第二章煤炭气化原理(new)
- 格式:ppt
- 大小:9.85 MB
- 文档页数:109
煤炭气化的原理引言煤炭是一种重要的能源资源,传统的煤炭燃烧产生的废气和温室气体对环境造成了严重的污染和全球气候变化的威胁。
为了减少对环境的影响,煤炭气化技术应运而生。
煤炭气化是将煤炭转化为合成气或液体燃料的过程,能够实现煤炭资源的高效利用和二氧化碳的减排。
本文将详细探讨煤炭气化的原理及其应用。
1. 煤炭气化的基本原理1.1 煤炭气化的定义煤炭气化是指将煤炭在高温和高压下与水蒸气或空气反应,将其转化为可燃气体的过程。
这种气化过程包括物理变化和化学变化两种形式。
1.2 煤炭气化的热化学反应煤炭气化的热化学反应包括煤的干馏和气化两个阶段。
首先,煤炭在干馏过程中,由于热作用分解,生成固体残余物和煤气。
然后,这些煤气在高温和高压下与水蒸气或空气反应,生成合成气(主要为CO和H2)或液体燃料。
2. 煤炭气化的过程2.1 煤的预处理在煤炭气化过程中,为了提高煤的反应性和减少热解需氧量,通常需要对煤进行预处理。
预处理包括煤的破碎、煤的干燥和煤的分类等步骤。
2.2 典型的煤炭气化过程典型的煤炭气化过程包括干燥、热解、煤气生成和气体净化等步骤。
首先,煤炭经过干燥步骤,除去煤中的水分。
然后,在高温下进行热解,将煤转化为固体残余物和煤气。
接下来,这些煤气经过煤气生成步骤,与水蒸气或空气反应生成合成气或液体燃料。
最后,气体经过气体净化步骤,除去其中的灰尘和其他杂质。
3. 煤炭气化的应用3.1 合成气的应用合成气(主要为CO和H2)是煤炭气化的主要产物之一,具有很高的能量密度和可调节性,广泛应用于合成液体燃料、合成化学品和制氢等领域。
3.2 煤直接液化的应用煤直接液化是将煤转化为液体燃料的过程。
液化后的燃料可以用作煤油替代品,并广泛应用于交通运输、工业生产和居民生活等领域。
3.3 电力生产的应用煤炭气化技术可以与燃气轮机和蒸汽联合循环发电技术相结合,用于发电。
这种方式可以提高燃煤电厂的效率和环保性能。
3.4 煤炭气化技术的前景煤炭气化技术在能源结构调整和减排目标的实现上具有重要意义。
煤炭气化的原理
煤气化原理气化过程是煤炭的一个热化学加工过程。
它是以煤或煤焦为原料,以氧气(空气、富氧或工业纯氧)、水蒸气作为气化剂,在高温高压下通过化学反应将煤或煤焦中的可燃部分转化为可燃性气体的工艺过程。
气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。
煤炭气化包含一系列物理、化学变化。
一般包括热解和气化和燃烧四个阶段。
干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。
其他属于化学变化,燃烧也可以认为是气化的一部分。
煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。
煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。
气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。
主要反应: 1、水蒸气转化反应C+H2O=CO+H2-131KJ/mol
2、水煤气变换反应CO+ H2O =CO2+H2+42KJ/mol
3、部分氧化反应C+0.5 O2=CO+111KJ/mol
4、完全氧化(燃烧)反应C+O2=CO2+394KJ/mol
5、甲烷化反应 CO+2H2=CH4+74KJ/mol
6、Boudouard反应C+CO2=2CO-172KJ/mol。
煤气化的基本原理
1煤气化技术
煤气化技术是利用煤碳气化反应,将煤碳与氧气通过煤气炉加热分解,生成煤气作为资源的一种技术。
煤气化技术是一种“一步到位”、即高效利用煤碳源,一次性获取煤气(CO+H2)的技术。
此外,煤气化技术所得到的煤气可直接用于高效照明、车用燃料、加热烹饪和工业用途。
2煤气化的基本原理
煤气化的基本原理是将煤碳气化反应物(C)和氧气(O2)加入煤气炉中,将煤碳、氧气分解为较小的分子碳氢化物。
这种反应可以生成氢气和二氧化碳,并释放大量的热量。
C+O2=CO2+H2+Heat
煤气化反应的起始温度为750~850℃,当反应温度达到了
1500~1700℃时,大量的氢气和二氧化碳就会生成,就会产生大量的热量,使煤气化反应更加有效率。
3应用
煤气化的应用范围广泛,开发了许多应用方案,被广泛应用于房屋建筑、化工行业、煤炭电厂等领域。
例如,它被广泛应用于汽车行业,生产汽油类燃料;用于工业烧窑中,分解成气体,生产低温灰光火;用于电厂,生产热水用于温度控制;在医院用于消毒,清洗等等。
4发展
煤气化技术作为一种可再生资源,具有资源可持续利用的特点,可有效降低利用化石能源的负担,以及降低对环境的污染。
煤气化技术的使用也可以减少很多二氧化碳的排放、改善空气环境,促进人类可持续发展。
由于这些特性,煤气化技术的发展受到越来越重视,大量的科研如今正在付诸实施,有朝一日,它将发挥出更大的行业影响力。
煤炭气化原理一、引言煤炭气化是一种将煤炭转化为合成气的技术,通过高温和缺氧环境下的反应使煤炭中的有机物发生热解、干馏、燃烧等化学变化,产生一种含有一氧化碳和氢气的混合气体,称为合成气。
本文将对煤炭气化的原理进行全面、详细、完整且深入地探讨。
二、煤炭气化的基本反应煤炭气化的主要反应可以分为三个步骤:热解、干馏和燃烧。
2.1 热解煤炭在高温下分解,释放出挥发性物质和焦炭。
这个过程称为热解反应。
热解主要由以下三个步骤组成: 1. 原煤脱水:煤炭中的水分在高温下蒸发。
2. 碳氢化合物分解:煤炭中的碳氢化合物(如烃类)在高温下发生热解,产生小分子气体和炭质残留物。
3. 炭质残留物退变:煤炭中的炭质残留物在高温下发生退变,产生焦油和焦炭。
2.2 干馏在热解的基础上,进一步进行干馏反应。
干馏是指将挥发性物质和焦炭分离的过程。
干馏过程主要包括以下几个步骤: 1. 挥发性物质分离:将挥发性物质(包括一氧化碳、二氧化碳、水蒸气、重烃等)从煤中分离出来。
2. 固体焦炭生成:将挥发性物质分离后得到的残渣进一步热解,生成固体焦炭。
2.3 燃烧燃烧是指将产生的一氧化碳(CO)和水蒸气(H2O)与外部供气中的氧气(O2)反应,产生二氧化碳(CO2)和热能的过程。
煤炭气化中的燃烧反应主要包括以下几个步骤: 1. 供气:将外部的氧气供应到煤炭气化反应器中。
2. 氧化反应:一氧化碳与氧气发生氧化反应,生成二氧化碳。
3. 氢化反应:水蒸气与一氧化碳发生氢化反应,生成二氧化碳和水。
4. 燃烧释能:燃烧反应放出的热能可以用于产生蒸汽、发电等。
三、煤炭气化的影响因素煤炭气化过程受到许多因素的影响,主要包括以下几个方面:3.1 温度温度对煤炭气化速率和产物组成有显著影响。
较高的温度可以促进煤炭中的碳氢化合物热解和干馏反应,加快气化反应速率。
同时,高温条件下还有利于催化剂的活性和稳定性。
3.2 压力压力对气化反应的平衡和速率同样具有重要影响。
煤炭气化原理煤炭气化是一种将固体煤转化为可燃气体的过程。
在这个过程中,煤被加热到高温,然后与水蒸气或氧气反应,产生可燃性气体。
这些气体可以被用作能源或化学原料。
一、煤的组成及其影响1. 煤的组成煤是一种有机物质,由碳、氢、氧、硫和少量的杂质组成。
它的主要成分是碳,占据了其总质量的50%到90%。
其他元素的含量相对较低。
2. 煤的影响由于不同类型和等级的煤具有不同的组成和结构,因此它们对于气化过程会产生不同的影响。
高灰分和挥发分含量较低的煤通常比较难以气化。
另外,硫和灰分等杂质也会降低气化效率并增加环境污染。
二、煤的预处理为了提高气化效率并减少环境污染,需要对原始煤进行预处理。
1. 破碎首先需要将原始煤进行粉碎,以便于后续的处理。
煤可以通过机械破碎或化学方法进行分解。
2. 脱水接下来需要将煤中的水分去除,以便于气化过程。
这可以通过加热和压缩等方法实现。
3. 脱硫由于硫会降低气化效率并产生环境污染,因此需要对煤进行脱硫处理。
这可以通过物理或化学方法实现。
三、气化过程在预处理完成后,原始煤被送入气化反应器中进行气化反应。
在这个过程中,煤被加热到高温并与水蒸气或氧气反应,产生可燃性气体。
1. 煤的加热首先需要将煤加热到高温。
这可以通过外部加热或内部反应器加热来实现。
2. 氧化反应如果使用的是氧气作为反应剂,则会发生完全氧化反应:C + O2 → CO2H2 + 1/2O2 → H2OS + O2 → SO23. 水蒸汽反应如果使用的是水蒸汽作为反应剂,则会发生部分氧化和还原反应:C + H2O → CO + H2C + 2H2O → CO2 + 2H2S + H2O → H2S + 1/2O24. 反应产物的处理在反应结束后,需要对产生的气体进行处理。
这可以通过冷却、净化和压缩等方法实现。
四、气化产物的用途气化产物可以被用作能源或化学原料。
1. 能源气化产物可以被用作燃料,例如燃气发电和城市燃气供应。
2. 化学原料气化产物中的一些成分可以被用于生产化学品,例如合成氨、合成甲醇和合成油等。
煤气化原理
煤气化是一种将固体煤转化为可燃气体的化学过程,通过控制煤的热解和氧化反应,生成一种富含一氧化碳和氢气的气体混合物。
煤气化技术已经被广泛应用于工业生产和能源生产领域,具有重要的经济和环境意义。
煤气化的原理主要包括煤的热解和气化两个步骤。
首先是煤的热解,煤在高温下失去水分和挥发分,生成焦炭和挥发性气体。
煤的热解是一个放热反应,需要提供足够的热量来维持反应的进行。
其次是煤的气化,焦炭在一定温度下与气化剂(通常是水蒸气、二氧化碳或空气)反应,生成一氧化碳和氢气。
气化反应是一个吸热反应,需要从外部提供热量来维持反应的进行。
煤气化反应的化学方程式可以表示为,C + H2O → CO + H2。
在实际的煤气化过程中,需要控制反应的温度、压力、气化剂的比例等参数,以获得理想的气体产物。
此外,煤的种类、粒度和含硫量等因素也会影响气化反应的进行。
为了提高煤气化的效率和产物气体的质量,通常会采用一些辅助措施,如添加催化剂、循环气化剂、提高反应温度等。
煤气化技术的应用可以将煤这种固体燃料转化为易于储存、输送和利用的气体燃料,为工业生产和能源供应提供了新的选择。
与传统的燃煤方式相比,煤气化可以减少大气污染物的排放,降低温室气体的排放,具有更好的环保效果。
同时,煤气化还可以提高煤的利用率,促进资源的综合利用。
总的来说,煤气化是一种重要的化学过程,通过控制煤的热解和气化反应,将固体煤转化为可燃气体,具有广泛的应用前景和重要的经济意义。
随着能源需求的不断增长和环境保护意识的提高,煤气化技术将在未来得到更广泛的应用和发展。
煤炭气化的原理与应用煤炭气化是将固态煤转化为气体燃料或化工原料的过程。
它是一种逐渐受到重视的技术,能够在节约煤炭资源、降低环境污染、推动能源多元化等方面发挥重要作用。
本文将从煤炭气化的原理、应用等方面进行论述。
一、煤炭气化的原理煤炭气化是一种可控制反应的过程,通常在高温高压下进行。
反应过程主要分为两个阶段:初级反应、次级反应。
1. 初级反应初级反应主要是对煤炭中的碳、氢、氧等元素进行裂解和转化。
在高温高压条件下,煤炭中的碳与水蒸气反应,生成一氧化碳和氢气。
碳化反应中产生的固体炭黑可以带走一部分灰分,从而降低灰分等杂质对煤气的影响。
2. 次级反应次级反应主要是对初级反应形成的一氧化碳和氢气进行进一步加工转化,生成有机化合物和其他气体。
一氧化碳可以通过水气转移反应(WGS)生成二氧化碳和氢气,氢气可以与二氧化碳还原生成甲烷和水。
二、煤炭气化的应用煤炭气化技术可以将煤炭转化为气体燃料或化工原料,广泛应用于工业、煤化工、燃料等领域。
下面就其应用进行简要介绍。
1. 工业领域煤炭气化技术可以生产一系列重要的化学工业品例如苯、丙烯、乙二醇等。
这些化学品广泛应用于农药、医药、塑料、纺织、颜料等行业中。
2. 煤化工领域煤炭气化技术广泛应用于煤化工领域。
利用煤炭气化技术,可以生产一系列的煤化工产品,例如甲醇、乙醇、工业醋酸,这些产品在化学、医药、能源等领域的应用非常广泛。
3. 燃料领域利用煤炭气化技术,可以生产合成天然气、合成液体燃料,这些燃料具有高效能、低污染等优点。
在燃料应用领域,有着重要的开发和应用前景。
三、煤炭气化的发展现状煤炭气化技术在国内外都广泛应用,但是在不同发展阶段的国家应用不同。
例如在美国,煤炭气化技术被广泛应用于制备燃气和燃料等领域,而在中国,煤炭气化主要应用于煤化工领域。
煤炭气化技术在国际上也有一些发展,立陶宛、菲律宾等国家已经开发煤炭气化项目,这些项目在探索煤炭资源、创新能源供应等方面有着积极的推动作用。
第二节煤炭气化原理煤的气化是指利用煤或半焦与气化剂进行多相反应产生碳的氧化物、氢、甲烷的过程,主要是固体燃料中的碳与气相中的氧、水蒸气、二氧化碳、氢之间相互作用。
也可以说,煤炭气化过程是将煤中无用固体脱除,转化为可作为工业燃料、城市煤气和化工原料气的过程。
一、气化过程主要化学反应使用不同的气化剂可制取不同种类的煤气,主要反应都相同。
煤炭气化过程可分为均相和非均相反应两种类型。
即非均相的气-固相反应和均相气-气相反应。
生成煤气的组成取决于这些反应的综合过程。
由于煤结构很复杂,其中含有碳、氢、氧和硫等多种元素,在讨论基本化学反应时,一般仅考虑煤中主要元素碳和在气化反应前发生的煤的干馏或热解,即煤的气化过程仅有碳、水蒸气和氧参加,碳与气化剂之间发生一次反应,反应产物再与燃料中的碳或其他气态产物之间发生二次反应。
主要反应如下。
一次反应:22C+O CO → H ∆= 394.1 kJ/mol 22C+H O CO+H → H ∆= -135.0 kJ/mol21C+O CO 2→ H ∆=110.4 kJ/mol (2-4) 222C+2H O CO +2H → H ∆=96.6 kJ/mol (2-5)24C+2H CH H ∆=84.3 kJ/mol (2-6)2221H +O H O 2H ∆= 245.3 kJ/mol (2-7) 二次反应:2C+CO 2CO H ∆= -173.3 kJ/mol 222CO+O 2COH ∆= 566.6 kJ/mol (2-8)222C O +H O H C O+H ∆= 38.4 kJ/mol (2-9) 242CO+3H CH H O + H ∆= 219.3 kJ/mol (2-10) 243C+2H O CH 2CO →+ H ∆= 185.6 kJ/mol (2-11) 2422C+2H O CH CO →+ H ∆= 12.2 kJ/mol (2-12)根据以下反应产物,煤炭气化过程可用下式表示:O H H CO CO CH C 2224+++++−−−−−→−高温、加压、气化剂煤在气化过程中,如果温度、压力不同,则煤气产物中碳的氧化物即一氧化碳与二氧化碳的比率也不相同。
第二章煤制气一、煤气生产过程:1.煤制气的气化原理:(1)概述:煤气:可燃气体、煤或重油等液体燃料经干馏或气化而得到的气体产物是一种热燃料气。
煤气主要成分:H2、CO、CH4等。
煤气:焦炉煤气(H2、CO、CH4)煤在焦炉中干馏产生煤气。
爆炸极限:5~36%发生炉煤气(CO、N2)空气和少量水蒸气跟煤或焦炭在煤气发生炉内反应。
爆炸极限:20 ~74%水煤气(H2、CO)水蒸气和炽热的无烟煤或焦炭作用产生。
爆炸极限:6 ~72%(2)气化机理:煤气是在特定的装置发生炉内,控制气化条件,块煤或焦炭在空气(氧气)和蒸汽混合组成的气化剂下发生一系列复杂物理化学变化产生。
注:爆炸极限:H2 4~74.2%;CO12.5~74.2;CH45~15.4%干馏:隔绝空气加热分解。
2.化学反应:氧化燃烧:还原反应:蒸汽转化:甲烷化:仅部分为气相均相反应,大多数为气固相反应。
反应进行程度影响因素:发生炉的操作条件。
即:气体温度、压力、气化剂组成和流速,气化剂与燃料接触时间,燃料反应性、表面性质。
3.生产方式:发生炉在生产过程中,气化剂从炉底进入炉内煤层,气化生成的粗煤气从顶部输出。
(1)灰渣层:厚度约为100~200mm,气化剂在灰渣层中不发生化学反应,只与灰渣进行热交换,气化剂吸收热量升温预热,灰渣释放热量被冷却,同时对炉箅起保护作用。
(2)氧化层:既有O2存在的燃料层,煤中固定碳与气化剂中的氧气发生强烈氧化反应,放出大量的热,使炉内保持足够的温度。
(3)还原层:从氧化层中来的高温CO2和水蒸气与炙热的碳发生还原反应,吸收热量,生成CO和H2。
(4)干馏层:煤炭受热干馏,释放挥发分,得到CH4、焦油蒸汽等气态烃类物质及其他气体成分。
(5)干燥层:入炉煤炭在该层内脱除水分。
4.工艺流程:热煤气燃烧系统由煤气发生炉、除尘器、隔离水封、热煤气管道、燃烧器(用户)等组成,其关键设备是煤气发生炉。
二、煤制气生产危险分析及安全技术(1)煤的主要危险:自燃、煤尘爆炸温度升高,接近临界温度(70℃左右),进一步引起自燃。
煤炭气化原理
煤炭气化是一种将煤炭转化为可燃气体的过程,通过控制煤炭与氧气的反应,产生一氧化碳和氢气等气体产品。
其基本原理是将煤炭在高温和高压下与氧气或蒸汽进行反应,使煤炭中的有机物质断裂,生成可燃气体和其他副产品。
煤炭气化的过程主要分为三个步骤:干燥与预热、燃烧与还原、生成气体。
在干燥与预热阶段,煤炭被加热至高温下,其中的水分和挥发分会被蒸发和驱除出来。
这个过程有助于提高气化效率以及减少气化过程中产生的副产物。
接下来是燃烧与还原阶段。
在这个阶段,煤炭中的碳和水蒸气反应生成一氧化碳和二氧化碳,同时也会释放出一部分热能。
这个即是煤炭气化中产生一氧化碳的步骤。
在生成气体阶段,燃烧与还原所产生的一氧化碳会进一步与煤炭中的碳反应生成更多的一氧化碳和二氧化碳。
这个过程还会生成一定数量的氢气。
通过控制气化过程的温度和压力,可以控制生成气体的气体成分。
总而言之,煤炭气化通过高温和高压环境下,使煤炭中的有机物质发生断裂,生成一氧化碳和氢气等可燃气体。
这个技术可以有效利用煤炭资源,产生清洁燃料,同时也产生其他有用的副产品。