几个基本常数弹性模量-泊松比-应力应变曲线
- 格式:doc
- 大小:74.50 KB
- 文档页数:6
杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度、柔度、刚性、柔性、泊松比、剪切应变、体积应变“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Young's Modulus):杨氏模量是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。
1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。
根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。
杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
钢的杨氏模量大约为2×1011N·m-2,铜的是1.1×1011 N·m-2。
弹性模量和杨氏模量很相似,弹性模量有拉伸和剪切的两个方向,杨氏主要指的是拉伸的。
测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。
弹性模量(Elastic Modulus):弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
常用工程材料属性弹性模量泊松比质量密度抗剪模张力强度屈服度度1. 弹性模量(Young's modulus):弹性模量反映了材料在外力作用下的变形程度。
它定义为材料在线性弹性阶段的应力与应变的比值。
单位为帕斯卡(Pa)或兆帕(MPa)。
弹性模量越大,材料的刚度越高,抗变形能力越强。
典型弹性模量值:金属约为100-400GPa,钢约为200-210GPa,铝约为70GPa。
2. 泊松比(Poisson's ratio):泊松比定义为材料纵向(拉伸方向)的应变与横向(垂直拉伸方向)应变之比。
它是衡量材料的压缩性和延展性的能力的参数。
泊松比一般介于0和0.5之间,无量纲。
对于大多数金属材料,泊松比约为0.33. 质量密度(Density):质量密度是指物质的质量与体积的比值,单位为千克每立方米(kg/m³)或克每立方厘米(g/cm³)。
质量密度是衡量材料重量的参数,越大则材料越重。
4. 抗剪模量(Shear modulus):抗剪模量是材料在纵向剪切应力作用下的刚度指标。
它描述了材料的剪切刚度。
单位为帕斯卡(Pa)或兆帕(MPa)。
典型抗剪模量值:金属约为1/3-1/4弹性模量。
5. 张力强度(Tensile strength):张力强度指材料在拉伸过程中所能承受的最大应力。
单位为帕斯卡(Pa)或兆帕(MPa)。
张力强度较高的材料具有抵抗拉伸破坏的能力。
典型张力强度值:钢的张力强度约为300-400MPa,铝的张力强度约为150-300MPa。
6. 屈服度(Yield strength):屈服度是指材料在拉伸过程中从线性弹性阶段到塑性变形阶段的变化点,也称为屈服点。
屈服度是标志材料开始塑性变形的临界应力。
单位为帕斯卡(Pa)或兆帕(MPa)。
通常屈服度值会低于张力强度,典型屈服度值:钢的屈服度约为200-400MPa,铝的屈服度约为50-250MPa。
总结:以上所介绍的常用工程材料属性包括弹性模量、泊松比、质量密度、抗剪模量、张力强度和屈服度等,它们对于材料的应用、设计和性能具有重要意义,不同材料的这些属性值也有很大的差异。
工程力学名词解释1、稳定性(stability): 是指构件在压缩载荷的作用下,保持平衡形式不能发生突然转变的能力;2、约束力(constraint force): 当物体沿着约束所限制的方向有运动或运动趋势时,彼此连接在一起的物体之间将产生相互作用力,这种力称为约束力。
3、光滑面约束(constraint of smooth surface): 构件与约束的接触面如果说是光滑的,即它们之间的摩擦力可以忽略时,这时的约束称为光滑面约束。
4、加减平衡力系原理:在承受任意力系作用的刚体上,加上任意平衡力系,或减去任意平衡力系,都不会改变原来力系对刚体的作用效应。
这就是加减力系平衡原理。
5、二力构件:实际结构中,只要构件的两端是铰链连接,两端之间没有其他外力作用,则这一构件必为二力构件。
6、自锁:主动力作用线位于摩擦角范围内时,不管主动力多大,物体都保持平衡,这种现象称为自锁。
7、固体力学(solid mechanics):即研究物体在外力作用下的应力、变形和能量,统称为应力分析。
8、材料科学中的材料力学行为:即研究材料在外力和温度作用下所表现出的力学性能和失效行为。
9、工程设计(engineering design):即设计出杆状构件或零部件的合理形状和尺寸,以保证它们具有足够的强度、刚度和稳定性。
10、微元(element):如果将弹性体看作由许多微单元体所组成,这些微单元体简称微元体或微元。
11、弹性体受力与变形特点:弹性体在载荷作用下,将产生连续分布的内力。
弹性体内力应满足:与外力的平衡关系;弹性体自身变形协调关系;力与变形之间的物性关系。
这是弹性静力学与刚体静力学的重要区别。
12、外力突变:所谓外力突变,是指有集中力、集中力偶作用的情形:分布载荷间断或分布载荷集度发生突变的情形。
13、控制面:在一段杆上,内力按某一种函数规律变化,这一段杆的两个端截面称为控制面。
据此,下列截面均可为控制面:1)集中力作用点的两侧截面;2)集中力偶作用点的两侧截面;3)均布载荷(集度相同)起点和终点处的截面。
(完整版)材料力学简答题1、(中)材料的三个弹性常数是什么?它们有何关系?材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。
2、何谓挠度、转角?挠度:横截面形心在垂直于梁轴线方向上的线位移。
转角:横截面绕其中性轴旋转的角位移。
3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。
4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。
变形固体有多种多样,其组成和性质是复杂的。
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。
根据其主要的性质对变形固体材料作出下列假设。
1.均匀连续假设。
2.各向同性假设。
3.小变形假设。
5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。
6、用叠加法求梁的位移,应具备什么条件?用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。
具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。
7、列举静定梁的基本形式?简支梁、外伸梁、悬臂梁。
8、列举减小压杆柔度的措施?(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。
9、欧拉公式的适用范围?=只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ110、列举图示情况下挤压破坏的结果?一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。
11、简述疲劳破坏的特征?(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。
全应力-应变曲线测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。
另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。
刚度矩阵的物理意义:单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。
强度是零件的抗应力程度,反映的是什么时候断裂,破损等刚度反映的是变形大小,就是零件受力后的变形。
刚度矩阵和柔度矩阵的物理意义:一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。
[C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。
[D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。
对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。
从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。
物理概念:杨氏模量和泊松比在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
而横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。
1807年因英国医生兼物理学家托马斯·杨(ThomasYoung, 1773-1829) 所得到的结果而命名。
根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。
材料力学基本公式材料力学是研究物质在外力作用下的力学性能和变形规律的学科,是工程学科中的基础学科之一、在材料力学中,有许多基本公式被广泛应用于解决各种工程问题。
以下是材料力学中的一些基本公式。
1.杨氏模量公式:杨氏模量是材料刚度的度量,表示单位应变下单位应力的比例关系。
杨氏模量(E)的计算公式为:E = stress/strain其中stress为应力,strain为应变。
2.材料的胡克定律:胡克定律描述了物质在小应变条件下的弹性变形。
根据胡克定律,应力与应变之间的关系可以表示为:stress = E * strain其中E为杨氏模量。
3.线性弹性模量公式:线性弹性模量也是材料的刚度度量指标,用于描述材料在线弹性阶段的变形特性。
计算线性弹性模量(E)的公式为:E = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。
4.泊松比公式:泊松比是一个描述材料在拉伸或压缩过程中沿着一维方向收缩或膨胀的程度的无量纲物理常数。
泊松比(v)的计算公式为:v = - (lateral strain) / (axial strain)其中lateral strain为横向应变,axial strain为轴向应变。
5.拉伸和压缩弹性模量公式:拉伸弹性模量(E)和压缩弹性模量(Ec)是描述材料在拉伸和压缩条件下的弹性变形能力的指标。
计算拉伸弹性模量的公式为:E = (stress2 - stress1) / (strain2 - strain1)计算压缩弹性模量的公式为:Ec = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。
6.剪切模量公式:剪切模量用于描述材料在剪切应力作用下的抗剪切能力,是衡量材料的剪切刚度的指标。
全应力-应变曲线测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。
另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。
刚度矩阵的物理意义:单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。
强度是零件的抗应力程度,反映的是什么时候断裂,破损等刚度反映的是变形大小,就是零件受力后的变形。
刚度矩阵和柔度矩阵的物理意义:一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。
[C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。
[D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。
对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。
从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。
物理概念:氏模量和泊松比在弹性围大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫氏模量。
而横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
氏模量(Young's modulus)是表征在弹性限度物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。
1807年因英国医生兼物理学家托马斯·(ThomasYoung, 1773-1829) 所得到的结果而命名。
根据胡克定律,在物体的弹性限度,应力与应变成正比,比值被称为材料的氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。
氏模量的大小标志了材料的刚性,氏模量越大,越不容易发生形变。
FL/EA=△L,其中F是力,L是长度,E是弹性模量,A是截面积,△L是长度变化量,也就是形变。
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
力学里没有弹性系数这个物理量。
氏弹性模量是选定机械零件材料的依据之一是工程技术设计中常用的参数。
氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。
测量氏模量的方法一般有拉伸法、梁弯曲法、振动法、耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量氏模量。
胡克定律和氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有残余形变,这种形变称为性形变。
应力(σ)单位面积上所受到的力(F/S)。
应变(ε ):是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。
胡克定律:在物体的弹性限度,应力与应变成正比,其比例系数称为氏模量(记为Y)。
用公式表达为:Y=(F·L)/(S·△L)Y在数值上等于产生单位应变时的应力。
它的单位是与胁力的单位相同。
氏弹性模量是材料的属性,与外力及物体的形状无关。
氏模数(Young's modulus )是材料力学中的名词,弹性材料承受正向应力时会产生正向应变,定义为正向应力与正向应变的比值。
公式记为E = σ / ε其中,E 表示氏模数,σ 表示正向应力,ε 表示正向应变。
氏模量大,说明压缩或拉伸该材料,材料的形变小。
一般的如楼上所说但是有些是各向异性的及各个方向的弹性模量不同用矩阵表示弹性模量英文名称:Elastic Modulus,又称 Young 's Modulus(氏模量)定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
单位:达因每平方厘米。
意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
说明:又称氏模量。
弹性材料的一种最重要、最具特征的力学性质。
是物体弹性t变形难易程度的表征。
用E表示。
定义为理想材料有小形变时应力与相应的应变之比。
E以单位面积上承受的力表示,单位为牛/米^2。
模量的性质依赖于形变的性质。
剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。
模量的倒数称为柔量,用J表示。
拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料在弹性围抵抗变形的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形围的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A0为零件的横截面积。
由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。
在弹性围大多数材料服从胡克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫氏模量。
弹性模量在比例极限,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米^2表示。
弹性模量:材料的抗弹性变形的一个量,材料刚度的一个指标。
它只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。
各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。
关于剪切模量,参考: ... urse/8_2.html切线模量好像是塑性阶段的曲线斜率;切变弹性模量;切变弹性模量G,材料的基本物理特性参数之一,与氏(压缩、拉伸)弹性模量E、泊桑比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
其定义为:G=τ/γ,其中G(Mpa)为切变弹性模量;τ为剪切应力(Mpa);γ为剪切应变(弧度)。
泊松比法国数学家 Simeom Denis Poisson 为名。
在材料的比例极限,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。
比如,一杆受拉伸时,其轴向伸长伴随着横向收缩(反之亦然),而横向应变 e' 与轴向应变 e 之比称为泊松比 V。
材料的泊松比一般通过试验方法测定。
(在弹性围大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
) (一种物质在固体状态下一个方向有拉(或压)形变伸长 l 时,与之垂直的方向就会出现缩小(或增加)l' 泊松比是指形变量的比正负之比取负值;对一根杆件来说,横向伸长那么轴向必然缩短,所以出现正应变的比值为负的情况,一般我们取的泊松比是横向正应变与轴向正应变的比值的绝对值。
) 可以这样记忆:空气的泊松比为0,水的泊松比为0.5,中间的可以推出。
主次泊松比的区别Major and Minor Poisson's ratio主泊松比PRXY,指的是在单轴作用下,X方向的单位拉(或压)应变所引起的Y方向的压(或拉)应变次泊松比NUXY,它代表了与PRXY成正交方向的泊松比,指的是在单轴作用下,Y方向的单位拉(或压)应变所引起的X方向的压(或拉)应变。
PRXY与NUXY是有一定关系的: PRXY/NUXY=EX/EY对于正交各向异性材料,需要根据材料数据分别输入主次泊松比,但是对于各向同性材料来说,选择PRXY或NUXY来输入泊松比是没有任何区别的,只要输入其中一个即可“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
氏模量(Young's Modulus):氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为氏模量。
钢的氏模量大约为2×1011N·m-2,铜的是1.1×1011 N·m-2。
弹性模量(Elastic Modulus)E:弹性模量E是指材料在弹性变形围(即在比例极限),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
弹性模量E在比例极限,应力与材料相应的应变之比。
对于有些材料在弹性围应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。
剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。
剪切模数G=剪切弹性模量G=切变弹性模量G 切变弹性模量G,材料的基本物理特性参数之一,与氏(压缩、拉伸)弹性模量E、泊桑比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
其定义为:G=τ/γ,其中G(Mpa)为切变弹性模量;τ为剪切应力(Mpa);γ为剪切应变(弧度)。