典型激光器介绍
- 格式:doc
- 大小:91.50 KB
- 文档页数:8
各种激光器的介绍激光(Laser)是光学与物理学领域中的重要研究方向之一,也是现代科学中应用最广泛的光源之一、激光器是产生、放大和产生激光的装置,它能够使光以高度有序的方式输出,并具有高度相干和高度定向的特性。
激光器可以根据不同的工作原理和激光频率,分为多种类型,下面将为大家介绍几种常见的激光器。
1. 固体激光器(Solid State laser):固体激光器是利用固体材料作为介质的激光器。
固体激光器的工作物质通常为具有特殊能级结构的晶体或玻璃材料。
最早的固体激光器是由人工合成的红宝石晶体制成的。
它具有高度的可靠性、较高的功率输出和较宽的谱段覆盖等特点,广泛应用于医疗、测量、通信、材料加工等领域。
2. 气体激光器(Gas laser):气体激光器是利用气体作为活性介质的激光器。
常见的气体激光器有二氧化碳激光器、氦氖激光器等。
其中,二氧化碳激光器是最早被发现和研究的激光器之一,具有连续激光输出、较高的功率密度和中远红外波段特点,广泛应用于材料加工、切割、医疗等领域。
3. 半导体激光器(Semiconductor laser):半导体激光器是利用半导体材料作为活性介质的激光器。
它是目前应用最广泛的激光器之一,常见的有激光二极管(LD)和垂直腔面发射激光器(VCSEL)。
半导体激光器具有小巧轻便、功耗低、寿命长等特点,广泛应用于激光显示、光通信、生物医学等领域。
4. 光纤激光器(Fiber laser):光纤激光器是利用光纤作为反射镜和放大介质的激光器。
它采用光纤的内部介质作为激光器的活性介质,激光通过光纤进行传输和放大。
光纤激光器具有高度稳定性、方便携带、适用于长距离传输等特点,广泛应用于材料加工、制造业、激光雷达等领域。
5. 半导体泵浦固体激光器(Diode-pumped solid-state laser):半导体泵浦固体激光器是利用半导体激光器(如激光二极管)泵浦固体材料产生激光的激光器。
它继承了固体激光器的高功率、高效率和稳定性等特点,同时又具有半导体激光器小尺寸、低功耗等优势。
常见激光技术总结目前常见的激光器按工作介质分气体激光器、固体激光器、半导体激光器、光纤激光器和染料激光器5大类,近来还发展了自由电子激光器。
大功率激光器通常都脉冲方式输出已获得较大的峰值功率。
单脉冲激光指的是几分钟才输出一个脉冲的激光,重频激光指的是每分钟输出几次到每秒输出数百次甚至更高的激光。
一、气体激光器1.He-Ne激光器:典型的惰性气体原子激光器,输出连续光,谱线有632.8nm(最常用),1015nm,3390nm,近来又向短波延伸。
这种激光器输出地功率最大能达到1W,但光束质量很好,主要用于精密测量,检测,准直,导向,水中照明,信息处理,医疗及光学研究等方面。
2.Ar离子激光器:典型的惰性气体离子激光器,是利用气体放电试管内氩原子电离并激发,在离子激发态能级间实现粒子数反转而产生激光。
它发射的激光谱线在可见光和紫外区域,在可见光区它是输出连续功率最高的器件,商品化的最高也达30-50W。
它的能量转换率最高可达0.6%,频率稳定度在3E-11,寿命超过1000h,光谱在蓝绿波段(488/514.5),功率大,主要用于拉曼光谱、泵浦染料激光、全息、非线性光学等研究领域以及医疗诊断、打印分色、计量测定材料加工及信息处理等方面。
3.CO2激光器:波长为9~12um(典型波长10.6um)的CO2激光器因其效率高,光束质量好,功率范围大(几瓦之几万瓦),既能连续又能脉冲等多优点成为气体激光器中最重要的,用途最广泛的一种激光器。
主要用于材料加工,科学研究,检测国防等方面。
常用形式有:封离型纵向电激励二氧化碳激光器、TEA二氧化碳激光器、轴快流高功率二氧化碳激光器、横流高功率二氧化碳激光器。
4.N2分子激光器:气体激光器,输出紫外光,峰值功率可达数十兆瓦,脉宽小于10ns,重复频率为数十至数千赫,作可调谐燃料激光器的泵浦源,也可用于荧光分析,检测污染等方面。
5.准分子激光器:以准分子为工作物质的一类气体激光器件。
各种典型激光器原理激光器是一种产生、放大和输出激光光束的器件,是现代科学和工程领域中重要的设备之一、激光器的工作原理有多种类型,下面将介绍几种典型的激光器原理。
1.固体激光器固体激光器是利用固体材料中的电子跃迁产生激光。
其中,最常见的原理是通过注入能量来激发固体材料中的激活离子,而这些激活离子会通过受激辐射而释放出激光。
固体激光器中常用的激活离子有Nd3+、Er3+和Cr3+等。
这种类型的激光器通常使用将激发能量输送给激活离子的光泵浦器,例如激光二极管。
从而激活离子跃迁到高能级,最终产生激光。
2.气体激光器气体激光器是利用气体放电产生激光的器件。
其中最典型的是氦氖激光器(He-Ne激光器),其工作原理是通过在氦气与氖气混合的管道中通过直流或射频电波产生气体放电,激活氖离子,使其跃迁产生激光。
氦氖激光器的激光波长通常在632.8纳米,属于可见光范围。
气体激光器还包括二氧化碳激光器和氩离子激光器等。
3.半导体激光器半导体激光器是利用半导体材料中电子和空穴的复合过程产生激光。
通常使用p-n结构的半导体材料(如GaAs、InGaAs等),通过向p区注入电流,通过与n区的电子复合生成激光。
这种类型的激光器结构简单、小型化、功耗低,广泛应用于通信、激光打印机等领域。
4.光纤激光器光纤激光器是利用光纤的增益介质产生和放大光信号的激光器。
典型的光纤激光器是光纤光放大器(EDFA)和光纤光源(EFL)。
工作原理是通过将其中一种激活离子(如铒)掺杂到光纤核心中,通过泵浦光在光纤中引起激活离子的受激辐射,从而产生激光。
光纤激光器具有高增益、窄谱线特性和高可靠性等优点,广泛应用于通信、医疗和科研领域。
5.CO2激光器CO2激光器是一种以CO2气体为工作物质产生激光的器件。
其工作原理是利用CO2气体分子的振动和旋转能级跃迁来放大激光信号。
通过电子放电激发CO2气体分子至激发态,然后利用电子和激发态分子的碰撞来将能量转移给其他CO2分子,产生连续激光。
各种激光器比较一、气体激光器(1):原子激光器典型特例,He—Ne激光器,他发出的激光波长为0.6328um,输出功率几毫瓦到100毫瓦之间,能量转换功率低,约为0.01%。
激光器器方向性,单色性好,谱线宽度窄。
该激光器常用来外科医疗,激光美容,建筑测量,准直指示,激光陀螺等。
(2):离子激光器典型特例,Ar+离子激光器,波长大约为0.488um的蓝光,输出功率约为150W。
能量转换功率为1%。
长用此激光器用做彩色电视,信息储存,全息照相等方面。
(3):分子激光器典型特例,CO2激光器,波长约为10.6um的红外线。
输出功率与管长成正比,1M的管长可获得100W的输出功率。
能量转换效率较高,大约为30%。
单色性好。
能量输出强,常用来美容,工业和军事上。
(4):准分子激光器是稀有气体与卤素气体的混合,发出的波长是紫外波。
输出功率小,大约为百微焦。
能量转换功率约为1%。
总述:气体激光器,连续输出功率大,方向性好,其器件造价低廉,结构简单。
二、液体激光器典型特例,若丹明6G染料,他的波长在紫外到红外之间,最大特点是连续可调。
能量转换功率较高,这种激光器特点是制备容易,可循环操作,便宜。
三、固体激光器典型特例,红宝石激光器。
它的波长在可见光到近红外波段,输出功率高,约为20kw。
能量转换率低,仅为0.1%。
单色性差。
但结构紧凑,牢固耐用,易于光纤耦合。
这种激光器广泛用于测距,材料加工,军事等方面。
四、半导体激光器典型特例,砷化镓,硫化镉等。
他的输出波长在近红外波段。
920nm到1.65um之间。
输出功率小,能量转换功率高,但是单色性差。
这种激光器最大特点是体积小,重量轻,结构简单,寿命长。
因此,广泛使用于光纤通信,光信息储存,光信息处理等方面。
常用激光器及其分类本文由高能激光设备制造有限公司()提供激光器发展至今,其品种目前已超过200多种,特点各异,其用途也各不相同。
激光器可按以下方法进行分类.1)按工作介质来分有:固体激光器、液体激光器、气体激光器、半导体激光器。
此外,还有化学激光器靠化学反应而形成受激状态)和自由电子激光器等。
(1)固体激光器固体激光器的工作介质是在作为基质材料的晶体或玻璃中均匀掺人少量激活离子,除了用红宝石和玻璃外,常用的还有在忆铝石榴石(Y AG)品体中掺人三价铰离子(Nd)的激光器,它发射1060nm的近红外激光.固体激光器连续功率一般可达1 kw以上,脉冲峰值功率可达10000000Kw一般固体激光器具有器件小、坚固、使用方便、输出功率大的特点。
近年来发展十分迅猛的光纤赫却,其工作物质是一段光纤.光纤中掺不同的元素.能够产生波段范围很宽的激光。
(2)液体激光器常用的是染料激光器,采用有机染料作为工作介质。
大多数情况是把有机染料济于溶剂(乙醇、丙酮、水等)中使用,也有以蒸汽状态工作的。
利用不同染料可获得不同波长的激光(在可见光范困)。
染料激光器一般使用激光作泵浦源.常用的有氢离子激光器。
液体激光器的工作原理比较复杂,它的优点是输出波长连续可调且搜盖面宽。
(3)气体激光器工作物质主要以气体状态进行发射的激光器,在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞)及固体(如金属离子结构的铜、锅等粒子),经过加热使其变为蒸汽,利用这类蒸汽作为工作物质的激光器,统归气体激光器之中。
气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。
气体工作物质是所使用的工作物质中数日最多、激励方式最多样化、激光发射波长分布区域最广的一类激光器。
·气体激光器所采用的工作物质,可以是原子气体、分子气体和电离化离子气体,为此,把它们相应地称为原子气体激光器、分子气体激光器和离子气体激光器。
典型激光器介绍大全激光器(Laser)是20世纪最具科技感的发明之一,其应用涉及到多个领域,包括医疗、通信、制造、测量等等。
本文将介绍激光器的基本原理、不同类型的激光器以及其主要应用。
激光器的基本原理:激光器的核心部分是激光介质,它能够产生并放大高度集中的光束。
激光介质通常是一个光学腔体,其中有一个主动介质,能够吸收能量并在放出来的时候放大光信号。
这个光学腔体准备一个部分透明的发布窗口,能够让光束从中逃逸。
不同类型的激光器:1.固态激光器:固态激光器使用固态材料(如纳米晶体或晶体)作为激光介质。
它们通常非常稳定和高效,并且常用于医疗和研究领域。
2. 气体激光器:气体激光器使用气体作为激光介质,如氦氖激光器(He-Ne),二氧化碳激光器(CO2),氩离子激光器(Ar-ion)等。
它们通常产生高功率的激光束,常用于切割、焊接和制造领域。
3.半导体激光器:半导体激光器是目前应用最广泛的激光器类型之一,它使用半导体材料(如镓砷化物或镓氮化物)作为激光介质,常用于通信、医疗和显示技术领域。
4.纳秒激光器:纳秒激光器产生持续时间在纳秒级别的脉冲激光,常用于测量和材料研究领域。
5.二极管激光器:二极管激光器是一种小型、高效的激光器,它使用半导体材料并具有相对低的功率要求。
它们通常用于激光打印、扫描和传感器等应用领域。
激光器的应用:1.医疗领域:激光器在医疗领域有广泛的应用,如激光眼科手术、激光去胎记、激光脱毛等。
其高度集中和精确的光束可以在微创手术中发挥重要作用。
2.通信领域:半导体激光器在光纤通信中起到关键作用,能够快速高效地传输数据。
激光器所产生的激光束可以通过千米以上的光纤传输,实现高速宽带通信。
3.制造领域:激光器在制造领域常用于切割、焊接和打标等应用。
激光束的高能量和精度可以在金属切割和焊接时实现高质量和高效率。
4.测量和科学研究领域:激光器在测量、科学研究和实验室使用中发挥着重要作用,如激光干涉仪、激光雷达等。
典型激光器的原理、特点及应用摘要:本文介绍了四种典型的激光器,固体、气体、染料和半导体激光器,并分别介绍了特点及应用。
关键词:典型激光器,原理和特点,应用一、引言自梅曼发明了第一台红宝石激光器至今,激光器得到了飞速发展,在激光工作物质方面也得到了很大的改进,激光器根据激活媒质可分为固体、气体、染料和半导体激光器。
各类激光器各有特色,并在相关的领域里发挥着重要的作用。
二、固体激光器固体激光器是以掺杂离子的绝缘晶体或玻璃作为工作物质的激光器,基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成的。
最常采用的固体工作物质仍然是红宝石、钕玻璃、掺钕钇铝石榴石(Nd3+:Y AG)等三种。
图1是固体激光器的基本结构示意图。
图1 固体激光器的基本结构示意图1.红宝石(Cr3+:A12O3)红宝石是在三氧化二铝(A12O3)中掺入少量的氧化铬(Cr2O3)生长成的晶体。
它的吸收光谱特性主要取决于铬离子(Cr3+),铬离子与激光产生有关的能级结构如图2所示。
它属于三能级系统,相应于图(1-3)的简化能级模型,其激发态E3为4F1和4F2能级,激光上、下能级E2和E1分别为2E和4A2。
它的荧光谱线有两条:R1线和R2线,在室温下对应的中心波长分别为694.3nm和692.9nm。
由于R1线的辐射强度比R2大,在振荡过程中总占优势,所以通常红宝石激光器产生的激光谱线均为R1线(694.3nm)。
红宝石激光器的优点是机械强度高,容易生长大尺寸晶体,容易获得大能量的单模输出,输出的红颜色激光不但可见,而且适于常用硅探测器探测。
红宝石激光器的主要缺点是阈值高和温度效应非常严重。
随着温度的升高,激光波长将向长波长方向移动,荧光谱线变宽,荧光量子效率下降,导致阈值升高,严重时会引起“温度猝灭”。
因此,在室温情况下,红宝石激光器不适于连续和高重复率工作,但在低温下,可以连续运转。
目前在医学方面和动态全息方面还有应用价值。
2.掺钕钇铝石榴石(Nd 3+:YAG)这种工作物质是将一定比例的A12O 3、Y 2O 3,和Nd 2O 3在单晶炉中进行熔化,并结晶而成的,呈淡紫色。
它的激活粒子是钕离子(Nd 3+),Nd 3+与激光产生有关的能级结构如图3所示。
它属于四能级系统。
其激光上能级E 3为4F 3/2,激光下能级E 2为4I 13/2、4I 11/2,其荧光谱线波长为1.35μm 、1.06μm ,4I 9/2相应于基态E 1。
由于1.06μm 比1.35μm 波长的荧光强约4倍,所以在激光振荡中,将只产生1.06μm 的激光。
图3 Nd 3+:Y AG 的能级结构Y AG激光器的突出优点是阈值低和具有优良的热学性质,这就使得它适于连续和高重图2 红宝石中铬离子的能级结构复率工作。
这种激光器的优点是量子效率高、受激辐射截面大、阈值低和具有优良的热学性质,使它能在室温下连续高重复率的工作,因此钕激光器成为使用最广泛的激光器而长盛不衰,在军事、医疗和科学领域具有不可替代的用途。
3.钛宝石激光器钛宝石激光器的工作物质是掺杂+3Ti离子通过快速Ti的Al2O3晶体,其终端能级的+3声子弛豫过程返回低振动态,所以钛宝石激光器又被称为终端声子激光器。
由于钛宝石的激光上能级的寿命非常短,约为3.8sμ,为了获得足够的泵浦速率,必须采用激光作为泵浦源,此时其峰值波长约为790nm,并且能够产生660-1180nm的宽荧光谱带,它构成的锁模激光器可具有极窄的脉冲宽度,自锁模钛宝石激光器的光脉冲已经达到11fs。
与红宝石激光器相比,钛宝石激光器属于四能级系统。
钛宝石激光器的突出特点是在很宽的波长范围内连续可调,在很多应用方面都将要取代染料寿命很短的染料激光器,例如工业加工方面。
4 .新型固体激光器二十世纪八十年代以来,出现了几种带有方向性的新型固体激光器,这如半导体激光器泵浦的固体激光器和可调谐固体激光器。
半导体激光器泵浦固体激光器主要优点是:①能量转换效率高。
②工作时产生的无功热量少,介质温度稳定,可制成全固化器件,消除振动的影响,激光谱线更窄,频率稳定性更好。
③寿命长,结构简单,使用方便。
可调谐固体激光器主要有两类,一类是色心激光器,一类是用掺过渡族金属离子的激光晶体制作的可调谐激光器。
色心激光器的阈值低,既可连续工作,又可脉冲工作,很容易实现单模运转,并且光束质量好。
它在分子光谱学、化学动力学、污染检测、光纤通信、半导体物理等领域内,有重要的应用价值。
目前,已经有工作于室温的实用化商品。
与此相比,掺过渡族金属离子的激光晶体制作的可调谐激光器,性能更加优越。
三、气体激光器气体激光器是以气体或蒸气作为工作物质的激光器。
利用气体原子、离子或分子的能级跃迁产生激光。
由于气体工作物质吸收谱线宽度小,不宜采用光源泵浦,所以通常采用气体放电或电子束激励泵浦方式,在放电过程中,受电场加速而获得了足够动能的电子与粒子碰撞时,将粒子激发到高能态,就在某一对能级间形成了集居数反转,形成激光。
1. 氦—氖(He-Ne)激光器氦氖激光器是在1960年末研制成功的第一种气体激光器,He-Ne激光器的工作物质是Ne原子,即激光辐射发生在Ne原子的不同能级之间。
图4是与产生激光有关的Ne原子的部分能级图,Ne原子的激光上能级是3S和2S能级,激光下能级是3P和2P能级。
由图可见,He原子的激发能级21S0、23S1分别与Ne原子的3S和2S能级十分接近,因此,当He-Ne 管内的气体放电时,He原子与高速电子碰撞,被激发到23S1和21S0上,进而,这些激发态He原子通过共振能量转移过程,将处在基态上的Ne原子激发到2S和3S能级上。
当被激发到3S和2S能级上的Ne原子数足够多时,会在3S、2S能级与3P、2P能级间产生粒子数反转,通过受激辐射过程即可产生He-Ne激光。
由该过程跃迁到3P、2P能级上的Ne原子,很容易通过自发辐射跃迁到1S能级上,再通过与管壁碰撞将能量交与管壁,回到基态。
图4 与激光跃迁有关的Ne原子的部分能级图He-Ne激光器的放电电流对输出功率的影响很大,实验测得的输出功率与放电电流的关系曲线如图5。
图5 输出功率与放电电流的关系曲线由图5可知,He-Ne激光器存在着最佳混合比和最佳充气总压强,即存在最佳充气条件。
最佳充气条件对应的就是输出功率最大的放电电流,叫最佳放电电流。
最佳放电条件下,工作物质的增益系数和毛细管直径成反比。
氦氖激光器的优点是能输出优质的连续运转可见光,并且结构简单,光束质量好,体积较小,使用方便,价格低廉。
在准直,定位,测量和全息照相等方面有着很多应用,是应用最广泛的气体激光器。
2. 二氧化碳激光器二氧化碳(CO2)激光器是以CO2气体分子作为工作物质的气体激光器。
其激光波长为10.6μm和9.6μm。
CO2激光器中与产生激光有关的CO2分子能级图如图6所示。
由图可见,相应于10.6μm 波长的能级跃迁是(0001)→(1000),相应于9.6μm 波长的能级跃迁是(0001) →(0200)。
CO2激光器的工作气体除CO2气体外,还有适量的辅助气体N2和He等。
充入He气的作用有二:一可加速CO2分子在((0001)能级的热驰豫速率,有利于激光下能级上的粒子数抽空;二可利用He气导热系数大的特点,实现有效地传热。
充入N2气的作用是提高CO2分子的泵浦速率,为CO2激光器高效运转提供可靠的保证。
图6 与产生激光有关的CO2分子能级图CO2激光器受具有很多优点。
例如,它既能连续工作,又能脉冲工作,输出大,效率高。
它的能量转换效率高达(20~25)%,连续输出功率可达万瓦量级,脉冲输出能量可达万焦耳,脉冲宽度可压缩到毫微秒。
特别是CO2激光波长正好处于大气窗口,并且对人眼的危害比可见光和1.06μm红外光要小得多。
因此,它被广泛用于材料加工、通信、雷达、诱发化学反应、外科手术等方面,还可用于激光引发热核反应、激光分离同位素以及激光武器等。
四、染料激光器染料激光器的工作物质是有机染料溶液。
每个染料分子都由许多原子组成,其能级结构十分复杂。
由于染料分子的运动包括电子运动、组成染料分子的原子间的相对振动和整个染料分子的转动,所以在染料分子的能级中,对应每个电子能级都有一组振动一转动能级,并且由于分子碰撞和静电扰动,振动—转动能级被展宽。
因此,染料分子能级图是如图6所示的准连续态能级结构。
在电子能级中,有单态和三重态两类,三重态较相应的单态能级略低。
染料分子能级中,每一个单态(S0、S1、S2……)都对应有一个三重态(T1、T2……)。
S0是基态,其它能级均为激发态。
图7 染料的吸收─荧光光谱图如图7所示,在泵浦光的照射下,大部分染料分子从基态S0激发到激发态S1、S2……上,其中S1态有稍长一些的寿命,因此,其它激发态的分子很快跃迁到S1态的最低振动能级上,这些分子跃迁到S0态上较高的振动能级时,即发出荧光,同时很快地弛豫到最低的振动能级上。
如果分子在S1和S0之间产生了粒子数反转,就可能产生激光。
由上述激光辐射过程可见:①染料分子是一种四能级系统,由于S0的较高振动能级在室温时粒子数几乎为零,所以很容易实现粒子数反转,使得染料分子激光器的阈值很低;②由于染料分子从S1的较高振动能级跃迁到最低振动能级时,要放出部分能量,所以发射的荧光波长较吸收的泵浦光波长,向长波长方向移动;③由于染料分子能级的准连续宽带结构,其荧光谱范围也是准连续宽带结构,这既使得染料激光器在大范围内可调谐,又可获得几十毫微微秒宽度的超短脉冲。
染料激光器的具体很多优点,例如:输出激光波长可调谐,某些染料激光波长可调宽度达上百毫微米;激光脉冲宽度可以很窄,目前,由染料激光器产生的超短脉冲宽度可压缩至飞秒(10-15秒)量级;染料激光器的输出功率大,可与固体激光器比拟,并且价格便宜;染料激光器工作物质具有均匀性好等优良的光学质量。
因此,它是在掺钛蓝宝石出现之前最理想的可调谐激光器。
它在光化学、光生物学、光谱学、化学动力学、同位素分离、全息照相和光通信中,正获得日益广泛的重要应用。
五、半导体激光器半导体激光器是以半导体材料作为激光工作物质的激光器。
半导体激光器是注入式的受激光放大器。
虽然它形成激光的必要条件与其它激光器相同,也须满足粒子数反转、谐振等条件,但它的激发机理和前面讨论的几种激光器截然不同。
它的电子跃迁是发生在半导体材料导带中的电子态和价带中的空穴态之间,而不像原子、分子、离子激光器那样发生在两个确定的能级之间。
半导体材料中也有受激吸收、受激辐射和自发辐射过程。
在电流或光的激励下,半导体价带中的电子可以获得能量,跃迁到导带上,在价带中形成了一个空穴,这相当于受激吸收过程。
此外,价带中的空穴也可被从导带跃迁下来的电子填补复合。