当前位置:文档之家› 测量空间参考

测量空间参考

测量空间参考
测量空间参考

空间参考描述了一个地物在地球上的真实位置。为了正确的对位置进行描述,需要引入一个可供测量和计算的框架,使得大地测量的结果能够在这个框架上进行描述。而地球是一个不规则形状的椭球体,那么使用什么样的方法来模拟地球的形状,又该如何将球面上的坐标投影在平面的地图上?这就需要先了解大地水准面、参考椭球体、基准面的概念,和它们之间的关系。另外,本文还对我国常用的北京54和西安80两种坐标系统进行了详细的剖析。

1.大地水准面(Geoid)和参考椭球体(Spheroid)

大地水准面提供一个可供测量的表面,它基本与静止的海平面吻合,且处处与重力方向垂直。因为地球表面各个点的重力方向不同,因此大地水准面是个不规则的椭球体。为了能够使用数学法则来描述地球的形状,处理测量的成果,这就需要引入一个规则的球体,即参考椭球体的概念。

参考椭球体是由二维平面上的椭圆绕着短轴旋转而形成的。参考椭球体的长半轴指的是地心距赤道的距离,参考椭球体的短半轴指的是地心距地球极点的距离。不同的参考椭球体的长、短半轴都是不同的。如下表所示:

Spheroid Semimajor axis (m) Semiminor axis (m)

Clarke 1866 6378206.4 6356583.8

GRS80 1980 6378137 6356752.31414

WGS84 1984 6378137 6356752.31424518

不同的地理区域需要选择不同的参考椭球体来进行描述,因为不同的参考椭球体是用来模拟地球上不同地方的大地水准面的。例如在北美地区,NAD83这种大地坐标系统使用的参考椭球体就是GRS 1980椭球。对于同一个位置,选择不同的参考椭球体和基准面会改变其坐标值的大小。下面的例子是华盛顿州的贝林翰采用不同的大地坐标系统的结果,可以看到NAD1927和另外两个的坐标值有很大的差别。

Datum Longitude Latitude

NAD 1927 -122.46690368652 48.7440490722656

NAD 1983 -122.46818353793 48.7438798543649

WGS 1984 -122.46818353793 48.7438798534299

2.基准面(Datum)

参考椭球体定义了地球的形状,而基准面则描述了这个椭球中心距地心的关系。基准面是建立在选择的参考椭球体上的,且考虑到了当地复杂的地表情况。因为参考椭球体还是不能够很好的描述地球上每个地方的具体情况,可以理解为基准面就是参考椭球向某个地方的大地水准面逼近的结果,它与参考椭球是多对一的关系。

(1)地心基准面(Geocentric datums)

在过去的15年,使用卫星采集数据给测量学家们提供了一个很好的模拟地球的椭球体,即地心坐标系统。地心坐标系是使用地球的质心作为中心,目前使用最广泛的就是WGS 1984这种地心坐标系。

(2)本地基准面(Local datums)

本地基准面是将参考椭球体移动到更贴近当地地表形状的位置,参考椭球体上的某一点必然对应着地表上的某一位置,这个点就称作大地起算原点。大地起

算原点的坐标值是固定的,其他点的坐标值都可以由该点计算得到。本地坐标系统的起始位置一般就不在地心的位置了,而是距地心一定的偏移量。

3.空间参考(Spatial Reference)

一个空间参考包括了描述要素X,Y,Z位置的坐标系统(Coordinate System),以及描述要素X,Y,Z,M值的分辨率(resolution)和容限(tolerance)。

(1)坐标系统

坐标系统分为大地坐标系统(Geographic coordinate system)和投影坐标系统(Project coordinate system)两种,分别用来表示三维的球面坐标和二维的平面坐标。

一个GCS的定义包括基准面、角度的单位(一般是度)和本初子午线。一个PCS的定义包括一个GCS,以及测量的线性单位(米或者英尺)、地图投影方法和投影的一些参数。

一个PCS或者GCS中也可能会包含一个垂直坐标系统(VCS)描述Z值,它通常是对高程的描述。VCS的定义包含了高程的基准面、测量的线性单位、Z轴的方向和偏移量。

(2)分辨率(Resolution)

分辨率反映了数据库中可以存储的坐标值的最小地图单位长度,例如如果分辨率是0.01,那么1.22和1.23将会被存储为不同的点,而1.222和1.223将会被认为都是1.22。如下图所示:

分辨率的单位和地图单位一致,如果当前投影坐标系统的单位是米,那么分辨率的单位也是米,默认的分辨率大小为0.0001;如果是英尺为单位,则默认值是0.0003281英尺(0.003937 英寸);如果是经纬度的,则默认值是

0.000000001度。

如果分辨率越小,那么坐标可以存储的位数就越多,也必然会消耗掉I/O

资源;如果分辨率变大,那么要素所存储的精度就会降低,要素的边界将会被平滑。一般情况下,我们都选择使用系统默认的分辨率值。

(3)容限(Tolerance)

容限反映了数据的坐标精度,也就是坐标值之间的最小距离,小于这个容限的将会被认为是同一个点。容限经常会被使用在关系和拓扑运算中,来确定两个点是否会被合并为同一个点。对于以米为单位的投影坐标系统,默认的容限值是0.001,也就是10倍的分辨率值。用户可以自定义容限值,但是不要小于分辨率的2倍大小。

4.北京54和西安80

北京54和西安80是我国主要使用的两种坐标系统,它们其实指的是两个Datum的概念。因此,北京54和西安80即可以指大地坐标系统(GCS),又可以指投影坐标系统(PCS)。我们先来看看ArcGIS中对于北京54在GCS中的定义:

Angular Unit: Degree (0.017453292519943299)

Prime Meridian: Greenwich (0.000000000000000000)

Datum: D_Beijing_1954

Spheroid: Krasovsky_1940

Semimajor Axis: 6378245.000000000000000000

Semiminor Axis: 6356863.018773047300000000

Inverse Flattening: 298.300000000000010000

可以看到,Datum是D_Beijing_1954。北京54使用的是克拉索夫斯基椭球,大地原点在西伯利亚。而西安80使用的是IAG 75椭球,大地原点在陕西泾阳。再来看北京54在PCS中的定义:

Projection: Gauss_Kruger

False_Easting: 500000.000000

False_Northing: 0.000000

Central_Meridian: 117.000000

Scale_Factor: 1.000000

Latitude_Of_Origin: 0.000000

Linear Unit: Meter (1.000000)

Geographic Coordinate System: GCS_Beijing_1954

Angular Unit: Degree (0.017453292519943299)

Prime Meridian: Greenwich (0.000000000000000000)

Datum: D_Beijing_1954

Spheroid: Krasovsky_1940

Semimajor Axis: 6378245.000000000000000000

Semiminor Axis: 6356863.018773047300000000

Inverse Flattening: 298.300000000000010000

可以看到,一个PCS必然包含一个GCS的定义,也就是说PCS=GCS+地图投影。我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用正轴等角割圆锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用正轴等角圆柱投影,又叫墨卡托投影(Mercator)。在ArcGIS软件中,北京54和西安80的PCS坐标都是使用高斯-克吕格投影。

5.高斯克吕格

(1)高斯克吕格投影

高斯-克吕格投影是等角横轴切圆柱投影,该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯-克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面投影于圆柱面。将圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

(2)高斯克吕格分带

高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。为了减少投影后的变形,高斯克吕格采用了分带投影的方式,有6度分带和3度分带两种。6度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2 (60)

带。3度带是在6度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。我国的经度范围西起73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。六度带可用于中小比例尺(如 1:250000)测图,三度带可用于大比例尺(如 1:10000)测图,城建坐标多采用三度带的高斯投影。

(3)高斯克吕格坐标

高斯克吕格坐标中,纵坐标以赤道为零起算,赤道以北为正,以南为负。我国位于北半球,纵坐标均为正值。横坐标如以中央经线为零起算,中央经线以东为正,以西为负,为了避免横坐标出现负值,故规定将坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加500公里。由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如(4231898m,21655933m),

其中21即为带号。

(4)ArcGIS中的描述

下面以北京54为例,来说明ArcGIS中对于高斯克吕格这种投影坐标的描述: Beijing 1954 3 Degree GK CM 75E.prj

Beijing 1954 3 Degree GK Zone 25.prj

Beijing 1954 GK Zone 13.prj

Beijing 1954 GK Zone 13N.prj

它们分别指的是:

三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号;

三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号;

六度分带法的北京54坐标系,分带号为13,横坐标前加带号;

六度分带法的北京54坐标系,分带号为13,横坐标前不加带号。

空间大地测量学试卷

空间大地测量学 1、试述VLBI原理及其应用。(VLBI,very long baseline interferometry)缩写甚长基线干涉测量技术。 简单来说,VLBI就是把几个小望远镜联合起来,达到一架大望远镜的观测效果。这是因为,虽然射电望远镜能“看到”光学望远镜无法看到的电磁辐射,从而进行远距离和异常天体的观测,但如果要达到足够清晰的分辨率,就得把望远镜的天线做成几百公里,甚至地球那么大。上世纪50年代,剑桥大学的天文学家马丁〃赖尔建成了第一台射电干涉仪,使不同望远镜接收到的电磁波可以叠加成像,在此基础上 ,VLBI得以发展。1974年,赖尔以此获得了诺贝尔奖。 原理:射电源辐射出的电磁波﹐通过地球大气到达地面﹐由基线两端的天线接收。由于地球自转﹐电磁波的波前到达两个天线的几何程差(除以光速就是时间延迟差)是不断改变的。两路信号相关的结果就得到干涉条纹。天线输出的信号﹐进行低噪声高频放大后﹐经变频相继转换为中频信号和视频信号。在要求较高的工作中﹐使用频率稳定度达10 的氢原子钟﹐控制本振系统﹐并提供精密的时间信号,由处理机对两个“数据流”作相关处理﹐用寻找最大相关幅度的方法﹐求出两路信号的相对时间延迟和干涉条纹率。如果进行多源多次观测﹐则从求出的延迟和延迟率可得到射电源位置和基线的距离﹐以及根据基线的变化推算出的极移和世界时等参数。参数的精度主要取决于延迟时间的测量精度。因为﹐理想的干涉条纹仅与两路信号几何程差产生的延迟有关﹐而实际测得的延迟还包含有传播介质(大气对流层﹑电离层等)﹑接收机﹑处理机以及钟的同步误差产生的随机

延迟﹐这就要作大气延迟和仪器延迟等项改正﹐改正的精度则关系到延迟的测量精度。目前延迟测量精度约为0.1毫微秒。 中国科学院的VLBI网是测轨系统的一个分系统,它目前由北京、上海、昆明和乌鲁木齐的四个望远镜以及位于上海的天文台的数据处理中心组成。这样一个网所构成的望远镜分辨率相当于口径为3000多公里的巨大的综合望远镜,测角精度可以达到百分之几角秒,甚至更高。 VLBI测轨分系统的具体任务是获得卫星的VLBI测量数据,包括时延、延迟率和卫星的角位置,并参与轨道的确定和预报。具体的任务,比如说完成卫星在24小时、48小时周期的调相轨道段的测轨任务。完成卫星在地月转移轨道段、月球捕获轨道段以及环月轨道段的测轨任务。并且还要参加调相轨道、地月转移轨道、月球捕获轨道段的准实时轨道的确定和预报。 VLBI测轨分系统从2007年10月27日起,即卫星24小时的调相轨道段的第一天正式实施对嫦娥一号卫星的测量任务。现在已经完成了24小时、48小时调相轨道、地月转移轨道段和月球捕获轨道段的第一天总共十天的测量任务。 其他应用 VLBI分系统的各测站数据处理中心设备工作正常,VLBI测量数据及时传输到北京的航天飞控中心,数据资料很好,满足了工程的要求,为嫦娥一号卫星的精确定轨作出了贡献。

工程测量基础-继续教育

136644】的答卷 【试卷总题量: 38,总分: 100.00分】用户得 分:82.0分,用时3074秒,通过 字体:大中小| 打印| 关闭 | 一、单选题【本题型共15道题】 1.为求定GPS点在某一参考坐标系中的坐标,应与该参考系中的原有控制点联测,联测的 点数不得少于()个点。 A. 1 B. 2 C. 3 D.4 用户答案:[C] 得分:2.00 2.变形监测中,布设于待测目标体上并能反映变形特征的点为()。 A.基准点 B.工作基点 C.变形点 D.连接点 用户答案:[C] 得分:2.00 3.我国城市坐标系是采用()。 A.高斯正形投影平面直角坐标系 B.大地坐标系 C.平面直角坐标系

D.任意坐标系 用户答案:[A] 得分:2.00 4.长度为5km的隧道,其横向和高程贯通误差的限差分别为()。 A.100mm,50mm B.150mm,60mm C.150mm,70mm D.200mm,60mm 用户答案:[A] 得分:0.00 5.下面是三个小组丈量距离的结果,只有()组测量的相对误差优于1/5000的要求。 A.100m±0.025m B.200m±0.040m C.150m±0.035m D.250m±0.040m 用户答案:[D] 得分:2.00 6.高斯投影投影方式是()。 A.等角横切圆锥投影 B.等角竖切圆锥投影 C.等角横切椭圆柱投影 D.等角竖切椭圆柱投影 用户答案:[C] 得分:2.00 7.在距离丈量中衡量精度的方法是用()。

A.往返较差 B.相对误差 C.闭合差 D.容许误差 用户答案:[B] 得分:2.00 8.由大地坐标(B,L)求高斯平面直角坐标(x,y)的过程称为()。 A.高斯投影正算 B.高斯投影反算 C.七参数转换 D.四参数转换 用户答案:[A] 得分:2.00 9.《国家基本比例尺地形图分幅和编号》规定,我国基本比例尺地形图均以()地形图为基础,按经差和纬差划分图幅。 A.1:1000000 B.1:500000 C.1:100000 D.1:10000 用户答案:[A] 得分:2.00 10.在各种工程的施工中,把图纸上设计的建筑物位置在实地上标定出来的工作称为()。 A.测定 B.施工放样

绝密-空间大地测量学复习

第一章概论 1.大地测量学的基本体系:几何大地测量学、物理大地测量学、空间大地测量学 空间大地测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。 2. 国家平面坐标系统实现过程主要工作 (1)国家平面控制网布设 (2)建立大地基准、确定全网起算数据 (3)控制网的起始方位角的求定 (4)控制网的起始边长的测定 (5)其它工作 3.传统大地测量常规方法的局限性 (1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。 (2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量。 (3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。 (4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。 (5)难以建立地心坐标系:海洋区域无法布设大地控制网,陆地只能区域测量,建立区域参考椭球与区域大地水准面吻合;无法建立全球参考椭球。 4. 时代对大地测量提出的新要求 (1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标; (2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统 (3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等; (4)要求提供精确的(似)大地水准面差距:GNSS等空间定位技术逐步取代传统的经典大地测量技术成为布设全球性或区域性的大地控制网的主要手段;人们对高精度的、高分辨率的大地水准面差距N或高程异常的要求越来越迫切。 (5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。 (6)要求出现一种全天候,更为快捷的、精确、简便的全新的大地测量方法。 5. 空间大地测量产生的可能性 (1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础。 (2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。 (3)现代电子技术,尤其是超大规模集成电路技术。 (4)其他技术:多路多址技术、编码技术、解码技术等通讯技术,信号和滤波理论;大气科学的发展。 6. 空间大地测量学 利用自然天体或人造天体来精确测定测点的位置,从而精确确定地球的形状,大小,外部重力场以及它们随时间的变化状况的一整套理论和方法(或一门科学)称为空间大地测量学。7. 空间大地测量的主要任务 一类是建立和维持各种坐标框架:

工程测量基础咨询继续教育满分

一、单选题【本题型共15道题】 1.为求定GPS点在某一参考坐标系中的坐标,应与该参考系中的原有控制点联测,联测的点数不得少于()个点。 A.1 B.2 C.3 D.4 用户答案:[C] 得分:2.00 2.高斯投影投影方式是()。 A.等角横切圆锥投影 B.等角竖切圆锥投影 C.等角横切椭圆柱投影 D.等角竖切椭圆柱投影 用户答案:[C] 得分:2.00 3.水准测量中,消除i角误差影响的主要措施是()。 A.测站数为偶数 B.视线高出地面,三丝能读数 C.增加观测次数 D.前后视距相等 用户答案:[D] 得分:2.00 4.在全圆测回法的观测中,同一盘位起始方向的两次读数之差叫()。 A.归零差 B.测回差 C.2C互差 D.以上都不对 用户答案:[A] 得分:2.00 5.利用水准仪“倒尺法″放样隧道洞顶标高时,地面已知点高程为35.00m,待定点高程为38.00m。若已知点上水准尺读数为1.50m,待定点上水准尺的读数为()m。 A.1.50 B.2.00 C.2.50

用户答案:[A] 得分:2.00 6.地面上任意一点的正高为该点沿()的距离。 A.垂线到似大地水准面 B.法线至似大地水准面 C.垂线到大地水准面 D.法线至大地水准面 用户答案:[C] 得分:2.00 7.水准测量时,应使前后视距尽可能相等,其目的是减弱()的误差影响。 A.圆水准器轴不平行于仪器数轴 B.十字丝横丝不垂直于仪器竖轴 C.标尺分划误差 D.仪器视准轴不平行于水准管轴 用户答案:[D] 得分:2.00 8.在水准测量中转点的作用是传递()。 A.方向 B.高程 C.距离 D.高差 用户答案:[B] 得分:2.00 9.长度为5km的隧道,其横向和高程贯通误差的限差分别为()。 A.100mm,50mm B.150mm,60mm C.150mm,70mm D.200mm,60mm 用户答案:[C] 得分:2.00 10.已知直线AB的坐标方位角为186°,则直线BA的坐标方位角为()。 A.96° B.276° C.6°

大地测量学知识点整理

第一章 大地测量学定义 广义:大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。 狭义:大地测量学是测量和描绘地球表面的科学。包含测定地球形状与大小,测定地面点几何位置,确定地球重力场,以及在地球上进行必须顾及地球曲率的那些测量工作。 大地测量学最基本的任务是测量和描绘地球并监测其变化,为人类活动提供关于地球等行星体的空间信息。 P1 P4 P6(了解几个阶段、了解展望) 大地测量学的地位和作用: 1、大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用 2、大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用 3、大地测量是发展空间技术和国防建设的重要保障 4、大地测量在当代地球科学研究中的地位显得越来越重要 5、大地测量学是测绘学科的各分支学科(其中包括大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础科学 现代大地测量学三个基本分支:几何大地测量学、物理大地测量学、空间大地测量学 第二章 开普勒三大行星运动定律: 1、行星轨道是一个椭圆,太阳位于椭圆的一个焦点上 2、行星运动中,与太阳连线哎单位时间内扫过的面积相等 3、行星绕轨道运动周期的平方与轨道长半轴的立方之比为常数 地轴方向相对于空间的变化(岁差和章动)(可出简答题) 地轴相对于地球本体内部结构的相对位置变化(极移) 历元:对于卫星系统或天文学,某一事件相应的时刻。 对于时间的描述,可采用一维的时间坐标轴,有时间原点、度量单位(尺度)两大要素,原点可根据需要进行指定,度量单位采用时刻和时间间隔两种形式。 任何一个周期运动,如果满足如下三项要求,就可以作为计量时间的方法: 1、运动是连续的 2、运动的周期具有足够的稳定性 3、运动是可观测的 多种时间系统 以地球自转运动为基础:恒星时和世界时 以地球公转运动为基础:历书时→太阳系质心力学时、地球质心力学时 以物质内部原子运动特征为基础:原子时 协调世界时(P23) 大地基准:建立大地基准就是求定旋转椭球的参数及其定向(椭球旋转轴平行于地球的旋转

2017工程测量基础(96分)

一、单选题【本题型共15道题】 1.《国家基本比例尺地形图分幅和编号》规定,我国基本比例尺地形图均以()地形图为基础,按经差和纬差划分图幅。 A.1:1000000 B.1:500000 C.1:100000 D.1:10000 用户答案:[A] 得分:2.00 2.坐标方位角是以()为标准方向,顺时针转到测线的夹角。 A.真子午线方向 B.磁子午线方向 C.坐标纵轴方向 D.子午线方向 用户答案:[C] 得分:2.00 3.同精度水准测量观测,各路线观测高差的权与测站数成()。 A.正比 B.无关系 C.不确定 D.反比 用户答案:[D] 得分:2.00

4.地形测图时,图根水准测量起算点的精度不应低于()的精度。 A.等外水准点 B.一级导线点 C.四等水准点 D.三等水准点 用户答案:[C] 得分:2.00 5.丈量某长方形的长为a=20±0.004m,宽为b=15±0.003m,则它们的丈量精度()。 A.相同 B.不同 C.不能进行比较 D.以上都不对 用户答案:[A] 得分:2.00 6.一、二等水准路线跨越江、河,当视线长度大于()M时,应根据视线长度和仪器设备等情况,选用规范的相应方法进行跨河水准测量。 A.50 B.100 C.150 D.200 用户答案:[B] 得分:2.00 7.下列测量方法中,最适合测绘建筑物立面图的是()。

A.三角高程测量 B.地面激光扫描 C.精密水准测量 D.GPS—RTK测量 用户答案:[B] 得分:2.00 8.为满足测量成果的一测多用,在满足精度的前提下,工程测量应采用()平面直角坐标系。 A.任意带高斯正形投影 B.独立 C.国家统一3度带高斯正形投影 D.抵偿投影面的3度带高斯正形投影 用户答案:[C] 得分:2.00 9.在各种工程的施工中,把图纸上设计的建筑物位置在实地上标定出来的工作称为()。 A.测定 B.施工放样 C.监测 D.变形观测 用户答案:[B] 得分:2.00 10.水准测量中,消除i角误差影响的主要措施是()。 A.测站数为偶数 B.视线高出地面,三丝能读数 C.增加观测次数

大地测量坐标系统及其转换

大地测量坐标系统及其转换 雷伟伟 河南理工大学测绘学院 wwlei@https://www.doczj.com/doc/7016286125.html,

基本坐标系 1、大地坐标系 坐标表示形式:(, ,)L B H 大地经度L :地面一点P 地的大地子午面N P S 与起始大地子午面所构成的二面角; 大地纬度B :P 地点对椭球面的法线P P K 地与赤道面所夹的锐角; 大地高H :P 地点沿法线到椭球面的距离。 赤道面 S W 2、空间直角坐标系 坐标表示形式:(,,)X Y Z 以椭球中心O 为坐标原点,起始子午面N G S 与赤道面的交线为X 轴,椭球的短轴为Z 轴(向北为正),在赤道面上与X 轴正交的方向为Y 轴,构成右手直角坐标系O X YZ 。

Y W 3、子午平面坐标系 坐标表示形式:(,,) L x y 设P点的大地经度为L,在过P点的子午面上,以椭圆的中心为原点,建立x、y平 面直角坐标系。则点P的位置用(,,) L x y表示。 x

坐标表示形式:(,,)L u H 设椭球面上的点P 的大地经度为L 。在此子午面,以椭球中心O 为圆心,以椭球长半径a 为半径,做一个辅助圆。过P 点做一纵轴的平行线,交横轴于1P 点,交辅助圆于2P 点,连结2P 、O 点,则21P O P 称为P 点的归化纬度,用u 来表示。P 点的位置用(,)L u 表示。 当P 点不在椭球面上时,则应将P 沿法线投影到椭球面上,得到点0P ,0PP 即为P 点的大地高,0P 点的归化纬度,就是P 点的归化纬度。P 点的位置用(,,)L u H 表示。 x y P u 点在椭球面上时的 P u 点不在椭球面上时的x

工程测量基础复习题集与参考答案解析

中南大学网络教育课程考试(专科)复习题及参考答案 工程测量基础 一、判断题:[正确打√错误打×] 1.水准面所包围的地球形体,称为地球椭球体。[ ] 2.测量工作的实质就是测量(或测设)点位的工作。[ ] 3.测量中的坐标轴方向和象限顺序与数学中的坐标轴方向和象限顺序正好相同。[ ] 4.旋转微倾螺旋可使望远镜连同管水准器作俯仰微量的倾斜,从而使视线精确整平。因此这 种水准仪称为微倾式水准仪。[ ] 5.对于水准支线,应将高程闭合差按相反的符号平均分配在往测和返测所得的高差值上。[ ] 6、观测导线右角时,附合导线和闭合导线角度闭合差的分配原则都是将角度闭合差以相反的符号平均分配到各个右角。[ ] 7.1:50000地形图上,求得A点的高程H A=418.3m, B点的高程H B=416.7m,AB 两点图上的长度为15mm,则AB直线的坡度应是-2‰。[ ] 8.衡量导线的精度应该以角度闭合差和导线全长相对闭合差来衡量。[ ] 9、地形图上0.1㎜长所代表的实际长度称为比例尺的精度。[ ] 10.圆曲线半径R=1000米,缓和曲线总长L0=100米,直线转向角α=15°20′30″则距ZH 点40米处的缓和曲线半径为2500米。[ ] 11.绝对高程无负值,相对高程有负值。[ ] 12.水准测量中,每一站读完后视读数瞄准前视尺时,必须旋转脚螺旋使管水准气泡居中再读前视读数。[ ]

13.经纬仪竖轴倾斜引起的误差,可以采用盘左、盘右观测取平均值的方法消除。[ ] 14.视差现象无法消除。[ ] 15.直线的正反坐标方位角总是相差1800。[ ] 16.中误差、容许误差、闭合差都是绝对误差。[ ] 17.当对一个观测量进行同精度多次观测后,则观测值的算术平均值就是观测量的最或然值。 [ ] 18.中误差、容许误差、相对误差在测量中都可以作为评定精度的标准。[ ] 19.导线计算的目的是算出各导线点的坐标,并检验导线测量的精度是否符合要求。[ ] 20.支导线由于没有检核条件,故只能用于图根控制。[ ] 21.闭合导线的纵横坐标增量代数和,理论上应该等于终点和始点已知坐标之差。 [ ] 22.附合导线的纵横坐标增量代数和,理论上都应该等于零。[ ] 23.观测导线右角时,附合导线和闭合导线角度闭合差的分配原则都是将角度闭合差以相反 的符号平均分配到各个右角。[ ] 24.对微倾式水准仪,当水准管气泡符合时,视准轴就处于水平位置。[ ] 25.地形图上1.0㎜长所代表的实际长度称为比例尺的精度。[ ] 26.地形图的比例尺精度指的是制作比例尺时的精确度。[ ] 27.同一条等高线上的各点其高程必相等,但高程相等的点不一定在同一条等高线上。[ ] 28.比例尺的分母愈大,则图形表现得愈大愈清楚,称大比例尺。[ ] 29.纵断面是指沿垂直于线路中线方向的地面线。[ ] 30.用偏角法测设圆曲线,20m的圆弧长与相应的弦长相差很小,因而当曲线R>400m时,可将20m的弦长当作圆弧长看待。[ ]

绝密-空间大地测量学复习

第一章概论 1.测量学的基本体系:几何测量学、物理测量学、空间测量学 空间测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。 2. 国家平面坐标系统实现过程主要工作 (1)国家平面控制网布设 (2)建立基准、确定全网起算数据 (3)控制网的起始方位角的求定 (4)控制网的起始边长的测定 (5)其它工作 3.传统测量常规方法的局限性 (1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。 (2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量。 (3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。 (4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。 (5)难以建立地心坐标系:海洋区域无法布设控制网,陆地只能区域测量,建立区域参考椭球与区域水准面吻合;无法建立全球参考椭球。 4. 时代对测量提出的新要求 (1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标; (2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统 (3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等; (4)要求提供精确的(似)水准面差距:GNSS等空间定位技术逐步取代传统的经典测量技术成为布设全球性或区域性的控制网的主要手段;人们对高精度的、高分辨率的水准面差距N或高程异常的要求越来越迫切。 (5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。 (6)要求出现一种全天候,更为快捷的、精确、简便的全新的测量方法。 5. 空间测量产生的可能性 (1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础。 (2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。 (3)现代电子技术,尤其是超大规模集成电路技术。 (4)其他技术:多路多址技术、编码技术、解码技术等通讯技术,信号和滤波理论;大气科学的发展。 6. 空间测量学 利用自然天体或人造天体来精确测定测点的位置,从而精确确定地球的形状,大小,外部重力场以及它们随时间的变化状况的一整套理论和方法(或一门科学)称为空间测量学。 7. 空间测量的主要任务 一类是建立和维持各种坐标框架:

工程测量基础知识

第一节工程测量基础概念及工程测量的重要性 在工程建设的设计、施工和管理各阶段中进行测量工作的理论、方法和技术,称为“工程测量”。工程测量是测绘科学与技术在国民经济和国防建设中的直接应用,是综合性的应用测绘科学与技术。 按工程建设的进行程序,工程测量可分为规划设计阶段的测量,施工兴建阶段的测量和竣工后的运营管理阶段的测量。 规划设计阶段的测量主要是提供地形资料。取得地形资料的方法是,在所建立的控制测量的基础上进行地面测图或航空摄影测量。 施工兴建阶段的测量的主要任务是,按照设计要求在实地准确地标定建筑物各部分的平面位置和高程,作为施工与安装的依据。一般也要求先建立施工控制网,然后根据工程的要求进行各种测量工作。 竣工后的营运管理阶段的测量,包括竣工测量以及为监视工程安全状况的变形观测与维修养护等测量工作。 按工程测量所服务的工程种类,也可分为建筑工程测量、线路测量、桥梁与隧道测量、矿山测量、城市测量和水利工程测量等。此外,还将用于大型设备的高精度定位和变形观测称为高精度工程测量;将摄影测量技术应用于工程建设称为工程摄影测量。 工程测量是直接为工程建设服务的,它的服务和应用范围包括城建、地质、铁路、交通、房地产管理、水利电力、能源、航天和国防等各种工程建设部门。 无论是工程进程各阶段的测量工作,还是不同工程的测量工作,都需要根据误差分析和测量平差理论选择适当的测量手段,并对测量成果进行处理和分析,也就是说,测量数据处理也是工程测量的重要内容。 在当代国民经济建设中,测量技术的应用十分广泛。在很多工程建设中,从规划、勘测、设计、施工及管理和运营阶段等的决策和实施都需要有力的测绘技术保障。在研究地球自然和人文现象,解决人口、资源、环境和灾害等社会可持续发展中的重大问题以及国民经济和国防建设的重大抉择同样需要测绘技术提供技术支撑和数据保障。 第二节常用仪器及其操作方法 1.水准仪及其操作 常用的水准仪为DS3型微倾式水准仪(见图1)。水准仪可以提供一条水平视线,通过观测水准尺读

施工测量基本工作

施工测量的基本工作 第一节施工测量概述 各种工程在施工阶段所进行的测量工作称为施工测量。包括:施工前施工控制网的建立;施工期间将图纸上所有设计的建(构)筑物的平面位置和高程测设到相应的地面上;工程竣工后测绘各建(构)筑物的实际位置和高程;以及在施工和管理期间对建(构)筑物进行变形和沉降观测等。 一、施工测量的特点 施工测量与地形测量相反,它是将图纸上的建筑物、构筑物按其设计位置和高程,测设到地面上,作为施工的依据。因此,测量员应熟悉图纸,对放样数据要反复校核,对所用的仪器、工具应进行检验校正,放样之后,还要对建筑物自身尺寸进行检查,以确保建(构)筑物关系位置正确。 施工测量与施工进度及工程质量关系密切,因此,测量员应了解施工方案,掌握施工进度,使测量工作能满足施工进展要求。 由于机械化施工和施工现场建筑材料的堆放,人来车往,土方填挖量大以及交叉作业等原因,使得地面变化和震动大,各种测量标志易遭破坏,因此,必须将测量标志埋设牢固,妥善保护,经常检查,及时恢复。 施工现场工种繁多,干扰较大,测设方法和计算方法应力求简捷,以保证各项工作衔接。同时要注意仪器安全和人身安全。 二、施工测量的原则 施工测量与地形测量一样,也必须遵循“从整体到局部,先控制后细部”的原则。因此,在施工之前,应在施工场地上,建立统一的施工平面控制网和高程控制网,作为施工放样各种建筑物和构筑物位置的依据。这一原则能使分布较广的建筑物、构筑物保持同等精度进行测设,以保证各建筑物、构筑物之间的关系位置正确。有关施工控制测量的内容将在后面章节中作详细介绍。施工测量的另一原则也是“步步有校核”,以防止差、错、漏的发生。 三、施工测量的精度 为了保证建筑物、构筑物放样的正确性和准确性,施工测量必须达到一定的精度要求。 施工控制网的精度,由建筑物、构筑物的定位精度和控制网的范围大小等决定。当点位精度标较高和施工场地较大时,施工控制网应具有较高的精度。具体要求可参照不同工程的有关规范。 总之,测量应根据具体的测设对象,制定切实可行且必须满足工程要求的精度标准,保证工程的施工质量。如果制定的标准偏低,将影响施工质量,这是不

大地测量坐标系统及其转换(精)

大地测量坐标系统及其转换 基本坐标系 1、大地坐标系 坐标表示形式:(, ,L B H 大地经度L :地面一点P 地的大地子午面N P S 与起始大地子午面所构成的二面角; 大地纬度B :P 地点对椭球面的法线P P K 地与赤道面所夹的锐角; 大地高 H :P 地点沿法线到椭球面的距离。 赤道面 S W 2、空间直角坐标系

坐标表示形式:(,,X Y Z 以椭球中心O 为坐标原点,起始子午面N G S 与赤道面的交线为X 轴,椭球的短轴为Z 轴(向北为正,在赤道面上与X 轴正交的方向为Y 轴,构成右手直角坐标系O X YZ 。 Y W 3、子午平面坐标系 坐标表示形式:(,, L x y 设P点的大地经度为L,在过P点的子午面上,以椭圆的中心为原点,建立x、y 平

面直角坐标系。则点P的位置用(,, L x y表示。 x 坐标表示形式:(,,L u H 设椭球面上的点P 的大地经度为L 。在此子午面,以椭球中心O 为圆心,以椭球长半径a 为半径,做一个辅助圆。过P 点做一纵轴的平行线,交横轴于1P 点,交辅助圆于2P 点,连结2P 、O 点,则21P O P 称为P 点的归化纬度,用u 来表示。P 点的位置用(,L u 表示。 当P 点不在椭球面上时,则应将P 沿法线投影到椭球面上,得到点0P ,0PP 即为P 点的大地高,0P 点的归化纬度,就是P 点的归化纬度。P 点的位置用(,,L u H 表示。

x y P u 点在椭球面上时的 P u 点不在椭球面上时的x

坐标表示形式:(,, L φρ 设P 点的大地经度为L ,连结O P ,则POx φ∠=,称为球心纬度,OP ρ=,称为P 点的向径。P 点的位置用(,,L φρ表示。 x 6、大地极坐标系 坐标表示形式:(,S A 以椭球面上某点0P 为极点,以0P 的子午线为极轴,从0P 出发,作一族A =常数的大地线和S =常数的大地圆。它们构成相互正交的坐标系曲线,即椭球面上的大地极坐标系,简称地极坐标系。在大地极坐标系中,点的位置用(,S A 来表示。 P A =常数 S =常数 坐标表示形式:1(,,P X Y Z -

空间大地测量的应用论文

空间大地测量的应用 摘要通过学习空间大地测量学的课程,结合空间大地各项技术的最新成果与进展,系统介绍了目前空间大地测量的各项技术在各领域的应用。 关键字空间大地测量;应用;大地测量技术 分类号 近年来,随着VLBI技术和卫星导航技术的飞速发展,大地测量学经历了一场划时代的革命性的变革,克服了传统的经典大地测量学的时空局限,进入了以空间大地测量为主的现代大地测量的新阶段。空间大地测量所求得的点位精度、地球定向参数(极移、日长变化等)的精度、地球重力场模型的精度和分辨率比以前都有了极大的提高。空间大地测量已经成为建立和维持地球参考框架、测定地球定向参数、研究地壳形变与各种地球动力学现象、监测地质灾害的主要手段之一,并渗透到人类的生产、生活、科研和各种经济活动中,从而使大地测量处于地球科学多种分支学科的交汇边缘,成为推动地球科学发展的前沿学科之一,加强了大地测量学在地球科学中的战略地位。 利用自然天体或人造天体的来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法称为空间大地测量学。随着空间大地测量成为实现大地测量学科各类目标的主要技术手段, 正主导着学科未来的发展方向和科学地位, 目前正向更高的水平发展。空间大地测量技术除了卫星重力探测技术(卫星测高、卫星跟踪卫星和卫星重力梯度测量)以外,主要包括全球定位系统(G P S) 、甚长基线干涉测量(VLB I) 和激光测距(L R ) (包括卫星激光测距(S L R )和激光测月技术(L L R ) )。 (一)空间大地测量在卫星重力探测技术方面的应用 地球重力场的研究始终是大地测量学科发展最活跃的领域之一。人类认识地球重力场的水平不仅取决于在全球范围内测定重力和探测重力场信息的技术发展水平, 而且还取决于确定地球重力场的理论发展水平。目前进行重力探测的方法主要有地面重力测量、卫星重力测量和航空重力测量。 地面重力测量仍然是获取高精度、高分辨率重力数据的手段之一。主要是采用各种

VLBI空间大地测量技术原理简介与技术应用

VLBI空间大地测量技术原理简介与技术应用 摘要:深长基线干涉测量(VLBI)是重要的空间大地测量技术,本文主要简要介绍了VLBI的大地测量原理,以及VLBI在大地测量方面的一些应用。 关键词:VLBI 1.前言 空间大地测量在近20多年中获得了长足的发展,以VLBI、SLR、GPS、LLRDORIS 等为主要标志的空间测量技术大大推动了大地测量学的发展,也大大富了大地测量学,特别是空间大地测量学的研究内容。这些手段的应用将大加强大地测量控制网的强度和可靠性,尤其是在大尺度范围内,可大大改善度系统误差和其它系统误差的积累。VLBI极高的相对精度和分辨率,大大提高了如大地测量定位、参考框架的连接、地球自转和极移监测、估计地壳运动和绘制河外射电源图像等许多任务的精度水平。 2. VLBI大地测量原理 甚长基线干涉测量(Very Long Baseline Interferometry,VLBI )是本世纪六十年代末发展起来的一种全新的空间大地测量技术,它通过测定来自河外射电源的信号在两个接收天线之间的传播延时来精确求定地面点间的相对位置。VLBI 测量的几何原理如下图所示: 图2-1 VLBI几何原理图 射电源辐射出的电磁波通过地球大气到达地面,由基线两端的天线接收。由于地球自转,电磁波的波前到达两个天线的几何程差(除以光速就是时间延迟差)是不断改变的。两路信号相关的结果就得到干涉条纹。天线输出的信号进行低噪

声高频放大后,经变频相继转换为中频信号和视频信号。 由于两天线到某一射电源的距离不同,有一路程差L ,则射电信号的同一波前到达两天线的时间也不相同,有一时间延迟g τ根据图2-1的几何关系: g C L τ?= (1) 其中C 为真空中的光速。 若设_B 为天线1到天线2的基线矢量,K 为被观测的射电源方向的单位矢量,则有: ??? ???-=-K B C g 1τ (2) 其对时间的倒数即为延迟率: ??? ?????-=-K B t C g 1.τ (3) 式(2)就是VLBI 从纯几何关系出发推出的时间延迟(几何延迟)。而实际 上,由于基线矢量随着地球自转在不断变化,射电源与测站之间也不是理想的 真空,在实际观测值中不可被免地包含了其它成份,因此vLBI 观测到的延迟 和延迟率比(2)、(3)式复杂的多,它们可以表示为: ++++=p i c g τττττ (4) ++++=p i c g .....τττττ (5) 式中c τ为两测站时钟的同步误差,i τ为两测站由于放大器、馈源、混濒 器等的不同而引起的时间延迟,p τ为大气层、电离层、行星之间等离子体等 引起的传播介质延迟。上述公式中与天线有关的参数都是在地心天球坐标系中描述的但这些通常是在地球坐标系给出的,所以必须通过必要的坐标旋转将它们转

大地测量学基础-第二版 武汉大学出版社 复习

2015级地信班方游游 第一章 大地测量学定义 在一定时间空间的参考系统中,测量和描绘地球以及其他行星体的一门学科。 大地测量学作用 1.在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。 2.在防灾减灾救灾以及环境监测、评价和保护中发挥着独具风貌的特殊作用 3.是发展空间技术和国防建设的重要保证 4.在当代地球科学研究中地位越来越重要 5.是测绘学科各分支学科的基础科学 现代大地测量学的特点 1.测量范围大 2.从静态发展到动态,从表面深入到地球内部构造及动力过程 3.观测精度高 4.测量周期短 大地测量学基本内容 1.确定地球形状以及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研 究地球形变,测定极移以及海洋水面地形及其变化等 2.研究月球及太阳系行星的形状及重力场 3.建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准为以 及海洋大地控制网,以满足国民经济和国防建设的需要 4.研究为获得高精度测量成果的仪器和方法等 5.研究地球表面向托球迷或平面投影数学变换及有关的大地测量计算 6.研究大规模高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法, 测量数据库建立及应用等 大地测量学发展简史 1.地球圆球阶段 2.地球椭球阶段 3.大地水准面阶段 4.现代大地测量新时期 大地测量的展望 1.GNSS,SLR,VLBI是主导本学科发展的主要的空间大地测量技术 2.空间大地网是实现本学科科学技术任务的主要技术方案 3.精化地球重力场模型是大地测量学的主要发展目标 4.新一代国家测绘基准建设工程已经启动 第二章

开普勒三大行星运动定律 1.行星轨道是一个椭圆,太阳位于椭圆的一个焦点上。 2.行星运动中,与太阳连线在单位时间内扫过的面积相等 3.行星绕轨道运动周期的平方与轨道长半轴立方之比为常数。 岁差 由于日月等天体影响,地球的旋转轴在空间围绕黄极发生缓慢旋转,是地轴方向相对于空间的长周期运动。 章动 地球旋转轴在岁差的基础上叠加18.6年的短周期圆周运动,振幅为9.21″。 极移 地轴相对于地球本体内部结构的相对位置变化。 国际协议原点CIO 国际上五个ILS站以1900~1905年的平均纬度所确定的平极作为基准点。 时间的计量包括哪两大元素 1.时间原点。 2.度量单位。 计量时间的方法满足的条件(3点) 1.运动是连续的; 2.运动的周期具有足够的稳定性; 3.运动是可观测的。 春分点 当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点。 什么是大地测量基准? 用以描述地球形状的参考椭球的参数、参考椭球在空间中的定位及定向、描述这些位置时所采用的单位长度的定义。包括:平面基准、高程基准、重力基准等。 什么是大地测量参考系统与参考框架,两者有何关系? 大地测量系统包括坐标系统、高程/深度基准和重力参考系统。 大地测量参考框架有坐标(参考)框架、高程(参考)框架和重力测量(参考)框架三种。是大地测量参考系统的具体实现。 什么是椭球定位与定向? 椭球定位指确定椭球中心的位置,分为局部定位和地心定位; 椭球定向指确定椭球旋转轴的方向。

工程测量基础(专)

《工程测量基础》课程复习资料 一、填空题: 1.比例尺的种类有______和______。 2.测量的三要素是指______、______、______。 3.地面点的空间位置是由______和______决定的。 4.地面上点的标志常用的有______和______等。 5.水准测量的检核方法有______和______等。 6.控制测量分为______和______两种。 7.精密量距时对距离进行尺长改正,是因为钢尺的______与______不相等而产生的。 8.水准测量路线有______、______、______三种形式。 9.A点盘左的读数是94°33ˊ24"265°26ˊ 00"______竖直角______。 10.地形图图式中的符号分为______、______和______三类。 11.圆曲线的测设元素是指______、______、______、______。 12.某点磁偏角为过该点的______方向与过该点的______方向的夹角。 13.以坐标纵轴作为标准方向的称为______。 14.在同一竖直面内,某一方向线与______之间的夹角称为竖直角。 15.导线测量的外业工作包括______、______、______。 二、单项选择题: 1.测量工作中常用()来表示直线的方向。 [ ] A.水平角 B.方位角 C.竖直角 2.地面点到大地水准面的铅垂距离叫 [ ] A.绝对高程 B.相对高程 C.高差 3.用钢尺丈量两点间的水平距离的公式是 [ ] A.D=nl+q B.D=kl C.D=nl 4.观测水平角时,采用改变各测回之间水平度盘起始位置读数的办法,可以削弱()的影响。[ ] A.度盘偏心误差 B.度盘刻划不均匀误差 C.照准误差 5.设A为后视点,B为前视点,A点高程为35.712 m,后视读数为0.983 m ,前视读数为1.149 m ,则A.B 两点的高差是 [ ] A.0.066 m B.0.166 m C.-0.166 m 6.水准点高程为24.397米,测设高程为25.000米的室内地坪。设水准点上读数为1.445米,则室内地 坪处的读数为()米。 [ ] A.1.042 B.0.842 C.0.642 7.往返丈量直线AB的长度为DAB=268.59m,DBA=268.65m其相对误差为 [ ] A.K=1/5000 B.K=1/4500 C.K=0.00022 D.K=-0.06 8.对象限角描述时下列描述正确的是 [ ] A.E23°S B.N23°W C.W23°N D.W23°S 9.电磁波测距的基本公式D=1/2ct中t表示 [ ] A.温度 B.光从仪器到目标所用的时间 C.光速 D.光从仪器到目标往返所用的时间 10.真误差为观测值与()之差。 [ ] A.平均 B.中误差 C.真值 D.改正数 11.单位权是指()等于 1。 [ ] A.观测值 B.权 C.单位误差 D.中误差 12.丈量一正方形的4个边长其观测中误差均为±2cm则该正方形的边长中误差为±()cm。[ ] A.0.5 B.2 C.4 D.8 13.一测站水准测量的后视读数是(),前视读数是()。 [ ]

空间大地测量思考题答案

《空间大地测量学》思考题 1. 简述天球坐标系与地球坐标系的区别。 答:天球坐标系:不随地球自转的地心坐标系,是空间固定坐标系,用于对卫星位置描述。 地球坐标系:与地球固联的地心坐标系,用于描述用户空间位置。也就是把地球视为理想球体,以其旋转轴两极的最短球面连线为经线,垂直于经线的是纬线形成的角度坐标系。 二者区别:天球坐标是天文用的,地球坐标是地理用的;天球坐标能描述星体相对于地球的角度位置,地球坐标只描述物体在地球表面的位置。 它们都是角坐标系,但是地球坐标是以地球表面为球面的,是有半径的;而天球坐标半径无关,只要是某一球面即可 2. 试述历元天球坐标系到协议地球坐标系的转换过程。 答:(1)岁差旋转变换 ZM (t0)表示历元J2000.0年平天球坐标系z 轴指向,ZM (t )表示所论历元时刻t 真天球坐标系z 轴指向。两个坐标系间的变换式为: )()(0)()()(t M A z A y A z t M z y x R R Z R z y x ??????????--=??????????ξθ 式中:ζ A ,θA ,ZA 为岁差参数。 (2)章动旋转变换 类似地有章动旋转变换式: )()()()()(t M x z x t c z y x R R R z y x ??? ????????-?--=??????????εψεε 式中:ε为所论历元的平黄赤交角,⊿ψ,⊿ε分别为黄经章动和交角章动参数。 (3)瞬时极天球坐标系与瞬时极地球坐标系的转换关系为: ct G z et z y x R z y x ??? ???????=??????????)(θ 下标et 表示对应t 时刻的瞬时极地球坐标系,ct 表示对应t 时刻的瞬时极天球坐标系。θG 为对应平格林尼治子午面的真春分点时角。

世界大地测量系统 WGS-84(World Geodetic System--GPS )

World Geodetic System ----世界大地测量系统(主要参量、历史演变和基本原理)The World Geodetic System is a standard for use in cartography, geodesy, and navigation. It comprises a standard coordinate frame for the Earth, a standard spheroidal reference surface (the datum or reference ellipsoid) for raw altitude data, and a gravitational equipotential surface (the geoid) that defines the nominal sea level. The latest revision is WGS 84 (dating from 1984 and last revised in 2004), which was valid up to about 2010[1]. Earlier schemes included WGS 72, WGS 66, and WGS 60. WGS 84 is the reference coordinate system used by the Global Positioning System. Main parameters The coordinate origin of WGS 84 is meant to be located at the Earth's center of mass; the error is believed to be less than 2 cm [2]. The WGS 84 meridian of zero longitude is the IERS Reference Meridian[3], 5.31 arc seconds or 102.5 metres (336.3 ft) east of the Greenwich meridian at the latitude of the Royal Observatory[4]&[5]. The WGS 84 datum surface is an oblate spheroid (ellipsoid) with major (transverse) radius a = 6378137 m at the equator and flattening f = 1/298.257223563[6]. The polar semi-minor (conjugate) radius b then equals a times (1?f), or 6356752.3142 m.[6] Presently WGS 84 uses the EGM96 (Earth Gravitational Model 1996) geoid, revised in 2004. This geoid defines the nominal sea level surface by means of a spherical harmonics series of degree 360 (which provides about 100 km horizontal resolution)[7]. The deviations of the EGM96 geoid from the WGS 84 reference ellipsoid range from about ?105 m to about +85 m[8]. EGM96 differs from the original WGS 84 geoid, referred to as EGM84. History Efforts to supplement the various national surveying systems began in the 19th century with F.R. Helmert's famous books Mathematische und Physikalische Theorien der Physikalischen Geod?sie (Mathematical and Physical Theory of Physical Geodesy). Austria and Germany founded the Zentralbüro für die Internationale Erdmessung (Central Bureau of International Geodesy), and a series of global ellipsoids of the Earth were derived (e.g., Helmert 1906, Hayford 1910/ 1924). A unified geodetic system for the whole world became essential in the 1950s for several reasons: (1)International space science and the beginning of astronautics. (2)The lack of inter-continental geodetic information. (3)The inability of the large geodetic systems, such as European Datum (ED50), North American Datum (NAD), and Tokyo Datum (TD), to provide a worldwide geo-data basis (4)Need for global maps for navigation, aviation, and geography. (5)Western Cold War preparedness necessitated a standardised, NATO-wide geospatial reference system, in accordance with the NATO Standardisation Agreement In the late 1950s, the United States Department of Defense, together with scientists of other

相关主题
文本预览
相关文档 最新文档