钢铁冶金学炼铁学.
- 格式:ppt
- 大小:3.38 MB
- 文档页数:364
钢铁冶⾦学(炼铁部分)钢铁冶⾦学(炼铁部分)第⼀章概论1、试述3种钢铁⽣产⼯艺的特点。
答:钢铁冶⾦的任务:把铁矿⽯炼成合格的钢。
⼯艺流程:①还原熔化过程(炼铁):铁矿⽯→去脉⽯、杂质和氧→铁;②氧化精炼过程(炼钢):铁→精炼(脱C、Si、P等)→钢。
⾼炉炼铁⼯艺流程:对原料要求⾼,⾯临能源和环保等挑战,但产量⾼,⽬前来说仍占有优势,在钢铁联合企业中发挥这重⼤作⽤。
直接还原和熔融还原炼铁⼯艺流程:适应性⼤,但⽣产规模⼩、产量低,⽽且很多技术问题还有待解决和完善。
2、简述⾼炉冶炼过程的特点及三⼤主要过程。
答:特点:①在逆流(炉料下降及煤⽓上升)过程中,完成复杂的物理化学反应;②在投⼊(装料)及产出(铁、渣、煤⽓)之外,⽆法直接观察炉内反应过程,只能凭借仪器仪表简介观察;③维持⾼炉顺⾏(保证煤⽓流合理分布及炉料均匀下降)是冶炼过程的关键。
三⼤过程:①还原过程:实现矿⽯中⾦属元素(主要是铁)和氧元素的化学分离;②造渣过程:实现已还原的⾦属与脉⽯的熔融态机械分离;③传热及渣铁反应过程:实现成分与温度均合格的液态铁⽔。
3、画出⾼炉本体图,并在其图上标明四⼤系统。
答:煤⽓系统、上料系统、渣铁系统、送风系统。
4、归纳⾼炉炼铁对铁矿⽯的质量要求。
答:①⾼的含铁品位。
矿⽯品位基本上决定了矿⽯的价格,即冶炼的经济性。
②矿⽯中脉⽯的成分和分布合适。
脉⽯中SiO2和Al2O3要少,CaO多,MgO 含量合适。
③有害元素的含量要少。
S、P、As、Cu对钢铁产品性能有害,K、Na、Zn、Pb、F对炉衬和⾼炉顺⾏有害。
④有益元素要适当。
Mn、Cr、Ni、V、Ti等和稀⼟元素对提⾼钢产品性能有利。
上述元素多时,⾼炉冶炼会出现⼀定的问题,要考虑冶炼的特殊性。
⑤矿⽯的还原性要好。
矿⽯在炉内被煤⽓还原的难易程度称为还原性。
褐铁矿⼤于⾚铁矿⼤于磁铁矿,⼈造富矿⼤于天然铁矿,疏松结构、微⽓孔多的矿⽯还原性好。
⑥冶⾦性能优良。
冷态、热态强度好,软化熔融温度⾼、区间窄。
钢铁冶金学炼铁部分第三版(原创实用版)目录一、钢铁冶金学炼铁部分的概述二、钢铁冶金学炼铁部分的主要内容三、钢铁冶金学炼铁部分的重要性四、钢铁冶金学炼铁部分的未来发展趋势正文一、钢铁冶金学炼铁部分的概述钢铁冶金学炼铁部分是钢铁冶金学的一个重要组成部分,主要研究炼铁的原理、方法、设备和工艺。
炼铁是钢铁生产的第一步,其任务是将含铁的矿石通过高温还原的方法转化为铁。
炼铁部分的研究内容不仅包括传统的高炉炼铁,还包括直接还原法、熔融还原法等新型炼铁技术。
二、钢铁冶金学炼铁部分的主要内容钢铁冶金学炼铁部分的主要内容包括以下几个方面:1.矿石的准备和预处理:包括矿石的选择、破碎、筛分、混合等过程。
2.高炉炼铁:研究高炉的结构、原理、操作和控制,以及高炉炼铁的副产品(如炉渣、煤气等)的处理和利用。
3.直接还原法:研究使用一氧化碳、氢气等还原剂直接将矿石还原成铁的方法。
4.熔融还原法:研究在高温下将矿石和熔剂混合熔融,然后通过还原反应生成铁的方法。
5.铁的冶炼:研究铁的熔炼、铸造和连铸等过程,以及铁中的杂质控制和质量管理。
三、钢铁冶金学炼铁部分的重要性钢铁冶金学炼铁部分对于我国钢铁工业的发展具有重要意义,主要表现在以下几个方面:1.提高钢铁产量:炼铁是钢铁生产的第一步,其产量和质量直接影响到钢铁的总产量和质量。
2.降低生产成本:研究炼铁过程中的节能、减排和资源综合利用等技术,有助于降低钢铁生产的成本。
3.提高钢铁质量:研究炼铁过程中的杂质控制和质量管理技术,有助于提高钢铁的质量和性能。
4.保护环境:研究炼铁过程中的环保技术和副产品利用,有助于减少污染,实现绿色生产。
四、钢铁冶金学炼铁部分的未来发展趋势随着科技的进步和社会的发展,钢铁冶金学炼铁部分将面临以下发展趋势:1.绿色发展:加大对环保技术和副产品利用的研究,实现炼铁过程的绿色化和可持续发展。
2.智能化:借助大数据和人工智能技术,实现炼铁过程的智能化控制和优化,提高生产效率和质量。
钢铁冶金学炼铁部分第三版摘要:一、钢铁冶金概述二、炼铁原理与工艺1.高炉炼铁2.直接还原炼铁3.熔融还原炼铁三、炼铁原料与配料四、高炉操作与管理1.炉料准备2.炉内过程控制3.炉况判断与调整4.休风与焖炉五、炼铁环境保护与节能六、炼铁新技术与发展趋势正文:一、钢铁冶金概述钢铁冶金是指通过熔融、氧化还原、凝固等过程,将铁矿石等原料转化为钢铁的过程。
钢铁冶金主要包括炼铁、炼钢和轧制等环节。
其中,炼铁是钢铁冶金的基础,其目的是将铁矿石中的铁氧化物还原成金属铁。
二、炼铁原理与工艺1.高炉炼铁高炉炼铁是将铁矿石、焦炭、熔剂等原料经过高温加热,使铁矿石中的铁氧化物被焦炭还原成金属铁的过程。
高炉炼铁具有生产能力大、成本低、金属回收率高等优点。
2.直接还原炼铁直接还原炼铁是将铁矿石等原料在高温下直接还原成金属铁的过程。
与高炉炼铁相比,直接还原炼铁具有能耗低、投资省、占地面积小等优点。
3.熔融还原炼铁熔融还原炼铁是将铁矿石等原料在高温下熔融,然后通过还原剂将铁氧化物还原成金属铁的过程。
熔融还原炼铁具有生产效率高、产品质量好等优点。
三、炼铁原料与配料炼铁原料主要包括铁矿石、焦炭、熔剂等。
铁矿石是炼铁的主要原料,其质量直接影响到炼铁过程和产品质量。
焦炭作为还原剂,在炼铁过程中起到关键作用。
熔剂主要用于调节炉内气氛和矿石的熔化。
四、高炉操作与管理1.炉料准备炉料准备包括铁矿石、焦炭、熔剂等原料的采购、储存、破碎、筛分等环节。
合理的炉料准备有利于保证高炉炼铁的稳定运行。
2.炉内过程控制炉内过程控制是高炉炼铁的关键,主要包括煤气流量、温度、压力等参数的调节。
通过炉内过程控制,可以使高炉达到最佳状态,提高金属回收率。
3.炉况判断与调整炉况判断与调整是根据高炉运行参数,判断高炉内发生的问题,并采取相应措施进行调整。
合理的炉况判断与调整有助于提高高炉炼铁的生产效率。
4.休风与焖炉休风是指高炉在短时间内停止煤气供应,以清理炉内积料和调整炉内气氛。
钢铁冶金学炼铁部分第三版摘要:一、钢铁冶金学炼铁部分的概述二、炼铁的原理和过程三、炼铁的设备和操作四、炼铁的环保和节能五、炼铁的发展趋势正文:一、钢铁冶金学炼铁部分的概述《钢铁冶金学炼铁部分第三版》是一本关于钢铁冶金学的专业书籍,主要介绍了炼铁的基本原理、过程、设备和操作。
本书在继承前两版的基础上,对炼铁技术进行了全面更新,以适应现代钢铁工业的发展。
书中还强调了炼铁的环保和节能,以及炼铁技术的发展趋势,为我国钢铁工业的持续发展提供了重要的理论支撑。
二、炼铁的原理和过程炼铁的原理是通过高温下的还原反应,将铁矿石中的铁氧化物还原成金属铁。
炼铁的过程主要包括原料准备、烧结、焦化、炼铁炉炼铁等环节。
在原料准备阶段,将铁矿石、焦炭、石灰石等原料进行混合和粉碎。
烧结是将混合好的原料进行高温烧结,形成烧结矿。
焦化是利用焦炭对铁矿石进行还原,生成一氧化碳和金属铁。
炼铁炉炼铁是将焦炭和烧结矿放入高炉,在高温下进行还原反应,生成金属铁。
三、炼铁的设备和操作炼铁的主要设备包括烧结炉、焦炉、高炉等。
烧结炉用于将原料进行烧结,形成烧结矿。
焦炉用于焦化,生成焦炭。
高炉用于炼铁,将铁矿石通过还原反应生成金属铁。
炼铁的操作主要包括原料配比、烧结矿破碎、烧结、焦化、高炉炼铁等环节。
四、炼铁的环保和节能炼铁过程中会产生大量的烟尘、二氧化硫等污染物,需要采取相应的环保措施进行治理。
目前,我国炼铁企业普遍采用除尘、脱硫等技术,有效降低了污染物排放。
此外,炼铁企业还通过提高资源利用率、降低能耗等措施,实现了炼铁过程的节能减排。
五、炼铁的发展趋势随着我国钢铁工业的转型升级,炼铁技术也在不断发展。
未来,炼铁技术将朝着绿色、高效、智能化的方向发展。
具体表现在:提高炼铁矿利用率,降低能耗;推广绿色炼铁技术,降低污染物排放;应用智能化技术,提高炼铁生产效率。
钢铁冶金学(炼钢部分)第一部分炼钢的基本任务1、钢和生铁的区别?答:C < 2.11%的Fe-C合金为钢;C > 1.2%的钢很少实用;还含Si、Mn等合金元素及杂质。
生铁硬而脆,冷热加工性能差,必须经再次冶炼才能得到良好的金属特性;钢的韧性、塑性均优于生铁,硬度小于生铁。
2、炼钢的基本任务?答:钢铁冶金的任务是由生产过程碳、氧位变化决定的。
炼钢的基本任务分为脱碳,脱磷,脱硫,脱氧,脱氮、氢等,去除非金属夹杂物,合金化,升温(1200°C→1700°C),凝固成型,废钢、炉渣返回利用,回收煤气、蒸汽等。
3、钢中合金元素的作用?答:C:控制钢材强度、硬度的重要元素,每1%[C]可增加抗拉强度约980MPa;Si:增大强度、硬度的元素,每1%[Si]可增加抗拉强度约98MPa;Mn:增加淬透性,提高韧性,降低S的危害等;Al:细化钢材组织,控制冷轧钢板退火织构;Nb:细化钢材组织,增加强度、韧性等;V:细化钢材组织,增加强度、韧性等;Cr:增加强度、硬度、耐腐蚀性能。
4、钢中非金属夹杂物来源?答:5、主要炼钢工艺流程?答:炒钢→坩埚熔炼等→平炉炼钢→电弧炉炼钢→氧气顶吹转炉炼钢→氧气底吹转炉和顶底复吹炼钢。
主要生产工艺为转炉炼钢工艺和电炉炼钢工艺。
与电炉相比,氧气顶吹转炉炼钢生产率高,对铁水成分适应性强,废钢使用量高,可生产低S、低P、低N的杂质钢,可生产几乎所有主要钢品种。
顶底复吹工艺过氧化程度低,熔池搅拌好,金属-渣反应快,控制灵活,成渣快。
现代炼钢流程:炼铁,炼钢(铁水预处理、炼钢、炉外精炼),连铸,轧钢,主要产品。
第二部分炼钢的基本反应1、铁的氧化和熔池的基本传氧方式?答:火点区:氧流穿入熔池某一深度并构成火焰状作用区(火点区)。
吹氧炼钢的特点:熔池在氧流作用下形成的强烈运动和高度弥散的气体-熔渣-金属乳化相,是吹氧炼钢的特点。
乳化可以极大地增加渣-铁间接触面积,因而可以加快渣-铁间反应。
钢铁冶金学(炼铁部分)第一部分基本概念及定义1.高炉法:传统的以焦炭为能源,与转炉炼钢相配合,组成高炉―转炉―轧机流程,被称为长流程,是目前的主要流程。
2.非高炉法:泛指高炉以外,不以焦炭为能源,通常分成轻易还原成和熔融还原成,通常与电炉协调,共同组成轻易还原成或熔融还原成―电炉―轧机流程,被称作长流程,就是目前的辅助流程。
3.钢铁联合企业:将铁矿石在高炉内冶炼成生铁,用铁水炼成钢,再将钢水铸成钢锭或连铸坯,经轧制等塑形变形方法加工成各种用途的钢材。
4.高炉有效率容积:由高炉出来铁口中心线所在平面至大料钟上升边线下沿水平面之间的容积。
5.铁矿石:凡是在一定的技术条件下,能经济提取金属铁的岩石。
6.富矿:一般含铁品位超过理论含铁量70%的矿,对于褐铁矿、菱铁矿及碱性脉石矿含铁量可适当放宽。
7.还原性能够:矿石中铁融合的氧被还原剂夺回的深浅程度。
主要依赖于矿石的球状程度、空隙及气孔原产状态。
通常还原性不好,碳素燃料消耗量高。
8.熔剂:由于高炉造渣的需要,入炉料中常需配加一定数量的助熔剂,该物质就称为熔剂。
9.耐火度:抗炎高温熔融性能的指标,用耐热锥变形的温度则表示,它表观耐火材料的热性质,主要依赖于化学共同组成、杂质数量和集中程度。
实际采用温度必须比耐火度高。
10.荷重软化点:在施加一定压力并以一定升温速度加热时,当耐火材料塌毁时的温度。
它表征耐火材料的机械特性,耐火材料的实际使用温度不得超过荷重软化点。
11.耐急冷急热性(抗热震性):就是所指在温度急剧变化条件下,不脱落、不碎裂的性能。
12.抗蠕变性能:荷重工作温度下,形变率。
13.抗渣性:在使用过程中抵御渣化的能力。
14.高炉有效率容积利用系数(吨/米日)=合格生铁约合产量/(有效率容积×规定工作日)。
15.入炉焦比:干焦耗用量/合格生铁产量(kg/t),一般250~550kg/t。
16.冶炼强度:干焦耗用量/(有效容积×实际工作日),t/m3h。
钢铁冶金学炼铁部分第三版钢铁冶金学是研究钢铁冶炼原理、工艺和技术的学科,其炼铁部分是钢铁冶金学的重要组成部分。
本文将简要介绍钢铁冶金学炼铁部分的主要内容。
炼铁是将铁矿石经过一系列工艺过程,化学变化和物理变化,最终得到铁的冶金过程。
炼铁过程主要包括矿石选矿、矿石炼烧、高炉冶炼和铁水处理等几个主要环节。
首先是矿石选矿。
矿石选矿是从原矿中选择出含有较高铁含量的矿石,以便后续的冶炼工艺。
矿石选矿一般包括矿石的破碎、矿石的磁选、重选和浮选等工序。
其中,磁选是通过磁力作用将含铁矿石从其他杂质分离出来,重选是通过重力作用将矿石进行分类,浮选则是利用矿石与气泡的不同亲附性,使矿石分离的一种工艺。
其次是矿石炼烧。
矿石炼烧是将矿石进行预处理,以提高铁矿石的还原性、耐高温性和稳定性。
矿石炼烧的方法主要有烧结、球团烧结和直接还原等。
其中,烧结是将矿石加入一定比例的烧结助剂,通过高温烧结得到具有一定强度的矿石块,球团烧结则是在矿石表面涂覆一层球团剂,通过高温烧结得到球团状的矿石块。
接下来是高炉冶炼。
高炉冶炼是将矿石块和冶炼燃料(焦炭)反应生成铁的过程。
高炉是炼铁的主要设备,一般由炉体、上、下风、煤气管道等组成。
高炉冶炼主要包括炉料装入、炉况操作、还原炉内矿石等几个主要环节。
其中,炉料装入是将经过选矿和炼烧处理的矿石和冶炼燃料按一定的比例装入高炉中,炉况操作是根据高炉内的温度、压力、气体组成等参数来调整高炉操作。
最后是铁水处理。
铁水处理是指通过一系列的工艺过程,将高炉产生的铁水精炼成合格钢铁产品。
铁水处理主要包括脱硫、脱脂、炼石和炼钢等几个环节。
脱硫是通过加入适量的脱硫剂,将铁水中的硫元素还原为低硫铁合金。
脱脂是利用渣浆的剪切作用将铁水中的夹杂物除去。
炼石是指将铁水中的脱硫剂和夹杂物等固体杂质分离出来。
炼钢是通过加入一定比例的合金元素和调整温度、压力等参数,使铁水中的碳含量和合金元素达到所需标准。
综上所述,钢铁冶金学炼铁部分主要包括矿石选矿、矿石炼烧、高炉冶炼和铁水处理等几个重要环节。