第三章 直流-交流变换技术
- 格式:pdf
- 大小:1.30 MB
- 文档页数:99
直流变交流原理
直流变交流原理是指利用电子器件将直流电转换为交流电的原理。
在现代电力系统中,直流变交流技术已经得到广泛应用,特别是在高压输电、电力调度、电力变换等领域。
本文将详细介绍直流变交流的原理及其应用。
首先,直流变交流的原理是基于电子器件的工作特性。
在直流电路中,电流的方向保持不变,而在交流电路中,电流的方向会周期性地变化。
直流变交流的关键在于将直流电转换为交流电。
这就需要利用电子器件的开关特性来实现电流方向的周期性变化。
其次,直流变交流的原理主要涉及到两种电子器件,即晶闸管和变压器。
晶闸管是一种半导体器件,具有开关特性,可以控制电流的通断。
当晶闸管导通时,电流可以通过;当晶闸管关断时,电流无法通过。
通过对晶闸管进行控制,可以实现直流电到交流电的转换。
而变压器则可以实现交流电的升降压,从而满足不同电压等级的需求。
最后,直流变交流技术在电力系统中有着重要的应用。
首先,在高压输电中,直流变交流技术可以减小线路损耗,提高输电效率。
其次,在电力调度中,直流变交流技术可以实现不同电网之间的互联互通,提高电力系统的可靠性和稳定性。
最后,在电力变换中,直流变交流技术可以实现不同电压等级之间的转换,满足不同用户的需求。
综上所述,直流变交流原理是利用电子器件将直流电转换为交流电的技术。
通过对晶闸管和变压器的控制,可以实现直流到交流的转换,并在电力系统中得到广泛应用。
随着电力系统的发展,直流变交流技术将会继续发挥重要作用,为电力系统的安全稳定运行提供保障。
交直流切换原理
交直流切换是指将交流电(Alternating Current,简称AC)与
直流电(Direct Current,简称DC)相互转换的过程。
它在电
力系统、电子设备以及通信设备等领域中具有重要的应用。
交直流切换的原理是通过电子器件(例如开关管、晶闸管等)来控制电路中的电流流向,从而实现交直流之间的转换。
在交流电到直流电的转换中,首先需要将交流电通过整流器转换为脉动的直流电,然后通过滤波电路对脉动的直流电进行平滑处理,最终得到稳定的直流电。
而在直流电到交流电的转换中,一般采用逆变器来实现。
逆变器是一种能够将直流电转换为交流电的电子器件,它通过控制开关管的导通和关断来改变电流的方向和大小,从而实现直流到交流的转换。
逆变器的输出波形可以是正弦波、方波或者脉冲波等,根据实际需求进行调节。
交直流切换技术在实际应用中有着广泛的应用。
在电力系统中,交直流切换可以实现将输电线路上的高压交流电转换为低压直流电,并通过变压器进行配电。
在电子设备中,交直流切换可以实现对直流电源的变换,以满足不同电压、电流和频率的需求。
在通信设备中,交直流切换可以实现对电信信号的转换,实现高速传输和远程通信。
总之,交直流切换技术的应用范围广泛,它在电力、电子和通信等领域中起着至关重要的作用。
通过合理的电路设计和精确的控制方法,可以实现高效、稳定和可靠的交直流转换。
在未
来的发展中,交直流切换技术将继续不断优化和创新,为人们的生活带来更多便利和效益。
交直流转换技术
交直流转换技术包括交流变直流(整流)技术和直流变交流(逆变)技术。
我们在充电桩设计中要用到的是直流变交流的技术。
在直流变换交流系统中,有电压型逆变器(VSI)和电流型逆变器(CSI)。
电压型逆变器是将恒定的直流电压转化为幅值可变的三相交流电压,下图为两电平的电压型逆变器,该逆变器主要由六组功率开关器件T1-T6组成,每个开关反并联了一个续流二极管。
根据逆变器工作的直流电压不同,每组功率器件可由两个或多个IGBT或CGT等串联组成。
逆变器的信号调制一般利用PWM调制的控制方式,这样在一定程度上可以有效消除逆变器输出电压的谐波分量。
对于高性能的交流伺服系统,需要有很快的动态响应,此时应采用电流跟踪型PWM技术(下图),即对电流实行闭环控制,以保证其波形的正弦性。
电流滞环跟踪控制的波形图
相对于以上两种控制技术,电压空间矢量PWM(SVPWM)控制技术,能把逆变器和交流电机视为一体,按照跟踪圆形旋转磁场来控制逆变器工作,效果更好。
SVPWM技术的实现可分为三个步骤:1.计算参考电压所在扇区;2.计算各扇区内电压矢量的作用时间;3.计算器件的切换时间。
电力电子技术知识点总结电力电子技术是现代电力系统中的关键部分,它将电力系统与电子技术相结合,用于有效地控制、转换和传递电能。
本文将对电力电子技术的基本概念、分类和应用进行综述。
1. 电力电子技术的概述电力电子技术是指应用电子器件和电子控制器件来实现电力的调节、变换和传递的技术。
通过电力电子技术,可以实现电能的高效利用,提高能量转换效率和电力质量,同时也可以实现对电力系统的灵活控制。
2. 电力电子技术的分类电力电子技术根据其应用领域和转换方式可以分为多种类型,常见的包括:2.1 直流-直流变换技术(DC-DC)直流-直流变换技术主要是通过电力电子器件实现直流电能的调节和变换。
常见的直流-直流变换技术包括升压、降压、反相等。
2.2 直流-交流变换技术(DC-AC)直流-交流变换技术是将直流电能转换为交流电能,常见的应用场景包括太阳能发电系统和电动汽车充电桩。
2.3 交流-直流变换技术(AC-DC)交流-直流变换技术是将交流电能转换为直流电能,常见的应用场景包括电力系统中的整流器和UPS电源。
2.4 交流-交流变换技术(AC-AC)交流-交流变换技术主要是通过电力电子器件实现交流电能的调节和变换。
常见的交流-交流变换技术包括电压调节、频率调节和相位调节等。
3. 电力电子技术的应用电力电子技术在现代电力系统中有着广泛的应用,常见的应用包括:3.1 电力传输与配电电力传输与配电中的变压器、线路的无功补偿和电压调节等都会涉及到电力电子技术的应用。
通过电力电子技术,可以降低传输损耗、提高电力质量。
3.2 新能源发电电力电子技术在新能源发电领域有着重要的应用,如风能发电和太阳能发电系统中的逆变器、控制器等都需要电力电子技术来实现能量转换。
3.3 智能电网智能电网是未来电力系统的发展方向,电力电子技术在智能电网中有着重要的作用,通过电力电子器件和控制策略的应用,可以实现对电力系统的高效调节和控制。
4. 电力电子技术的发展趋势随着新能源的快速发展和电力系统的智能化改造,电力电子技术将得到更广泛的应用。
第三章 交流-交流变换器习题解答3-1. 在交流调压电路中,采用相位控制和通断控制各有什么优缺点?为什么通断控制适用于大惯性负载? 答:相位控制:优点:输出电压平滑变化。
缺点:含有较严重的谐波分量 通断控制:优点:电路简单,功率因数高。
缺点:输出电压或功率调节不平滑。
由于惯性大的负载没有必要对交流电路的每个周期进行频繁的控制,所以可以采用通断控制。
对时间常数比较小负载的工作产生影响。
3-2. 单相交流调压电路,负载阻抗角为30°,问控制角α的有效移相范围有多大?如为三相交流调压电路,则α的有效移相范围又为多大? 答:单相交流调压电路,负载阻抗角为30°,控制角α的有效移相范围是30°-180°;如为三相交流调压电路,α的有效移相范围是30°-150°。
3-3. 一电阻性负载加热炉由单相交流调压电路供电,如α=0°时为输出功率最大值,试求功率为80%,50%时的控制角α。
解:α=0时的输出电压最大,为()222max sin 21U t d t U U o ==⎰πωωπ此时负载电流最大,为R U R U I o o 2max max ==因此最大输出功率为R U I U P o o o 22maxmax max ==输出功率为最大输出功率的80%时,有:R U P P o 22max8.08.0⨯==又由παππα-+=22sin 2U U o)22sin (12παππα-+==R R U P o o化简得παα4.02sin 2=- 由图解法解得 α=60°同理,输出功率为最大输出功率的50%时,有: α=90°3-4. 单相交流调压电路,电源电压220V ,电阻负载R=9Ω,当α=30°时,求: (1)输出电压和负载电流;(2)晶闸管额定电压和额定电流; (3)输出电压波形和晶闸管电压波形。
一、选择题3-1、当交流侧接在电网上,即交流侧接有电源时,称为(A )逆变;当交流侧直接和负载连接时,称为(B )逆变。
A、有源B、无源C、电压型D、电流型3-2、逆变电路最基本的工作原理是把直流电变成交流电,改变两组开关的切换(D ),即可改变输出交流电的频率。
A、周期B、电流C、电压D、频率3-3、不属于换流方式的是(C )。
A、器件换流B、电网换流C、单相换流D、负载换流3-4、要实现负载换流,负载电流的相位必须( B )于负载电压。
A、滞后B、超前C、相同D、三个都不对3-5、可实现有源逆变的电路为(A )。
A、三相半波可控整流电路,B、三相桥式半控整流电路,C、单相全控桥接续流二极管电路,D、单相半控桥整流电路。
3-6、在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理(A )。
A、30º-35º,B、10º-15º,C、0º-10º,D、0º。
3-7、在有源逆变电路中,逆变角β的移相范围应选(B )为最好。
A、β=90º~180º,B、β=35º~90º,C、β=0º~90º3-8、电压型三相桥式逆变电路的基本工作方式是( C )导电方式。
A、90°B、120°C、180°D、270°3-9、PWM控制是对脉冲的( C )进行调制的技术。
A、长度B、高度C、宽度D、面积3-10、在调制法中,通常采用等腰三角波或锯齿波作为载波,其中(A )应用最多。
A、等腰三角波B、锯齿波二、判断题3-1、有源逆变指的是把直流电能转变成交流电能送给负载。
(╳)3-2、变频调速装置是属于无源逆变的范畴。
(√)3-3、有源逆变装置是把逆变后的交流能量送回电网。
(√)3-4、无源逆变电路是把直流电能逆变成交流电能,送给电网,(╳)3-5、变频器总是把直流电能变换成50Hz交流电能。