直流牵引传动系统
- 格式:docx
- 大小:12.29 KB
- 文档页数:2
电力机车和电动车组传动方式的分类及特点电力机车和电动车组的传动方式按照供电电源的性质及所采用的牵引电动机的不同,理论上可以分为直-直流传动、交-直流传动、交-直-交流传动、交-交流传动和直-交流传动等。
1.直-直流传动方式直-直流传动方式就是使用直流电源供电、直流牵引电动机驱动的传动方式,结构示意图如图1。
受电器从接触网或者第三轨上获取电能,通过直流电压调节装置对直流电压进行调节,从而达到调节直流(脉流)牵引电动机转速和转矩的目的。
图 1 直-直流传动方式示意图调压装置可以是:(1)电阻器:特点是简单、可靠。
维修方便,对使用和维护工人技术要求低。
但是电阻调速是有级的,调速过程中电阻器有能耗,能量损失大,调速性能差,在大功率场合长期调速运行,不仅损失的能量很大,还可能引起地铁隧道或周围环境温度升高。
(2)斩波器:用大功率电力电子器件构成,特点是效率高,调速性能好。
直-直流传动方式的主要特点是调速简单方便,但是直流供电电压低限制了其应用场合,并且直流牵引电动机体积大、维护工作量大、经济性能指标差。
早期的工矿电机车、城市有轨电车、无轨电车和地铁动车大多采用直-直流传动方式。
此外直流电流的回流会对线路周围的金属结构产生电蚀。
2. 交-直流传动方式交-直流传动方式就是使用交流电源供电、直流牵引电动机驱动的传动方式,结构示意图如图2。
受电器从接触网获取交流电能,通过整流调压装置对输出直流电压进行调节,从而达到调节直流牵引电动机转速和转矩的目的。
图2 交-直流传动方式示意图交-直流传动方式是我国电力机车长期使用的一种电力机车传动方式,国产韶山(SS)系列和进口的6K、8K电力机车等均采用这一传动方式,这些机车的主要差别在于调压整流方式和控制方式的不同。
这种传动方式的主要特点是接触网采用单相交流供电,可以大大提高电网的供电能力,减少牵引变电所的数量。
从技术上看,其缺点主要是因为采用直流牵引电动机所引起的。
3. 交-直-交流传动交-直-交流传动方式就是使用交流电源供电,中间经过降压整流变成直流,然后再将直流逆变成为频率和电压幅值可调的交流电,驱动交流牵引电动机的传动方式。
直流牵引电机是电动车辆中常用的动力装置,其工作原理和故障处理如下:
工作原理:
1. 电磁感应:直流牵引电机通过电流在磁场中产生电磁力来实现转动。
当电流通过电枢线圈时,在磁场中产生电磁力矩,使电机转动。
2. 换向系统:为了实现电机的正常运转,需要一套换向系统,通常采用电刷与电枢之间的接触和分离来实现电流的换向,使电机能持续旋转。
3. 控制系统:通过对电机的电流、电压进行调节,可以实现对电机转速、转矩等参数的控制。
故障处理:
1. 电刷磨损:电刷是电机中易损件,长时间磨损会导致电刷接触不良或断裂。
解决方法是定期更换电刷或修整电刷端面。
2. 电枢绕组断路:电枢绕组断路会导致电机失去动力。
处理方法包括检查电枢绕组,修复绝缘层或更换损坏的绕组。
3. 电刷与电枢接触不良:这可能导致电机运行不稳定、发热过高。
解决方法是清洁电刷及其座槽,确保电刷与电枢之间的良好接触。
4. 电机过载:长时间超负荷运行会导致电机损坏。
通过限制负载或增加散热措施来避免电机过载。
5. 电机绝缘老*:导致电机绝缘性能下降,可能出现漏电等问题。
解决方法是定期进行绝缘测试,发现问题及时更换绝缘材料或绕组。
6. 电机轴承故障:电机轴承损坏会导致振动、噪音增大。
解决方法是更换损坏的轴承。
7. 控制系统故障:包括电流过大、电压不稳等问题,建议检查电机控制器及相关电气元件,进行故障排除。
在处理以上故障时,需要根据具体情况进行仔细检查和维护,确保直流牵引电机的正常运行,从而保证电动车辆的安全和可靠性。
CRH动车组驱动装置原理解析CRH动车组是中国铁路高速动车组列车的简称,以其高速、高效、高品质的特点而闻名。
其中,动车组的驱动装置起着至关重要的作用,直接影响列车的运行性能和安全性。
本文将对CRH动车组驱动装置的原理进行解析,以便更好地理解这一关键部件。
一、直流传动系统CRH动车组采用的是直流传动系统,其中包括电机、牵引变流器、车辆控制器等部件。
电机是驱动装置的核心,通过传递电能将机械能转化为动力,推动列车前进。
牵引变流器则负责控制电流大小和方向,实现对电机的精确控制。
车辆控制器则起着协调各个部件工作的作用,确保整个系统的稳定运行。
二、牵引力分配系统在CRH动车组中,牵引力分配系统负责控制不同车厢的动力输出,以确保列车在运行过程中保持平稳和协调。
该系统通过检测车辆的速度、加速度和牵引力需求等参数,动态调整每个车厢的输出功率,使整列车辆的牵引力分配更加均衡和高效。
三、制动系统除了驱动装置外,CRH动车组的制动系统也是至关重要的部件。
制动系统可以通过对电机的反向控制和制动器的作用,实现列车的减速和停车。
通过与驱动装置的协调工作,制动系统能够确保列车在运行过程中的安全性和稳定性。
四、能量回收系统为提高列车的能效和节能表现,CRH动车组采用了能量回收系统。
该系统可以在制动和减速过程中将部分动能转化为电能存储,再次供给电动机使用,实现能量的循环利用。
通过这种方式,不仅可以降低列车的能耗,还可以减少对环境的影响。
总结:CRH动车组驱动装置采用先进的直流传动系统,配合牵引力分配、制动和能量回收等系统,实现列车的高效运行。
这些系统的密切配合和协调作用,确保了CRH动车组在高速运行过程中的安全性、稳定性和节能性能。
希望通过本文的解析,读者能更加深入地了解CRH动车组的驱动装置原理,为相关领域的学习和研究提供参考。
地铁列车电传动系统分析摘要:文章通过对我国现阶段主型地铁车辆电传动系统构成及其功能的分析。
清晰的介绍了该系统各器件的作用及相互之间的关系。
为地铁车辆运用与检修提供了有益的参考。
关键词:地铁车辆电传动;主电路;系统工作原理一、轨道车辆电力牵引发展简介电力牵引是一种以电能为动力牵引车辆前进的牵引方式。
轨道车辆通过受流器从架空接触网或第三轨(输电轨)接收电能,通过车载的变流装置给安装在转向架上的牵引电机供电,牵引电机将电能转变成机械能,机械能通过齿轮传给轮对,驱动轮对在轨道上运动带动车辆前进。
轨道交通电力牵引传动系统分为:1、直流电力牵引传动系统(1)直流—直流(2)交流—直流2、交流电力牵引传动系统(1)直流—交流(2)交流—直流—交流早期的电力牵引的轨道车辆采用直流电动机(如北京地铁一号线)。
直流电动机存在体积大、结构复杂、工作可靠性差、制造成本高、维修麻烦的缺点。
随着交流电机控制理论和大功率电力电子元器件制造技术的发展,采用交流电机牵引的交流传动技术迅速崛起,使轨道车辆电力牵引技术上了一个新台阶。
交流—直流—交流供电系统运用于干线铁路。
我国城市内的地铁、轻轨网络多采用直流牵引制式,城市轨道交通采用直流供电制式是因为城市轨道交通运输的列车功率并不是很大,其供电半径(范围)也不大,因此供电电压不需要太高,还由于直流制比交流制的电压损失小(同样电压等级下),因为没有电抗压降。
另外由于城市内的轨道交通,供电线路都处在城市建筑群之间,供电电压不宜太高,以确保安全。
基于以上原因,世界各国城市轨道交通的供电电压都在直流550~1500V之间。
我国国家标准也规定为750 V和1500V。
以北京和天津为代表的北方地区采用DC 750V供电电压制式,允许电压波动范围为DC 500V~DC 900V,第三轨受流;以上海和广州为代表的南方地区采用DC 1500V供电电压制式,允许电压波动范围为DC 1000V~DC 1800V,架空接触网受电弓受流。
直流牵引电机是一种常用于电动车、铁路机车等交通工具的驱动装置,其工作原理主要是将电能转换为机械能来驱动车辆行驶。
下面是直流牵引电机的工作原理及故障处理方法:
1. 工作原理:
-直流牵引电机由定子和转子两部分组成。
定子上有一定数目的电枢线圈,转子上则悬挂着一定数目的永磁体或励磁线圈。
-当电源施加到定子上时,产生的电磁场会将转子转动,从而实现牵引。
同时,为了控制电机的速度和方向,需要通过外部电路对电枢线圈进行控制。
2. 故障处理:
-电机无法启动:检查电源供给是否正常,电枢线圈是否损坏,电刷是否磨损过度,电机转子是否卡死等。
-电机发热:检查电机是否正常通电,电枢线圈是否短路,电刷是否与电枢接触不良,风扇是否运转正常等。
-电机转速异常:检查电枢线圈中的电阻值是否正常,电枢线圈是否短路,电刷是否磨损或接触不良等。
针对不同的故障问题,需要采取不同的处理方法,如更换损坏的部件、
进行维护保养、检查电路连接等。
同时,在平时的使用过程中,应该注意对直流牵引电机的日常检查和维护,以延长其寿命并保证运行安全可靠。
【引言概述】本文将对HXD3电气系统进行介绍,该系统是HXD3型电力机车中的核心部分之一。
电气系统作为机车的重要组成部分之一,对机车的运行和性能起着至关重要的作用。
本文将从五个大点来详细阐述HXD3电气系统的组成和功能。
【正文内容】一、主控制系统1.牵引控制模块功能及原理2.制动控制模块功能及原理3.辅助控制模块功能及原理4.信号处理模块功能及原理5.数据通信模块功能及原理二、直流传动系统1.逆变器模块功能及原理2.励磁系统功能及原理3.牵引电机功能及原理4.制动电阻功能及原理5.母线和变压器功能及原理三、辅助供电系统1.电池组功能及原理2.静止变流器功能及原理3.馈电变压器和整流充电机功能及原理4.辅助电源开关装置功能及原理5.辅助负载装置功能及原理四、智能检测与保护系统1.灵敏系数与接线方式功能及原理2.过载保护功能及原理3.短路保护功能及原理4.电源低压保护功能及原理5.温度保护功能及原理五、列车接口系统1.车载监控系统功能及原理2.通信系统功能及原理3.车载信息系统功能及原理4.列车自动控制系统功能及原理5.转向架接口装置功能及原理【总结】HXD3电气系统作为HXD3型电力机车中的核心部分,包含主控制系统、直流传动系统、辅助供电系统、智能检测与保护系统以及列车接口系统等五个大点。
每个大点下又包含59个小点来详细阐述其功能和原理。
HXD3电气系统的合理设计与运行稳定性直接影响着机车的牵引力、制动力及其他性能指标的表现,因此,了解和熟悉HXD3电气系统的结构和原理对于保证机车的正常运行具有重要意义。
直流牵引传动系统
直流牵引传动系统由接触网侧高压电路和直流电机调速电路组成,包括受流器、断路器、接触器、直流牵引电机、齿轮箱、轮对、接地回流装置等。
(1)直流牵引传动系统的类型。
直流牵引传动系统按电机调速的原理不同可分为变阻控制和斩波调压控制。
变阻控制通过调节串入电机回路的电阻,改变直流牵引电机的端电压而达到调速目的,有凸轮调阻控制和斩波调阻控制两种类型。
斩波调压控制是通过控制接在电网与牵引电机之间的斩波器的导通与关断来改变牵引电机的端电压而达到调速目的的。
斩波调压控制装置代替了启、制动电阻,在启动过程中减少了电能的消耗,在再生制动过程中回收一部分电能的消耗,并在再生制动的过程中回收一部分电能,与凸轮变阻车相比可节约电能20%~30%,并且启、制动过程完全是无级平滑调节的,提高了平稳性。
(2)直流牵引电机的特点及类型。
直流牵引电机具有以下特点:良好的牵引和制动性能,调速方便;防空转性能较差,等功率条件下,直流牵引电机的体积和重量较大,换向困难,电位条件恶化,易产生环火和复杂的维护,特别是在高电压大功率时,换向困难,电位条件更加恶化,使电机的工作可靠性降低。
直流牵引电机按其工作目的的不同可分为直流电动机和直流发电机。
①直流电动机。
②直流发电机。
直流发电机的结构分为可旋转部分和静止部分。
可旋转部分称为转子,静止部分称为定子,定子和转子之间存在气隙。
定子的作用:在电磁方面产生磁场和构成磁路,在机械方面作为整个电机的支撑。
定子由磁极、机座、换向极、电刷装置、端盖、轴承等组成。
转子又称电枢,是电机的转动部分,是用
来产生感应电动势和电磁转矩,从而实现机电能量转换的关键部分。
它包括电枢铁芯、换向器、电机转轴、电枢绕组、轴承、风扇等。