⑷两个面平行且相似,其余各面都就是梯形得多面体就是棱台( × )
⑸有两个面互相平行,其余四个面都就是等腰梯形得六面体就是棱
台
(√)
(×)
⑹棱台各侧棱得延长线交于一点
(×)
⑺各侧面都就是正方形得四棱柱一定就是正方体
菱形
如图,正四棱锥S-ABCD被一平行于底面得平面A'B'C'D'所截,其中A'为SA 得中点、若四棱锥得底边AB=4,求截得得正棱台ABCD-A'B'C'D'得上底面面积 与下底面得面积之比。
线
叫做圆锥得侧面。
顶点:作为旋转轴得直角边与斜边得交点
A
母线:无论旋转到什么位置,直角三角形得斜 边叫做圆锥得母线。
顶点 S
轴
侧 面
O B
底面
圆锥可以用它得轴来表示。
如:圆锥SO
注:棱锥与圆锥统称为锥体
6、圆台得结构特征
用一个平行于圆锥底面得平面去截圆锥,底面与截面之 间得部分就是圆台、
圆台得轴,底面,侧面,母线与圆锥相似
底面
两底面得全等得多边形
多边形
两底面就是相似得多边形
侧面 侧棱
平行于底面 得平面
平行四边形 平行且相等
三角形 相交于顶点
梯形 延长线交于一点
与两底面就是全等得多边形 与底面就是相似得多边形 与两底面就是相似得多边形
过不相邻两 侧棱得截面
平行四边形
三角形
梯形
D1
E
C1
A1
F
D
A
B1 C
B
例2 一个三棱柱可以分割成几个三棱锥?
C1
B1 C1
B1