两个整数,b ≠ 0,则存在唯一的两个整数q 和r ,使得a = bq + r ,0 ≤ r < |b |. (1)证明 存在性 若b ∣a ,a = bq ,q ∈Z ,可取r = 0. 若b |/a ,考虑集合A = { a + kb ;k ∈Z },其中Z 表示所有整数的集合.在集合A 中有无限多个正整数,设最小的正整数是r = a + k 0b ,则必有0 < r < |b |, (2)否则就有r ≥ |b |. 因为b |/a ,所以r ≠ |b |. 于是r > |b |,即a + k 0b > |b |,a + k 0b - |b | > 0,这样,在集合A 中,又有正整数a + k 0b - |b | < r ,这与r 的最小性矛盾. 所以式(2)必定成立. 取q = - k 0知式(1)成立. 存在性得证.唯一性 假设有两对整数q ',r '与q '',r ''都使得式(1)成立,即a = q ''b + r '' = q 'b + r ',0 ≤ r ', r '' < |b |,则(q '' - q ')b = r ' - r '',|r ' - r ''| < |b |, (3)因此r ' - r '' = 0,r ' = r '',再由式(3)得出q ' = q '',唯一性得证. 证毕3、定义2 称式(1)中的q 是a 被b 除的不完全商,r 是a 被b 除的余数,也叫最小非负剩余,记作r a b =><.第二节 最大公因数与辗转相除法第三节 最小公倍数教学目的:1、掌握最大公因数与最小公倍数性质;2、掌握辗转相除法;3、会求最大公因数与最小公倍数.教学重点:最大公因数与最小公倍数性质教学难点:辗转相除法一、最大公因数定义 设12,,,2).n a a a n n d ≥ 是(个整数若整数是它们之中每一个的因数, 12,,,n d a a a 那么就叫作的一个公因数.整数a 1, a 2, , a k 的公共约数称为a 1, a 2, , a k 的公约数.不全为零的整数a 1, a 2, , a k 的公约数中最大的一个叫做a 1, a 2, , a k 的最大公约数(或最大公因数),记为(a 1, a 2, , a k ).如果(a 1, a 2, , a k ) = 1,则称a 1, a 2, , a k 是互素的(或互质的);如果(a i , a j ) = 1,1 ≤ i , j ≤ k ,i ≠ j ,则称a 1, a 2, , a k 是两两互素的(或两两互质的).显然,a 1, a 2, , a k 两两互素可以推出(a 1, a 2, , a k ) = 1,反之则不然,例如(2, 6, 15) = 1,但(2, 6) = 2.定理1 12,,,n a a a n 若是任意个不全为零的整数,则1212i ,,,,,n n a a a a a a ()与的公因数相同; 1212ii ,,,,,.n n a a a a a a = ()()()证 12,,,.,1,2,,,n i d a a a d a i n = 设是的任一公因数由定义12,1,2,,,,,i n d a i n d a a a = 因而故是的一个公因数,121,2,,,.n n a a a a a 同法可证,的任一个公因数都是,a 的一个公因数 121,2,,,n n a a a a a 故与a 有相同的公因数.定理2 若b 是任一正整数,则(i )0与b 的公因数就是b 的因数, 反之,b 的因数也就是0与b 的公因数 . (ii) (0,b)=b .证 显然0与b 的公因数是b 的公因数 .由于任何非零整数都是0的因数, 故b 的因数也就是0,b 的公因数,于是(i )得证.其次,我们立刻知道b 的最大因数是b ;而0,b 的最大公因数是b 的最大公因数,故(0,b )=b.推论2.1 若b 是任一非零整数,则(0,b )= b .定理3 ,,,,,,)(,).a b c a bq c q a b b c a b b c =+=设是任意三个不全为零的整数,且其中是非零整数,则与有相同的公因数,因而( 定理4 ,(,)a b a b 若是任意两个整数,则就是a = bq 1 + r 1, 0 < r 1 < |b |,b = r 1q 2 + r 2, 0 < r 2 < r 1 ,r k - 1 = r k q k + 1 + r k + 1,0 < r k + 1 < r k , (1)r n - 2 = r n - 1q n + r n , 0 < r n < r n-1 ,r n - 1 = r n q n + 1 .中的最后一个不等于零的余数,即得(,)n a b r =推论4.1 ,(,).a b a b 的公因数与的因数相同例(1)1859,1573185928621431859143.a b =-=-⨯⨯=⨯-=由定理得(,1573)=(1859,1573).1859=11573+2861573=5286+143所以(,1573)=(1859,1573)例(2)169,121484812532512322311212211.a b ==⨯⨯=⨯+=⨯+=⨯+=⨯=由定理得169=1121+48121=2+25所以(169,121)定理5 ,i (,),a b a b a b δδδδ设是任意两个不全为零的整数,()若m 是任一正整数,则(am,bm)=(a,b)m.(ii)若是a,b 的任一公因数,则(,)= 特别地, )(),(,),(b a b b a a = 1. 定理6 1212,,,,,,).n n n a a a n a a a d = 若是个整数,则(二、最小公倍数1、定义 整数a 1, a 2, , a k 的公共倍数称为a 1, a 2, , a k 的公倍数. a 1, a 2, , a k 的正公倍数中的最小的一个叫做a 1, a 2, , a k 的最小公倍数,记为[a 1, a 2, , a k ].2、定理1 下面的等式成立:(ⅰ) [a , 1] = |a |,[a , a ] = |a |;(ⅱ) [a , b ] = [b , a ];(ⅲ) [a 1, a 2, , a k ] = [|a 1|, |a 2| , |a k |];(ⅳ) 若a ∣b ,则[a , b ] = |b |.3、定理2 对任意的正整数a ,b ,有[a , b ] =),(b a ab . 证明:设m 是a 和b 的一个公倍数,那么存在整数k 1,k 2,使得m = ak 1,m = bk 2,因此ak 1 = bk 2 . (1)于是21),(),(k b a b k b a a =. 由于)(),(,),(b a b b a a = 1,所以 t b a b k k b a b ),(),(11|=即,, 其中t 是某个整数. 将上式代入式(1)得到m =),(b a ab t . (2) 另一方面,对于任意的整数t ,由式(2)所确定的m 显然是a 与b 的公倍数,因此a 与b 的公倍数必是式(2)中的形式,其中t 是整数.当t = 1时,得到最小公倍数[a , b ] =),(b a ab . 推论1 两个整数的任何公倍数可以被它们的最小公倍数整除.证明 由式(2)可得证.这个推论说明:两个整数的最小公倍数不但是最小的正倍数,而且是另外的公倍数的约数.推论2 设m ,a ,b 是正整数,则[ma , mb ] = m [a , b ].证明 由定理2及前面的定理2的推论得到[ma , mb ] =),(),(),(22b a mab b a m ab m mb ma ab m === m [a , b ]. 证毕4、定理3 对于任意的n 个整数a 1, a 2, , a n ,记[a 1, a 2] = m 2,[m 2, a 3] = m 3, ,[m n -2, a n -1] = m n -1,[m n -1, a n ] = m n ,则[a 1, a 2, , a n ] = m n .证明:我们有m n = [m n -1, a n ] ⇒ m n -1∣m n ,a n ∣m n ,m n -1 = [m n -2, a n -1] ⇒ m n -2∣m n -1∣m n ,a n ∣m n ,a n -1∣m n -1∣m n ,m n -2 = [m n -3, a n -2] ⇒ m n -3∣m n -2∣m n ,a n ∣m n ,a n -1∣m n ,a n -2∣m n ,m 2 = [a 1, a 2] ⇒ a n ∣m n , ,a 2∣m n ,a 1∣m n ,即m n 是a 1, a 2, , a n 的一个公倍数.另一方面,对于a 1, a 2, , a n 的任何公倍数m ,由定理2的推论及m 2, , m n 的定义,得m 2∣m ,m 3∣m , ,m n ∣m .即m n 是a 1, a 2, , a n 最小的正的公倍数. 证毕推论 若m 是整数a 1, a 2, , a n 的公倍数,则[a 1, a 2, , a n ]∣m .定理4 整数a 1, a 2, , a n 两两互素,即(a i , a j ) = 1,1 ≤ i , j ≤ n ,i ≠ j的充要条件是[a 1, a 2, , a n ] = a 1a 2 a n . (3)证明:必要性 因为(a 1, a 2) = 1,由定理2得到[a 1, a 2] =),(2121a a a a = a 1a 2 . 由(a 1, a 3) = (a 2, a 3) = 1及前面的定理4推论得到(a 1a 2, a 3) = 1,由此及定理3得到[a 1, a 2, a 3] = [[a 1, a 2], a 3] = [a 1a 2, a 3] = a 1a 2a 3 .如此继续下去,就得到式(3).充分性 用归纳法证明. 当n = 2时,式(3)成为[a 1, a 2] = a 1a 2. 由定理2a 1a 2 = [a 1, a 2] =),(2121a a a a ⇒ (a 1, a 2) = 1, 即当n = 2时,充分性成立.假设充分性当n = k 时成立,即[a 1, a 2, , a k ] = a 1a 2 a k ⇒ (a i , a j ) = 1,1 ≤ i , j ≤ k ,i ≠ j .对于整数a 1, a 2, , a k , a k + 1,使用定理3中的记号,由定理3可知[a 1, a 2, , a k , a k + 1] = [m k , a k + 1]. (4)其中m k = [a 1, a 2, , a k ].因此,如果[a 1, a 2, , a k , a k + 1] = a 1a 2 a k a k + 1,那么,由此及式(4)得到[a 1, a 2, , a k , a k + 1] = [m k , a k + 1] =),(11++k k k k a m a m = a 1a 2 a k a k + 1, 即),(1+k k k a m m = a 1a 2 a k , 显然m k ≤ a 1a 2 a k ,(m k , a k + 1) ≥ 1.所以若使上式成立,必是(m k , a k + 1) = 1, (5)并且m k = a 1a 2 a k . (6)由式(6)与式(5)推出(a i , a k + 1) = 1,1 ≤ i ≤ k ; (7)由式(6)及归纳假设推出(a i , a j ) = 1,1 ≤ i , j ≤ k ,i ≠ j . (8)综合式(7)与式(8),可知当n = k + 1时,充分性成立. 由归纳法证明了充分性. 证毕三、辗转相除法本节要介绍一个计算最大公约数的算法——辗转相除法,又称Euclid 算法.它是数论中的一个重要方法,在其他数学分支中也有广泛的应用.1、定义1 下面的一组带余数除法,称为辗转相除法.设a 和b 是整数,b ≠ 0,依次做带余数除法:a = bq 1 + r 1, 0 < r 1 < |b |,b = r 1q 2 + r 2, 0 < r 2 < r 1 ,r k - 1 = r k q k + 1 + r k + 1,0 < r k + 1 < r k , (1)r n - 2 = r n - 1q n + r n , 0 < r n < r n-1 ,r n - 1 = r n q n + 1 .由于b 是固定的,而且|b | > r 1 > r 2 > ,所以式(1)中只包含有限个等式.下面,我们要对式(1)所包含的等式的个数,即要做的带余数除法的次数进行估计.2、引理1 用下面的方式定义Fibonacci 数列{F n }:F 1 = F 2 = 1,F n = F n - 1 + F n - 2,n ≥ 3,那么对于任意的整数n ≥ 3,有F n > α n - 2, (2)其中α =251+.证明:容易验证α 2 = α + 1.当n = 3时,由F 3 = 2 >251+= α 可知式(2)成立.假设式(2)对于所有的整数k ≤ n (n ≥ 3)成立,即F k > α k - 2,k ≤ n ,则F n + 1 = F n + F n - 1 > α n - 2 + α n - 3 = α n - 3(α + 1) = α n - 3α 2 = α n - 1,即当k = n + 1时式(2)也成立.由归纳法知式(2)对一切n ≥ 3成立.证毕. 定理11(1),1,,;k k k k a P b r k n --=-= 若a,b 是任意两个正整数,则Q其中 0111201121,,,0,1,,k k k k k k k k P P q P q P P Q Q Q q Q Q ----===+===+ 其中k=2,,n.推论1.1若a,b 是任意两个不全为零的整数,则存在两个整数s,t 使得as+bt=(a,b).定理2 若a,b,c 是三个整数,且(a,c)=1.则i ()ab,c 与b,c 有相同的公因数,ii () (ab,c)=(b,c),,.b c 上面假定了至少有一不为零推论2.1 ,.ab c b 若(a,c)=1,c 则推论2.2 1212,,,,,,.n m a a a b b 设及b 是任意两组整数1212,,,,,,.n m a a a b b 若前一组中任意整数与后一组中任意整数互质,则与b 互质例2 用辗转相除法求(125, 17),以及x ,y ,使得125x + 17y = (125, 17).解:做辗转相除法:125 = 7⋅17 + 6,q 1 = 7,r 1 = 6,17 = 2⋅6 + 5, q 2 = 2,r 2 = 5,6 = 1⋅5 + 1, q 3 = 1,r 3 = 1,5 = 5⋅1, q 4 = 5.由定理4,(125, 17) = r 3 = 1.利用定理2计算(n = 3)P 0 = 1,P 1 = 7,P 2 = 2⋅7 + 1 = 15,P 3 = 1⋅15 + 7 = 22,Q 0 = 0,Q 1 = 1,Q 2 = 2⋅1 + 0 = 2,Q 3 = 1⋅2 + 1 = 3,取x = (-1)3 - 1Q 3 = 3,y = (-1)3P 3 = -22,则125⋅3 + 17⋅(-22) = (125, 17) = 1.例3 求(12345, 678).解:(12345, 678) = (12345, 339) = (12006, 339) = (6003, 339)= (5664, 339) = (177, 339) = (177, 162) = (177, 81)= (96, 81) = (3, 81) = 3.例4 在m 个盒子中放若干个硬币,然后以下述方式往这些盒子里继续放硬币:每一次在n (n < m )个盒子中各放一个硬币.证明:若(m , n ) = 1,那么无论开始时每个盒子中有多少硬币,经过若干次放硬币后,总可使所有盒子含有同样数量的硬币.解:由于(m , n ) = 1,所以存在整数x ,y ,使得mx + ny = 1. 因此对于任意的自然数k ,有1 + m (-x + kn ) = n (km + y ),这样,当k 充分大时,总可找出正整数x 0,y 0,使得1 + mx 0 = ny 0 .上式说明,如果放y 0次(每次放n 个),那么在使m 个盒子中各放x 0个后,还多出一个硬币.把这个硬币放入含硬币最少的盒子中(这是可以做到的),就使它与含有最多硬币的盒子所含硬币数量之差减少1. 因此经过若干次放硬币后,必可使所有盒子中的硬币数目相同.四、小结.第四节 素数、整数的唯一分解定理教学目的:1、掌握素数的一系列性质;2、理解并掌握唯一分解定理.教学重点:素数的性质及唯一分解定理的证明及应用教学难点:唯一分解定理的证明及应用教学课时:4课时教学过程一、素数1、定义 大于1的整数,如果只有平凡因子,就叫素数,否则叫合数.2、定理1 设a 是任意大于1的整数,则a 除1以外的最小正因子p 是素数,并且当a 是合数时,则a p ≤ .3、定理2 设p 是素数,a 是任意整数,则a p |或1),(=a p .4、定理3 设p 是素数,p|ab , 则p|a 或p|b.5、定理4 素数有无穷多个.6、定理2 形如4n-1型的素数有无穷多个.例1 写出不超过100的所有的素数。
《初等数论》习题Gonao第一章 整除理论第一节 数的整除性例1 设r 是正奇数,证明:对任意的正整数n ,有n + 2|/1r + 2 r + " + n r 。
例2 设A = { d 1, d 2, ", d k }是n 的所有约数的集合,则B =}{,,,21kd n d n d n "也是n 的所有约数的集合。
例3 以d (n )表示n 的正约数的个数,例如:d (1) = 1,d (2) = 2,d (3) = 2,d (4) = 3," 。
问:d (1) + d (2) + " + d (1997)是否为偶数?例4 设凸2n 边形M 的顶点是A 1, A 2, ", A 2n ,点O 在M 的内部,用1, 2, ", 2n 将M 的2n 条边分别编号,又将OA 1, OA 2, ", OA 2n 也同样进行编号,若把这些编号作为相应的线段的长度,证明:无论怎么编号,都不能使得三角形OA 1A 2, OA 2A 3, ", OA 2n A 1的周长都相等。
例5 设整数k ≥ 1,证明:(ⅰ) 若2k ≤ n < 2k + 1,1 ≤ a ≤ n ,a ≠ 2k ,则2k |/a ; (ⅱ) 若3k ≤ 2n − 1 < 3k + 1,1 ≤b ≤ n ,2b − 1 ≠ 3k ,则3k |/2b − 1。
例6 证明:存在无穷多个正整数a ,使得n 4 + a (n = 1, 2, 3, ")都是合数。
例7 设a 1, a 2, ", a n 是整数,且a 1 + a 2 + " + a n = 0,a 1a 2"a n = n ,则4⏐n 。
例8 若n 是奇数,则8⏐n 2 − 1。
例9 d (1)2 + d (2)2 + " + d (1997)2被4除的余数是多少?例10 证明:方程a 12 + a 22 + a 32 = 1999 无整数解。
初等数论(1)----数的整除初等数论又称初等整数论,它的研究对象是整数集。
整数是小学就接触的一类数,但是关于数论的问题却是最难解决的。
1、整数的离散性:任何两个整数,x y 之间的距离至少为1,因此有不等式1x y x y <⇔+≤。
2、整数的奇偶性:将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m (m ∈Z ),任一奇数可表为2m+1或2m -1的形式.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;奇数×奇数=奇数;(4)两个整数的和与这两个整数的差有相同的奇偶性;(5)奇数的平方都可表为81m +形式,偶数的平方都可表为8m 或84m +的形式(m ∈Z ). (6)任意两个整数的平方和被4除余数不可能是3.(7)任意两个整数的平方差被4除余数不可能是2.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.数的整除一、知识点讲解1、设,a b 是整数,0b ≠,若存在整数q ,使得a bq =,则称b 整除a ,记为|b a ,并称b 是a 的一个约数(或因子),而a 是b 的倍数。
如果不存在上述的整数q ,则称b 不整除a ,记作†b a 。
补充:关于整除的一些小结论:一个整数被2,3,4,5,7,8,9,11,13等整除的特征.(1)一个整数能被2或5整除的特征是:这个数的末位数字能被2或5整除。
(2)一个整数能被3或9整除的特征是:这个数的各位数之和能被3或9整除。
(3)一个整数能被4或25整除的特征是:这个数的末两位数能被4或25整除。
(4)一个整数能被8或125整除的特征是:这个数的末三位数能被8或125整除。
第一章 整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节 整除定义1 设a ,b 是整数,b ≠ 0,如果存在整数c ,使得a = bc成立,则称a 被b 整除,a 是b 的倍数,b 是a 的约数(因数或除数),并且使用记号b ∣a ;如果不存在整数c 使得a = bc 成立,则称a 不被b 整除,记为b |/a 。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1 下面的结论成立:(ⅰ) a ∣b ⇔ ±a ∣±b ; (ⅱ) a ∣b ,b ∣c ⇒ a ∣c ;(ⅲ) b ∣a i ,i = 1, 2, , k ⇒ b ∣a 1x 1 + a 2x 2 + + a k x k ,此处x i (i = 1, 2, , k )是任意的整数;(ⅳ) b ∣a ⇒ bc ∣ac ,此处c 是任意的非零整数;(ⅴ) b ∣a ,a ≠ 0 ⇒ |b | ≤ |a |;b ∣a 且|a | < |b | ⇒ a = 0。
例1 设r 是正奇数,证明:对任意的正整数n ,有n + 2|/1r+ 2 r+ + n r。
例2 设A = { d 1, d 2, , d k }是n 的所有约数的集合,则B =}{,,,21kd n d n d n也是n 的所有约数的集合。
例3 以d (n )表示n 的正约数的个数,例如:d (1) = 1,d (2) = 2,d (3) = 2,d (4) = 3, 。
问:d (1) + d (2) + + d (1997)是否为偶数?例4 证明:存在无穷多个正整数a ,使得n 4 + a (n = 1, 2, 3, )都是合数。
例5 设a 1, a 2, , a n 是整数,且a 1 + a 2 + + a n = 0,a 1a 2 a n = n ,则4∣n 。
第一章整数的可除性§1 整除整数集对于加、减、乘三种运算都是封闭的,但是对于除法运算不封闭。
为此,我们引进整除的概念。
定义1设a,b∈Z,b≠0,如果存在q∈Z,使得等式a=bq成立,那么称b 整除a或a被b整除,记作:b|a,此时称b为a的因数(约数),a为b的倍数。
如果不存在满足等式a=bq的整数q,那么称b不能整除a或a不被b整除,记作b| a。
定理1设a,b,c∈Z,b≠0,c≠0,则(1)如果c|b,b|a,那么c|a;(2)如果b|a,那么bc|ac;反之亦真;(3)如果c|a,c|b,那么,对于任意m,n∈Z,有c|(ma+nb);(4)如果b|a,a≠0,那么|b|≤|a|;(5)如果b|a,a|b,那么|b|=|a|。
证明可选证。
定理2(带余除法)设a,b∈Z,b≠0,则存在q,r∈Z,使得a=bq+r,0≤r<|b|,并且q及r是唯一的。
证明当b|a时,取q=a/b,r=0即可。
当b!|a时,考虑集合E={a-bk|k∈Z },易知E中有正整数,因此E中有最小正整数,设为r=a-bk>0,下证:r<|b|。
因为b!|a,所以r≠|b|,若r>|b|,则r’=r-|b|>0,又r’∈E,故与r的最小性矛盾,从而存在q,r∈Z,使得a=bq+r,0≤r<|b|。
唯一性。
设另有q’,r’∈Z,使得a=bq’+r’,0≤r’<|b|,则b(q-q’)=r’-r,于是b|(r’-r),但由于0≤|r’-r|<|b|,故r’-r=0,即r=r’,从而q=q’。
定义2等式a=bq+r,0≤r<|b|中的整数q称为a被b除所得的(不完全)商,整数r称为a被b除所得的余数。
注r=0的情形即为a被b整除。
例1 设b=15,则当a=255时,a=17b+0,故q=17,r=0;当a=417时,a=27b+12,故q=27,r=12;当a=-81时,a=-6b+9,故q=-6,r=9。