44相似多边形
- 格式:ppt
- 大小:1.22 MB
- 文档页数:16
《相似多边形》讲义一、相似多边形的定义在数学的广袤世界里,相似多边形是一个重要的概念。
那什么是相似多边形呢?简单来说,如果两个多边形的对应角相等,对应边成比例,那么这两个多边形就是相似多边形。
比如说,有两个四边形 ABCD 和 A'B'C'D',如果∠A =∠A',∠B=∠B',∠C =∠C',∠D =∠D',而且 AB/A'B' = BC/B'C' =CD/C'D' = DA/D'A',那么四边形 ABCD 和四边形 A'B'C'D'就是相似的。
这里要注意的是,对应角相等和对应边成比例这两个条件必须同时满足,缺一不可。
二、相似多边形的性质相似多边形具有许多有趣的性质。
首先,相似多边形的对应边成比例。
这是相似多边形的核心性质之一。
比如,一个三角形的三边分别是 3、4、5,另一个与之相似的三角形对应边的比例是 2:1,那么这个相似三角形的三边就分别是 6、8、10。
其次,相似多边形的对应角相等。
还是以上面的三角形为例,第一个三角形的三个角分别是 30°、60°、90°,那么相似三角形的对应角也分别是 30°、60°、90°。
再者,相似多边形的周长比等于相似比。
相似比就是对应边的比值。
假设两个相似多边形的相似比是 k,那么它们的周长比也是 k。
还有,相似多边形的面积比等于相似比的平方。
例如,两个相似三角形的相似比是 2,那么它们的面积比就是 4。
三、相似多边形的判定那怎么判定两个多边形是否相似呢?方法一:根据定义,如果两个多边形的对应角相等,对应边成比例,那它们就是相似多边形。
方法二:如果两个多边形的所有对应边分别平行,那么这两个多边形相似。
方法三:如果两个多边形的对应边分别相等,那么这两个多边形相似。
相似多边形基本知识相似多边形是数学中一个重要的概念,它在几何学和实际应用中都具有广泛的应用。
相似多边形具有相同的形状,但是大小可以不同。
在本文中,我们将介绍相似多边形的定义、性质以及如何确定相似多边形之间的关系。
一、相似多边形的定义相似多边形是具有相同形状但大小不同的多边形。
即使边长和内角都不相等,只要多边形的形状相同,就可以称它们为相似多边形。
相似多边形通过对应边的比值来确定彼此之间的关系。
例如,若多边形A和多边形B的边比为a:b,那么我们可以表示为A∼B,表示多边形A与多边形B相似。
二、相似多边形的特性相似多边形具有以下一些特性:1. 边的比例关系:相似多边形的对应边的比值相等,即A∼B,则对应边AB的比值等于a:b。
2. 角的对应关系:相似多边形的内角相等,即A∼B,则对应角的度数相等。
3. 面积的比例关系:相似多边形的面积比等于边长比的平方,即A∼B,则多边形A的面积与多边形B的面积的比等于(a/b)²。
三、判断相似多边形的条件在实际问题中,我们需要根据已知条件判断两个多边形是否相似。
常见的判断相似多边形的条件包括:1. 边比例相等:两个多边形的对应边的比值相等。
2. 角度相等:两个多边形的对应角度相等。
3. 边角关系:如果两个多边形的对应边比例相等,并且对应角度相等,那么它们是相似的。
四、相似多边形的应用相似多边形在实际应用中有着广泛的用途。
以下是一些常见的应用场景:1. 建筑设计:在建筑设计中,相似多边形可以用来计算建筑物的比例关系,从而确定合适的尺寸和比例。
2. 地图制作:在地图制作中,相似多边形可以用来表达地图上不同地区的比例关系,帮助人们更好地理解地理信息。
3. 电影特效:在电影特效中,相似多边形可以用来生成虚拟世界的模型,通过调整大小和比例来创造逼真的效果。
4. 工程测量:在工程测量中,相似多边形可以用来测量难以直接测量的物体的尺寸,通过相似性关系来推算出实际尺寸。
4.4相似多边形学习目标、重点、难点【学习目标】1、 相似多边形的定义;2、 相似多边形的特征;【重点难点】相似多边形的定义和特征.知识概览图相似多边形⎩⎨⎧相似多边形的特征相似多边形的定义 新课导引观察下图所示的图形.【问题探究】观察上述三组图形,每组图形的对应角和对应边之间有什么关系?【点拨】每组图形的对应角相等,对应边的比相等.教材精华知识点 相似多边形各角对应相等、各边对应成比例的两个多边形叫做相似多边形.拓展 这个定义跟其他定义一样,有两个功能:一方面,如果两个多边形的角都对应相等,且边都对应成比例,那么我们就可以判定这两个多边形是相似的;另一方面,如果已知两个多边形相似,那么它们的对应角一定相等,对应边一定成比例,这是相似多边形的本质特征,用它可以解决有关的问题.相似多边形的表示方法:若五边形ABCDE 与五边形E D C B A '''''相似,记作:五边形ABCDE ∽五边形E D C B A '''''.相似多边形对应边的比叫做相似比.拓展 (1)“多边形”的“多”字包含3或3以上的所有自然数,所以有了相似多边形的定义,就不必再重新定义“相似三角形”“相似四边形”…….(2)前面我们学过图形的全等,全等其实是相似的一个特例,全等图形是相似比为l 的相似图形.多边形相似的判定:(1)边数相同;(2)对应角相等;(3)对应边成比例.拓展 (1)判定两个多边形相似,这三个条件缺一不可.(2)两个边数不相同的多边形一定不相似.相似多边形的特征:如果两个边数相同的多边形相似,那么这两个多边形的对应角相等,对应边成比例.相似多边形特征的应用:应用相似多边形的特征,可以证明角相等、线段成比例. 课堂检测基础知识应用题1、(1)正三角形ABC 与正三角形DEF 相似吗?(2)正方形ABCD 与正方形EFGH 相似吗?综合应用题2、如图4-33所示,梯形ABCD 与梯形D C B A ''''相似,求未知边x ,y ,z 的长度和角α,β的度数.探索创新题3、小强将一张报纸对折后,发现对折后的半张报纸与整张报纸相似,则整张报纸的长和宽的比是 ( )A .2∶lB .4∶1C .2∶1D .1.5∶l体验中考1、如图4-35所示,若△ABC ∽△DEF ,则∠D 的度数为 .学后反思附: 课堂检测及体验中考答案课堂检测1、分析 根据相似多边形的定义和等边三角形、正方形的性质来判定.解:(1)由于正三角形的每个内角都等于60°, 所以∠A =∠D =60°,∠B =∠E =60°,∠C =∠F =60°.由于正三角形的三条边都相等,所以FDCA EF BC DE AB ==.所以正三角形ABC 与正三角形DEF 相似. (2)由于正方形的每个内角都是直角,所以∠A =∠E =90°,∠B =∠F =90°,∠C =∠G =90°,∠D =∠H =90°.由于正方形的四条边都相等,所以EHAD GH CD FG BC EF AB ===, 所以正方形ABCD 与正方形EFGH 相似.【解题策略】 根据相似多边形的定义来确定.2、分析 解题中要充分利用相似多边形的特征和梯形的性质.解:由于梯形ABCD 与梯形D C B A ''''相似,所以对应边成比例,所以 4.5 4.8324 3.22x y z ====, 所以x =3,y =6,z =3.由于对应角相等,所以α=∠D =180°-∠A =180°-62°=118°,β=∠B =180°-∠C =180°- 110°=70°.【解题策略】 准确掌握相似多边形的特征及梯形上、下底平行这一条件是解决此题的关键.3、分析 抓住题中的关键:整张报纸和半张报纸相似,设原报纸的长为x ,宽为y ,则对折后得到的半张报纸的长为y ,宽为x 21,如图4-34所示,由相似多边形的定义知AB AD AE AB =,所以y 2=x ·x 21,所以2122=x y ,所以2x y=.故选A.体验中考1、分析 本题考查相似三角形的性质.∵△ABC ∽△DEF ,∴∠A =∠D .又∵∠A =30°,∴∠D =30°.故填30°.【解题策略】 相似多边形(包括三角形)的对应角相等.。
第20讲相似多边形1.相似多边形的有关概念.2.掌握相似三角形的性质.一、相似图形及比例线段相似图形:在数学上,我们把形状相同的图形称为相似图形.要点:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等;二、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”三、相似多边形相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点:用相似多边形定义判定特殊多边形的相似情况:(1)对应角都相等的两个多边形不一定相似,如:矩形;(2)对应边的比都相等的两个多边形不一定相似,如:菱形;(3)边数相同的正多边形都相似,如:正方形,正五边形.考点1:相似图形的判断例1.下面一定相似的一组图形为()A.两个等腰三角形B.两个矩形C.两个等边三角形D.两个菱形.【答案】C【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【解析】解:A.两个等腰三角形不一定相似,因为没有指明相等的角或成比例的边;B.两个矩形不一定相似,因为没有指明边的情况,虽然其四个角均相等,不符合相似的条件;C.两个等边三角形一定相似;D.任意两个菱形的对应边的比相等,但对应角不一定相等,故不一定相似;故选C.【点睛】本题考查的是相似图形的概念,掌握对应角相等,对应边的比相等的多边形,叫做相似多边形是解题的关键.例2.下列说法中,不正确的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正八边形都相似【答案】C【分析】根据两个图形相似的性质及判定方法,对应边的比相等,对应角相等,两个条件同时满足,来判断正误.【解析】解:A、所有的等边三角形的角都为60 ,都相似,不符合题意;B、等腰直角三角形都相似,不符合题意;C、矩形对应边不一定成比例,不一定都相似,符合题意;D、正八边形都相似,不符合题意;故选:C.【点睛】本题考查了相似图形的知识,熟练掌握各特殊图形的性质是解题的关键,难度一般.例3.下列说法正确的是()A.菱形都是相似图形B.各边对应成比例的多边形是相似多边形C.等边三角形都是相似三角形D.矩形都是相似图形【答案】C【分析】根据相似图形的定义,对应边成比例,对应角相等对各选项分析判断即可.【解析】解:A、菱形的对应边成比例,对应角不一定相等,所以不一定是相似图形,故本选项错误;B、各边对应成比例的多边形对应角不一定相等(如菱形),所以不一定是相似多边形,故本选项错误;C、等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D、矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;故选:C.【点睛】本题考查了相似图形的定义,熟记定义是解题的关键,要注意从边和角两个方面考虑.例4.下列说法正确的有().①形状差不多的两个图形相似;②国旗上的大五角星与小五角星是相似的;③大小不等的两个六边形的形状可能相似;④放大镜下看到的图形与原来的图形的相似.A.1个B.2个C.3个D.4个【答案】C【分析】根据相似图形的定义,对各项进行分析即可得出答案.【解析】①形状相同的两个图形是相似图形,形状差不多的两个图形,不是相似图形,故①说法错误;②国旗上的大五角星与小五角星,形状相同,是相似图形,故②说法正确;③当大小不等两个六边形的对应角相等,对应边成比例式时,这两个六边形相似,故③说法正确;④放大镜下看到的图形与原来的图形形状相同,是相似图形,故④说法正确;②③④说法正确,故选C.【点睛】本题考查相似图形的定义,具有相同形状的图形是相似图形,熟记并理解定义是解决本题的关键.考点2:相似多边形的性质及对应性例5.两个边数相同的多边形,如果它们的角分别_________,边成_________,那么这两个多边形叫做_________.相似多边形对应边的比叫做_________.由相似多边形的定义可知,相似多边形的对应角_________,对应边_________.【答案】相等比例相似多边形相似比相等成比例【解析】略例6.如图的两个四边形相似,则∠a的度数是()A.120°B.87°C.75°D.60°【答案】B∠=︒,再根据四边形的内角和等于360°,即可求解.【分析】根据相似多边形的性质,可得1138【解析】解:如图,例例______.【分析】根据相似三角形对应角相等,分情况讨论解答即可.【解析】易得∠C=60°,与∠D是对应角.则①当∠E与∠A是对应角时,∵∠A=50°,∴∠E=50°,②当∠E与∠B是对应角时,∵∠B=70°,∴∠E=70°,综上,∠E的度数为50°或70°,故答案为50 或70 .【点睛】本题考查相似三角形的性质,对应角不确定的时候需要分类讨论.例9.如图,如果五边形ABCDE∽五边形POGMN,且对应边上的高之比为3:2,那么五边形ABCDE 和五边形POGMN的周长之比是()A.2:3B.3:2C.6:4D.9:4【答案】B【分析】根据相似多边形的对应高之比等于相似比、周长比等于相似比计算即可.【解析】解:∵五边形ABCDE∽五边形POGMN且对应高之比为3:2,∴相似比为3:2,∴五边形ABCDE和五边形POGMN的周长之比是3:2,故选:B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应高之比等于相似比、周长比等于相似比是解题的关键.考点3:相似多边形性质的应用例10.装裱一幅宽40cm、长60cm的矩形画,要使装裱完成后的大矩形与原矩形画相似,装裱上x,则x __________.去的部分的上下的宽都为15cm,若装裱上去的左右部分的宽都为cm【答案】10【分析】根据相似图形对应边成比例即可进行解答.【解析】解:∵装裱完成后的大矩形与原矩形画相似,∴40402 6060152x+=+⨯,解得:故答案为:10.【点睛】本题主要考查了相似的性质,解题的关键是熟练掌握形似的图形对应边成比例.例11.如图,一块矩形绸布的长矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即是多少?例>EF ),设例使小长方形与原长方形相似,则原长方形纸片的边A .2a b =B .2a b =C .a =例似比为例【答案】1 256.【分析】先分别求出第一个正六角星形AFBDCE与第二个边长之比,再根据相似多边形面积的比等于相似比的平方,找出规律即可解答.一、单选题1.(2019·甘肃·中考真题)如图,将图形用放大镜放大,应该属于().A.平移变换B.相似变换C.旋转变换D.对称变换【答案】B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【解析】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.2.(2018·重庆·中考真题)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情二、填空题一、单选题1.下列图形中不一定是相似图形的是().B...【答案】A【分析】利用相似多边形对应边的比相等,即可找出结论.【解析】解:∵441.235=,∴A选项中的矩形与矩形ABCD相似,该选项正确;A.4.14B.2.56【答案】A【分析】设整个车身长为AB,点C 项判断即可.【解析】如图,设整个车身长为AB根据题意,AC=1.58米,对于两人的观点,下列说法正确的是().A.两人都对B.两人都不对C.甲对,乙不对二、填空题11.下列情形:①用眼睛看月亮和用望远镜看月亮,看到的图象是相似的图形;②用彩笔在黑板上写上三个大字1,2,3,它们是相似图形;③用粉笔在黑板上写上“天”和用毛笔在纸上写上“天”,这两个字是相似图形;以上说法你认为正确的是________,错误的是________.(填序号)【答案】①②③【分析】根据相似图形的定义,对题目中的条件进行一一分析,确定正确和错误答案.【解析】解:①用眼睛看月亮和用望远镜看月亮,形状相同,但大小不一定相同,看到的图象是相似的图【答案】80︒144 5【分析】根据相似多边形对应角相等,对应边成比例可得出答案【答案】132+或2【分析】根据相似多边形的性质列出比例式,进行计算即可求解.【解析】∵ABFE 是正方形,∴AB =EF =AE ,∵矩形GFCH 和矩形EGHD ∴EG =DH =GF =HC ,设∴AD =2y x +,AB =2x ,∵矩形ABCD 和矩形EGHD ∴AD GH AB GF =或AD GF AB GH=①当AD GH AB GF =时,∴22y x x y y+=,解得:x ∴AD :AB =:2:x y y y =②当AD GF AB GH=时,22y 解得:132y x +=,∴AD :AB =13:2y x +=故答案为:2或13+.三、解答题19.如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?【答案】d 与(1)相似,e 与(2)相似【分析】观察比较图形,根据相似图形的定义即可得出本题答案.【解析】解:d 与(1)相似,e 与(2)相似理由是:(1)图形是半圆,而在图形中,只有(d )是半圆,所以图形与图形相似;图形(2)是由五个小正方形组成,而在图形中,只有(e )是由五个小正方形组成,所以图形与图形相似;故答案是:d 与(1)相似,e 与(2)相似.【点睛】本题主要考查了图形相似的知识点.20.如图,两个四边形相似,求未知边x 、y 的长度及角α的大小.【答案】x=24,y=28,α=75°【分析】已知题意,想到根据相似多边形的性质:对应角相等,对应边成比例,从而正确解答此题.【解析】∵两个四边形相似,∴20:5=x :6=y :7,解得:x=24,y=28,∵四边形内角和等于360°,∴α=3607085130︒︒︒︒---=75°,∴x=24,y=28,α=75°.【点睛】本题考查相似多边形的性质.相似多边形的对应角相等,相似多边形对应边之比、周长之比等于【答案】915cm,cm 22EF FG ==.(1)D'∠的度数为_______,四边形ABCD与四边形(2)分别求边BC BC与边CD的长度.(1)求BC 、CD 的长度;(2)求D ∠、D '∠的大小;。