矿山涌水量计算总结
- 格式:doc
- 大小:120.00 KB
- 文档页数:6
露天采矿场总涌水量计算露天采矿场总涌水量是由地下水涌水量和降雨迳流量两部分组成。
一、地下水涌水量的计算露天采矿场地下涌水量与地下开采矿坑地下水涌水量计算方法基本相同。
二、降雨迳流量计算露天采矿场降雨迳流量,应按正常降雨迳流量和设计频率暴雨迳流量分别计算。
(一)计算方法1、正常降雨迳流量(Qz)计算公式Qz=FH式中 F——泵站担负的最大汇水面积,m2;H——正常降雨量,m;——正常地表迳流系数,%。
2、设计频率暴雨迳流量(Qp)计算公式Qp=FHp′式中 Hp——设计频率暴雨量,m;′——暴雨地表迳流系数,%;其它符号同前。
(二)计算参数的选取1、汇水面积(F)的圈定(( ((注:1、本表内数值适用于暴雨径流量计算,对正常降雨量计算应将表中数值减去0.1~0.2。
2、表土指腐植土,表中未包括的岩土则按类似岩土性质采用。
3、当岩石有少量裂隙时,表中数值减去0.1~0.2,中等裂隙减去0.2,裂隙发育时减去0.3~0.4。
4、当表土、粘性土壤中含砂时,按其含量适当将表中地表迳流系数减去0.1~0.2。
3、正常降雨量的选择一般矿区可按雨季平均降雨量作为正常降雨量,而对非雨季节经常出现较大降雨地区的露天矿,可选用控制雨量进行设计。
1)雨季平均降雨量的推求收集历年(一般要有10~15年)雨季各月降雨量及降雨天数,用下式求得。
式中 H——历年雨季日平均降雨量,m;N——历年降雨系列资料中某一年的雨季天数,d;Hi——历年降雨系列资料中某一年的雨季总降雨量,m;n——降雨系列资料统计年数。
2)控制雨量的推求24最大日暴雨量大左右,故采用24=1.1;式中 n——暴雨递减指数,由地区n值等值线图查得;其余符号同前。
频率为P的不同历时暴雨量Htp按下式计算:Htp=Sp t1-n式中 t——暴雨历时,min;所有符号同前。
偏差系数Cs一般根据当地Cs与C关系确定,无该资料是可按下式计算:变差系数C,利用地区C24等值线图查得,当无该资料时,可利用下式计算:式中 K——变率,;N——统计年数;H——统计系列资料中某年日最大暴雨量,mm。
大井法矿井涌水量计算公式一、大井的涌水概念及衡量标准1.涌水:指采矿过程中,由于施工、稳定设施地压或水压作用,煤层及其他岩层通过矿口涌出来的水流。
2.水压:指不考虑排水量因素影响,在煤层及其他岩层中所带来的涌水水压。
3.涌水量:指大井产生的涌水量。
二、大井法涌水量计算公式1. 低压涌水量计算公式涌水量(m3/h)= 矿膛面积(m2)*地压(MPa)*岩节理渗透系数(m3/MPa)/小时2. 高压涌水量计算公式涌水量(m3/h)= 矿膛面积(m2)*(地压-水压)(MPa)*岩节理渗透系数(m3/MPa)/小时三、大井法涌水量评价标准1.水力学特性:涌水量以小于0.5 m3/ h 为合理范围。
2.压力传递特性:建议将涌水量保持在1.5 ~ 2.5 m3/ h 之间,使得压力分布更均匀。
3.体积变化特性:涌水量的大小是可以调节的,可取得矿井等体积变化更为稳定的效果。
四、大井法涌水量计算实例在以下实例中,假设大井膛面积等于10 m2,地压为0.5 MPa,岩节理渗透系数等于20 m3/ MPa 就可以计算出低压下的涌水量:低压涌水量按照低压涌水量计算公式=(10 m2) × (0.5MPa) × (20m3/MPa)/小时=100 m3/h假设水压为0.2MPa,则高压涌水量按照高压涌水量公式=(10 m2)×(0.5MPa-0.2MPa)×(20m3/MPa)/小时=80 m3/h。
五、结论根据以上的公式和分析,可以得出大井法涌水量可以按照低压涌水量计算公式和高压涌水量计算公式,评价标准为涌水量以小于0.5 m3/h 为合理范围,建议大井法涌水量控制在1.5~2.5m3/h之间,可以达到稳定的效果。
煤矿出/涌水量的几种测量方法1 量桶容积法当流量小于1 L/s时,常用此法。
容器一般用量桶或水桶,为了减少测量误差,计量容器的充水时间不应小于20 s流量计算公式:式中V———容器的容积,L;t———充满容器的时间,s。
2巷道容积法在矿井发生突水时,利用水流淹没倾斜巷道的过程中,经常不断地测量巷道与自由水面相交断面面积(F=ab),用单位时间内水位上涨高度(H)来计算水量,公式如下:式中H———t时间内水位上涨高度,m;t———水位上涨高度为片时的时间,h;a———巷道内自由水面的平均宽度,m;b———巷道内自由水面长度,m。
3水泵排量法利用水泵实际排水量和水泵运转时间,来计算涌水量Q=水泵铭牌排水量×实际效率×开动时间×台数式中Q—涌水量,m3·d-1。
4浮标测流法采用水面浮标的流水沟道地段及实测断面应符合下列要求:(1)沟道顺直,沟床地段规则完整,长度为3-5倍的沟宽。
(2)水流均匀平稳,无旋涡及回流。
(3)沟道地段内无阻碍水流的杂草、杂物。
实测程序:(1)选定了实测地段后,按相等距离布设三个断面:上断面、基本断面(中断面)、下断面,测量每个断面的横断面积,单位为m2。
(2)在上断面上游附近投放浮标,以便使浮标在接近上断面时,已具有同行水流的流速,测出浮标从上断面至下断面的时间t,求出流速。
(3)浮标从上断面至下断面的漂流历时一般应不短于20 s,如流速较大,可酌情缩短,但不能短于10 s。
(4)投放浮标的数量,视沟道宽度而定,一般不少于2个,每个至少重复投放两次,若两次漂历时间相差不超过10%,则取其平均历时计算,公式如下:式中Q———断面流量,m3·s-1;Kf———断面浮标系数,据经验数值一般介于~;F t H H Q ⋅-=21 Vf ———虚流速,即Vf=L/t 计算时采用浮标平均流速,m ·s-1;L ———上、下两断面的间距,m;t ———所选有效浮标的平均历时,s;F ———过水断面面积,m 2。
某煤矿井下探放水设计一、矿区水文地质情况1.矿井水文地质类型及变化规律*****2、矿井充水因素分析*****3、老窑积水矿区内老窑众多,其废弃采面或巷道会成为老窑水、采空区积水,因其采空区已被膨胀的泥岩填满,故积水量不大。
但其将成为地表水进入矿井的通道。
值得充分重视的是:极大部分小窑都为浅部开采,其大部分采空塌陷都与地面连通,大气降水可通过山洪形式从其采空区塌陷直接溃入井下,对矿井构成极大的威胁。
4、地表水体*****二、水患类型及威胁程度1、水患类型造成矿井水害的水源有大气降水、地表水、地下水和老空水。
其中地下水按其储水空隙特征又分为孔隙水、裂隙水和岩溶水等。
根据水源分类,矿井水害分为:地表水水害、老空水水害、孔隙水水害、裂隙水水害和岩溶水水害等。
根据该矿井的具体实际,对其可能形成的水害类型分析如下:(1)大气降水:是主要的充水水源。
主要通过顶板中所含裂隙水向巷道内渗漏,其直接充水强度和降水的强度及持续时间有着密切的联系。
(2)老窑水:区内老窑开采历史悠久,老窑采空冒落造成地表开裂、塌陷,导致地表水由裂隙渗入蓄积。
经调查,老窑内有积水。
矿井浅部开采时,应预防老窑水涌入。
2、主要含水层富水性和突水点水量的预计矿井含水层为岩性为中厚-厚层燧石灰岩,岩溶化作用强烈,地下水均一性较差,排泄集中,富水性较强。
地下水化学类型为HCO3-Ca.型水。
井田地下水以大气降水为主,通过裂隙、岩溶管道下渗补给地下水。
另外造成突水的一个因素是在浅部采掘时老窑积水,目前由于老窑积水范围及水量探明不清,故突水量无法预计,有待于进一步工作。
三、矿井涌水量采用水文地质比拟法进行计算:现行矿井涌水量为:Q最大=120 m3/h;Q正常=48m3/h。
同期采矿面积为S=0.49Km2;,故单位(采矿)面积(本井田矿井涌水量与采矿面积发生关系较大,而与采出量关系较小)涌水量系数Kf:Kf大=Q大/S=120÷(0.49×1000000)=0.000245 m3/m2;Kf小= Q小/S= 20÷(0.49×1000000)=0.00004 m3/m2;;Kf常= Q常/S=30÷(0.49×1000000)=0.00006m3/m2,式中:Kf常-----单位采矿面积涌水量系数(采场富水系数)Q常-----矿井涌水量(m3/ h)S ------同期采矿面积(Km2)矿井涌水量深部递增系数:Kh=(Q2/S2-Q1/S1)÷Q2/S2÷h×100%式中:Kh——深部递增系数(10.5%〃100米)Q1——一水平涌水量(m3/ h)Q2——二水平涌水量(m3/ h)S1——一水平采空面积(Km2)S2——一、二水平采空总面积(Km2)h——一、二水平高差(m)求出已开采矿井的富水系Kf数和矿井涌水量深部递增系数Kh=后,再用下式进行计算,即得矿井未来开采的+600米标高的涌水量:Q=Kf〃 S〃Kh式中:Q——矿井预测涌水量(m3/ h);Kf——含义和数据同前;S——待开采矿体面积,采用(+600米标高以上)的可采面积0.71Km2)参加计算。
矿井水文地质类型:矿井水文地质划分为简单的、中等的、复杂的和极复杂四种类型。
1、简单:受采掘破坏或影响的孔隙、裂隙、熔岩含水层,补给条件差,补给水源少或极少。
单位涌水量q≤0.1。
无老空积水。
2、中等:受采掘破坏或影响的孔隙、裂隙、熔岩含水层,补给条件一般,有一定的补给水源。
单位涌水量0.1<q≤1。
存在少量老空积水,位置、范围、积水量清楚。
3、复杂:受采掘破坏或影响的主要是熔岩含水层、厚层砂砾石含水层、老空水、地表水,补给条件好,补给水源充沛。
单位涌水量1<q ≤5。
存在少量老空积水,位置、范围、积水量不清楚。
4、极复杂:受采掘破坏或影响的主要是熔岩含水层、老空水、地表水,补给条件很好,补给水源极其充沛,地表泄水条件差。
单位涌水量q>5。
存在大量老空积水,位置、范围、积水量不清楚。
还有矿山水文地质类型:固体矿山一般可划分为三大类型。
①充水岩层以孔隙岩层为主的矿山。
涌水量主要取决于岩层孔隙率的大小、岩层的厚度、分布范围以及自然地理条件。
②充水岩层以裂隙岩层为主的矿山。
涌水量主要取决于岩体结构、裂隙发育程度、裂隙力学性质、构造的复合情况、裂隙发育的宽度、深度及充填情况和自然地理条件。
③充水岩层以溶洞岩层为主的矿山。
涌水量主要取决于溶洞发育情况、充填情况、地质构造、古地理和自然地理条件。
根据水文地质、工程地质条件又可进一步划分为简单的、中等的和复杂的三种类型。
4.3.2 井下涌水量(一)矿床充水因素矿区位于区域水文地质单元的补给区,矿床主要矿体位于965m 以上,高于矿区最低排泄基准面标高,地形有利于排水,矿区附近无地表水体分布,地下水的补给条件差,大气降水是地下水补给的唯一来源。
因此,矿床为裂隙充水矿床。
地下水以风化裂隙潜水和局部构造裂隙水为主,地下水位埋深较大,含水层(带)一般富水性较差,水量较小。
变质岩裂隙水因岩石坚硬而无含水层与隔水层。
坚硬岩石裂隙充水就成含水层。
厚层坚硬岩石裂隙不发育就构成相对隔水层。
贵州省朗月天合矿业有限公司龙宫煤矿一号井一采区+1280~1240m涌水量分析预测报告一、矿井第一水平涌水量:龙宫煤矿一号井第一开采水平标高1280m以上。
预算范围东、西以矿井采矿权边界为界,浅部为开采前地下水水位线以下,深部至第一开采水平标高。
预测的龙宫煤矿一号井一水平正常日涌水量情况见下表:由此可知,龙宫煤矿一号井第一水平正常涌水量为967m3/d (40.3m3/h),最大日涌水量为1257m3/d(52.4m3/h)。
其预测数据与实测成果基本吻合,由此可检验预测方法正确。
二、全矿井涌水量:矿井目前设计有两个水平,第一水平最低开采标高为为+1280m,第二水平最低开采标高为为+1240m,据已基本查明的矿区水文地质条件,本矿区内含煤层岩系(P3l)各主采煤层在开采前,其各主要充水含水层地下水的补给边界水文地质条件较为复杂,故本次矿井第一开采水平以上涌水量预算周围边界均按无限补给边界的承压水水力类型考虑。
但在矿井开拓生产疏排水过程中,将会形成以煤层开采系统为中心的降落漏斗,在降落漏斗范围内,承压水将降至含水层顶板以下成为无压状态,故选用“大井法”承压转无压水裘布依完整井公式进行预算。
即:02lg lg )2(66.31r R h M M H KQ ---=正常…………………式1 '•---=a r R h M M H K Q 002lg lg )2(66.31最大………………式2各种预算方法参数的选用:长兴组(P 3c )涌水量分别采用“大井法”进行预算。
其预算参数为:H :水柱高或水位降低值(S ),采用矿区勘探钻孔观测P 3c 含水层地下水位标高平均值与预算水平标高之差值;M :含水层厚度,采用预算范围内钻孔揭露P 3c 含水层真厚度的算术平均值;K:渗透系数,采用ZK4-5号钻孔P 3c 抽水试验所获渗透系数K 值; r 0:大井引用半径,根据矿区涌水量预算范围内的大体几何形态为不规则多边形,采用r 0=p/2π公式计算求得(P 为大井周长、即预算范围周长);R :大井影响半径,根据吉哈尔特公式计算求得,即10R =; R 0:大井引用影响半径,采用R+r 0求得;h 0:巷道内水柱高,矿井开采后水位降至预算水平,则“h 0”≈0;a′:枯、洪水季节矿井开采系统涌水量变化系数(无量纲),据调查访问原金凤煤矿生产矿井枯、洪水季节排水情况确定为1.30。
1、正常降雨迳流量(Qz)计算公式Qz=FHH——正常降雨量,m;——正常地表迳流系数,%。
2、设计频率暴雨迳流量(Qp)计算公式Qp=FHp′式中 Hp——设计频率暴雨量,m;′——暴雨地表迳流系数,%;年地表迳流系数实测值迳流系数() 表2 田庄露天铝土矿1964~1965年地表迳流系数实测值地表迳流系数()1982年地表迳流系数实测值地表迳流系数()年地表迳流系数实测值地表迳流系数()注:1、本表内数值适用于暴雨径流量计算,对正常降雨量计算应将表中数值减去0.1~0.2。
收集历年(一般要有10~15年)雨季各月降雨量及降雨天数,用下式求得。
选35.2m为非雨季节控制雨量,作为计算正常降雨迳流量的依据。
4、设计频率暴雨量的计算1)设计频率的选取露天矿排水设计频率标准,目前尚无统一规定。
对一般矿山设计,可根据矿山规模按设计暴雨常用频率选用(见表7)。
对有特殊条件或要求的露天矿,可根据矿山具体情况,2)设计频率暴雨量的计算(1)短历时(≤24h)暴雨量不同频率24h的暴雨量及暴雨计算所需各种参数,均可由地区《水文手册》直接查得,在这种情况下,一般只需要进行设计频率的不同历时的暴雨量计算。
当缺乏上述资料时,可收集矿山附近气象台(站)的降雨和暴雨参数资料,按下述方法进行计算。
频率为P的24h暴雨量H24P计算公式:式中 Kp——模比系数。
24——历年24h最大暴雨量均值,mm;各地最大24h暴雨量比最大日暴雨量大10%左右,故采用24=1.1;频率为P的暴雨雨力Sp采用下式计算:S P=H24P/t1-n式中 n——暴雨递减指数,由地区n值等值线图查得;其余符号同前。
频率为P的不同历时暴雨量Htp按下式计算:Htp=Sp t1-n式中 t——暴雨历时,min;所有符号同前。
偏差系数Cs一般根据当地Cs与C关系确定,无该资料是可按下式计算:变差系数C,利用地区C24等值线图查得,当无该资料时,可利用下式计算:式中 K——变率,;H——统计系列资料中某年日最大暴雨量,mm。
矿井涌水量计算公式矿井涌水量的计算可是个相当重要的事儿呢!这就好比我们过日子得清楚每个月的开销有多少,矿井开采也得搞明白会有多少水涌进来,才能做好应对措施,保证生产安全。
要计算矿井涌水量,首先得搞清楚几个关键的概念。
比如说,“静储量”和“动储量”。
静储量就像是一个水库里原本就有的水,不怎么会变;而动储量呢,就像是河流里流动的水,一直在变化。
常见的矿井涌水量计算公式有好几种。
比如说“大井法”,这名字听起来有点怪,但其实就是把矿井想象成一个大井,然后通过一些复杂的计算来估算涌水量。
还有“水文地质比拟法”,简单说就是找一个跟要计算的矿井情况差不多的,已经有了涌水量数据的矿井来做参考,然后根据两者的差异进行调整。
我记得有一次去一个煤矿实地考察,那场面可真是让我印象深刻。
我们一群人穿着厚厚的工作服,戴着安全帽,深入到矿井里面。
当时,负责计算涌水量的工程师拿着本子和笔,一边查看各种仪器的数据,一边嘴里念念有词地计算着。
周围的矿工们也都一脸紧张地看着,因为涌水量的多少直接关系到他们的工作安全和进度。
矿井里潮湿闷热,灯光也不是特别亮,大家的脸上都挂着汗珠。
工程师告诉我们,哪怕一个小小的数据误差,都可能导致计算结果出现很大的偏差,所以每一个数字都得仔细核对。
在计算矿井涌水量的时候,还得考虑很多因素。
像是含水层的类型和厚度、地下水的水位和水压、矿井的开采深度和面积等等。
这就像是做菜,各种调料的比例都要恰到好处,才能做出美味的菜肴。
如果忽略了某个重要因素,那计算出来的涌水量可能就会差之千里。
而且,随着开采的进行,矿井的情况也会不断变化。
今天算出来的涌水量,可能过一段时间就不准确了。
所以,得经常进行监测和重新计算,就像我们要经常看看自己的钱包,看看是不是超支了一样。
另外,不同地区的矿井,地质条件差别很大。
有的地方含水层丰富,涌水量大得吓人;有的地方则相对较少。
所以在计算的时候,不能生搬硬套公式,得结合实际情况灵活运用。
(1)解析法根据井田水文地质条件和矿井主要充水因素,利用解析法进行矿坑涌水量预测时,直接充水含水层太原组灰岩岩溶水。
1)太原组灰岩岩溶水预测20(2)5-1S M M h Q B K R--= ()105-2R S K = () 式中:Q ——预测矿坑涌水量,m 3/h ;B (m) K (m/d) M (m) S (m) R (m) Q (m 3/h) 32000.44279.51691124.45163.82S ——水位降低值,m ; KK——渗透系数,m/d ;M ——含水层厚度,m ; B ——进水廊道长度,m ; R ——影响半径,m ;K 取抽水实验资料0.44272、10+11号煤层矿井涌水量预算(大井法)开采10+11号煤层布置一个工作面,工作面宽180 m ,推进长度1200m ,因此,将矩形工作面(长a=1200m,宽b=180m )看做一个大井,使用大井法预算矿井涌水量:计算公式为:(2)1.366H M M Q K LgR Lgr-=-式中:Q%~矿井涌水量(m 3/d) K%~渗透系数(m/d) H%~水头高度(m) M%~含水层厚度(m)r%~大井半径(m),r=η4a b+R 0%~引用半径(m),R 0=10S K (S=H) R%~影响半径(m),R=R 0+ r 0根据ZK504号孔资料,太原组含水层水位标高1120.58m ,渗透系数(K )0.4427m/d,含水层厚度(M )约9.5m,先期开采地段10+11号煤层底板标高最低为884m,由此确定水头高度:(H=S )=1120.58-884=236.58(m)r=η4a b +=379.5mR 0=10S K =1574.1m R = R 0+ r 0=1953.6m将上述参数代入上述公式得开采10+11号煤层矿井正常涌水量Q=3743m 3/d (156m 3/h )最大涌水量Qmax=δQ 正,δ: 季节影响比值系数 开采2号煤层时,季节影响比值系数δ=1.2故最大涌水量Qmax=3743×1.2=4492 m 3/d (187.2m 3/h ) 2号煤层与10+11号煤层联合开采,矿井正常涌水量为上述涌水量之和,即矿井正常涌水量:Q 正=355+3743=4098 m 3/d(170.75 m 3/h)最大涌水量Qmax=425+4492 =4917 m 3/d(204.88m 3/h)3 狭长水平坑道法 采用承压——无压公式:(2-)5-5S M M Q BKL= ()式中:Q ——为预测的矿坑涌水量(m 3/d );K ——为渗透系数(m/d ); S ——为最大水位降深(m ); M ——为含水层厚度(m );L——为水平坑道影响宽度(m ),采用奚哈尔德公式10R =; B ——进水廊道长度,主采煤层工作面年推进度,即B =2500m 。
露天采矿场总涌水量计算露天采矿场总涌水量是由地下水涌水量和降雨迳流量两部分组成。
一、地下水涌水量的计算露天采矿场地下涌水量与地下开采矿坑地下水涌水量计算方法基本相同。
二、降雨迳流量计算露天采矿场降雨迳流量,应按正常降雨迳流量和设计频率暴雨迳流量分别计算。
(一)计算方法1、正常降雨迳流量(Qz)计算公式Qz=FH式中 F——泵站担负的最大汇水面积,m2;H——正常降雨量,m;——正常地表迳流系数,%。
2、设计频率暴雨迳流量(Qp)计算公式Qp=FHp′式中 Hp——设计频率暴雨量,m;′——暴雨地表迳流系数,%;其它符号同前。
(二)计算参数的选取1、汇水面积(F)的圈定根据排水方式确定的排水泵站担负的最大汇水面积进行圈定。
应包括露天境界内和境界外的地形分水岭或地表截水沟范围以内的汇水面积。
2、地表迳流系数的确定地表迳流系数的选取,可根据采矿场岩石性质、裂隙发育程度和降雨强度大小等因素确定。
对于扩建或改建矿山,在具备实测地表迳流系数的矿山,应尽可能采用实测值。
对于不具备实测条件的新建矿山,当有类似生产矿山资料时,应选用类似生产矿山的实测值。
对缺乏上述资料的矿山,可选用地表迳流系数经验值。
1)生产矿山实测地表径流系数国内部分生产露天采矿场地表径流系数实测值,见表1、表2、表3、表4。
2)地表径流系数经验值当无实测资料可按表5选取地表迳流系数经验值。
表1 抚顺西露天煤矿1960年地表迳流系数实测值降雨量(mm) 岩性裂隙发育程度迳流系数()365(4天降雨量)煤层油页岩玄武岩中等发育中等0.40.40.55表2 田庄露天铝土矿1964~1965年地表迳流系数实测值降雨量(mm) 降雨汇水总量(m3) 实测地表迳流量地表迳流系数()55 107 30 14.7 44000260008250140189401380024801100.430.530.300.785表3 凹山、东山露天铁矿1980~1982年地表迳流系数实测值降雨量(mm) 降雨汇水总量(m3) 实测地表迳流量地表迳流系数() 岩性222.3 222.3 112.8 991458555755796016000700082000.160.130.14安山岩凝灰岩粗面岩闪长斑岩注:由于爆破人为地扩大了原岩的裂隙和破碎程度,岩石破碎、裂隙发育,整个采场约有90%地段属松散、松软和半坚硬的岩石。
表4 大冶东露天铁矿1974~1978年地表迳流系数实测值降雨量(mm) 降雨汇水总量(m3) 实测地表迳流量地表迳流系数() 岩性71.1 103.4 71.5 59.3 39.4 51.3 121.0 50.0 60.7 78.8 68.9 61.9 89.8702461021597064585883912450684195844940059972778546830064477849191554030475208251889121701220026910909521175199701403523750332650.220.30.290.320.310.240.450.180.350.260.210.370.39矿体上盘闪长岩,下盘大理岩注:大冶铁矿采用井巷排水、地表迳流通过集水巷流入水仓。
表5 地表径流系数经验值岩土类别地表迳流系数(φ)重粘土、页岩轻粘土、凝灰岩、砂页岩、玄武岩、花岗岩表土、砂岩、石灰岩、黄土、亚粘土亚粘土、大孔性黄土粉砂细砂、中砂粗砂、砾石坑内排土场,以土壤为主者坑内排土场,以岩石为主者0.90.8~0.9 0.6~0.8 0.6~0.7 0.2~0.5 0~0.2 0~0.4 0.2~0.4 0~0.2注:1、本表内数值适用于暴雨径流量计算,对正常降雨量计算应将表中数值减去0.1~0.2。
2、表土指腐植土,表中未包括的岩土则按类似岩土性质采用。
3、当岩石有少量裂隙时,表中数值减去0.1~0.2,中等裂隙减去0.2,裂隙发育时减去0.3~0.4。
4、当表土、粘性土壤中含砂时,按其含量适当将表中地表迳流系数减去0.1~0.2。
3、正常降雨量的选择一般矿区可按雨季平均降雨量作为正常降雨量,而对非雨季节经常出现较大降雨地区的露天矿,可选用控制雨量进行设计。
1)雨季平均降雨量的推求收集历年(一般要有10~15年)雨季各月降雨量及降雨天数,用下式求得。
式中 H——历年雨季日平均降雨量,m;N——历年降雨系列资料中某一年的雨季天数,d;Hi——历年降雨系列资料中某一年的雨季总降雨量,m;n——降雨系列资料统计年数。
2)控制雨量的推求在我国一些地区的露夭矿,在非雨季节经常出现较大降雨时,用雨季平均降雨量来计算正常排水量很可能偏小,为保证露天矿在非雨季节正常生产,可采用控制雨量进行设计。
控制雨量确定方法如下:收集历年非雨季节的降雨量,并按≥lOmm, ≥20mm、≥25mm、≥30mm、≥35mm、≥40mm、≥50mm等分组统计降雨天数,然后把各组降雨量之和被各组的降雨天数除,得各分姐平均降雨量,再拿各组平均降雨量与实际降雨量对比,选择每年出现机率为2~3次的雨量值,作为控制雨量。
例:大孤山铁矿19年内非雨季节控制雨量的计算,见表6。
表6 非雨季控制雨量统计计算降雨量(mm) ≥10 ≥25 ≥50降雨天数(d) 157 36 2降雨总量(mm) 3006.8 1268.6 117.7平均值(mm) 19.2 35.2 58.9 出现机率(次/年) 8 2 (19年2次)选35.2m为非雨季节控制雨量,作为计算正常降雨迳流量的依据。
4、设计频率暴雨量的计算1)设计频率的选取露天矿排水设计频率标准,目前尚无统一规定。
对一般矿山设计,可根据矿山规模按设计暴雨常用频率选用(见表7)。
对有特殊条件或要求的露天矿,可根据矿山具体情况,通过对不同频率的排水工程基建投资和淹没经济损失等主要因素,进行技术经济分析,以确定适合该矿山的设计暴雨频率标准。
表7 设计暴雨频率常用标准矿山规模设计暴雨频率(%)特大型和大型 5中型10小型202)设计频率暴雨量的计算(1)短历时(≤24h)暴雨量不同频率24h的暴雨量及暴雨计算所需各种参数,均可由地区《水文手册》直接查得,在这种情况下,一般只需要进行设计频率的不同历时的暴雨量计算。
当缺乏上述资料时,可收集矿山附近气象台(站)的降雨和暴雨参数资料,按下述方法进行计算。
频率为P的24h暴雨量H24P计算公式:式中 Kp——模比系数。
24——历年24h最大暴雨量均值,mm;各地最大24h暴雨量比最大日暴雨量大10%左右,故采用24=1.1;频率为P的暴雨雨力Sp采用下式计算:S P=H24P/t1-n式中 n——暴雨递减指数,由地区n值等值线图查得;其余符号同前。
频率为P的不同历时暴雨量Htp按下式计算:Htp=Sp t1-n式中 t——暴雨历时,min;所有符号同前。
偏差系数Cs一般根据当地Cs与C关系确定,无该资料是可按下式计算:变差系数C,利用地区C24等值线图查得,当无该资料时,可利用下式计算:式中 K——变率,;N——统计年数;H——统计系列资料中某年日最大暴雨量,mm。
为了确定变率K值和计算Cs与C值,需将收集到的矿山附近气象台(站)的历年日最大暴雨量,按由大到小的顺序排列成表8,并将求得的历年变率列入表中,然后进行计算。
(2)长历时(>24h)暴雨量历时为T、频率为P的暴雨量H TP采用下式计算:H TP=H24P T m1式中 T——暴雨历时,设计取与允许淹没天数相同的时间,h;m1——地区暴雨参数,由地区m1等值线图查得;其余符号同前。
表8 历年日最大暴雨统计资料系列项次年份H(mm) K K-1 (K-1)2(K-1)31 1972 172.5 1.82 0.82 0.6724 0.55132 1969 160.5 1.70 0.70 0.4900 0.34303 1953 125.1 1.32 0.32 0.1024 0.03274 1962 124.0 1.31 0.31 0.0961 0.02975 1954 116.5 1.23 0.23 0.0529 0.01216 1961 113.5 1.20 0.20 0.0400 0.00807 1968 111.4 1.18 0.18 0.0324 0.00588 1956 102.3 1.08 0.08 0.0064 0.00059 1964 98.7 0.95 -0.05 0.0025 -0.000110 1965 95.4 1.01 0.01 0.0001 0.000111 1960 88.4 0.93 -0.07 0.0049 -0.000312 1971 82.4 0.87 -0.13 0.0169 -0.002113 1957 73.9 0.78 -0.22 0.0484 -0.010614 1970 71.8 0.76 -0.24 0.0576 -0.013815 1967 70.7 0.75 -0.25 0.0625 -0.015616 1958 65.7 0.69 -0.31 0.0961 -0.029717 1963 64.5 0.68 -0.32 0.1024 -0.032718 1966 63.7 0.67 -0.33 0.1089 -03035919 1965 53.7 0.57 -0.43 0.1849 -03079520 1959 47.9 0.51 -0.49 0.2401 -0.1176∑1893.7 2.4179 0.6452 当设计矿山需要对暴雨频率选择时,则应按上述方法计算不同频率、不同历时的暴雨量,以便计算不同频率、不同历时的暴雨迳流量,为进行技术经济分析提供基础资料。
三、贮排平衡计算为选择最优排水设备数量和贮水调节容积,以及确定合理的排除积水时间(即允许淹没时间)和淹没深度,一般均需进行贮排平衡计算求得解决。
(一)贮排平衡曲线的绘制与分析。