第23届全国中学生物理竞赛决赛试题与详细解答
- 格式:doc
- 大小:673.50 KB
- 文档页数:23
清北学堂 2007暑假物理金牌特训班专用资料 版权所有,翻制必究第二十三届全国中学生物理竞赛试题分析 清华大学 朱力 试题综述:本套试题为2006年第二十三届全国中学生物理竞赛预赛试题。
总体难度和高考的较难的题目相当,在物理竞赛中相比较为简单。
对于准备过物理竞赛的同学来说,很多题都是似曾相识。
虽然试题比较简单,但是对于想要在物理竞赛中有所收获的同学来说也应该认真对待,争取在预赛中取得较好的成绩,才能在复赛中有充足的自信和良好的心态。
所以预赛虽然简单,但是不能忽视。
详细分析: 第一题: (1)参考解答: 1、线剪断前,整个系统处于平衡状态。
此时弹簧S 1的弹力F 1=(m A +m B +m C )g (1) 弹簧S 2的弹力F 2=mcg (2)在线刚被剪断的时刻,各球尚未发生位移,弹簧的长度尚无变化,故F 1、F 2的大小尚未变化,但线的拉力消失。
设此时A 、B 、C 的加速度的大小分别为a A 、a B 、a C , 则有F 1-m A g=m A a A (3) F 2+m B g=m B a B (4) F 2-m C g=m C a C (5) 解以上有关各式得a A =A C B m m m +g ,方向竖直向上(6);a B =B C B m m m +g ,方向竖直向下(7);a C =0(8) 2.试题分析: 本题属于高中物理范畴的基础题。
所测试的就是对于牛顿定律的理解。
首先分析绳剪断之前的状态。
在绳剪断之前,系统处于平衡状态。
则可以求出两个弹簧的拉力。
当绳剪断以后,A 球受到重力和拉力作用,则这两个力的合力使得A 球做加速运动。
同理对于B 球和C 球,也受到弹簧的弹力和重力作用,做加速运动,可以用牛顿第二定律求出加速度。
仔细分析可以发现A 、B 、C 组成的系统的质心加速度为零。
这是由于系统受到的拉力和重力在绳剪断的时刻仍然平衡。
(2)1.参考解答:开始时,磁铁静止不动,表明每一条磁铁受到另一条磁铁的磁力与它受到板的静摩擦力平衡。
第23届全国中学生物理竞赛复赛试卷一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
现用支架固定一照相机,用以拍摄小球在空间的位置。
每隔一相等的确定的时间间隔T拍摄一张照片,照相机的曝光时间极短,可忽略不计。
从所拍到的照片发现,每张照片上小球都处于同一位置。
求小球开始下落处离玻璃管底部距离(用H表示)的可能值以及与各H值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如图所示,一根质量可以忽略的细杆,长为2l,两端和中心处分别固连着质量为m的小球B、D和C,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M的小球A,以一给定速度v沿垂直于杆DB的方间与右端小球B作弹性碰撞。
求刚碰后小球A,B,C,D的速度,并详细讨论以后可能发生的运动情况。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有一定质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式 k pV a =其中a ,k 均为常量, a >1(其值已知)。
可以由上式导出,在此过程中外界对气体做的功为 ⎥⎦⎤⎢⎣⎡--=--1112111a a V V a k W 式中2V 和1V ,分别表示末态和初态的体积。
如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ∆和经过的时间t ∆遵从以 图2下的关系式ω⋅-=∆∆L Va t p 1 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示)四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
第23届全国中学生物理竞赛复赛试卷一、(23分)有一竖直放置、两头封锁的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不断地上下跳动。
现用支架固定一照相机,用以拍照小球在空间的位置。
每隔一相等的确信的时刻距离T 拍照一张照片,照相机的曝光时刻极短,可忽略不计。
从所拍到的照片发觉,每张照片上小球都处于同一名置。
求小球开始下落处离玻璃管底部距离(用H 表示)的可能值和与各H 值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如下图,一根质量能够忽略的细杆,长为2l ,两头和中心处别离固连着质量为m 的小球B 、D 和C ,开始时静止在滑腻的水平桌面上。
桌面上还有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。
求刚碰后小球A,B,C,D 的速度,并详细讨论以后可能发生的运动情形。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有必然质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一路转动,叶片和轴和气缸壁和活塞都是 绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
若是叶片和轴不转动,而令活塞缓慢移动,那么在这种进程中,由实验测得,气体的压强p 和体积V 遵从以下的进程方程式 图1k pVa=其中a ,k 均为常量, a >1(其值已知)。
能够由上式导出,在此进程中外界对气体做的功为 ⎥⎦⎤⎢⎣⎡--=--1112111a a V V a k W式中2V 和1V ,别离表示末态和初态的体积。
若是维持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种进程中,气体的压强的改变量p ∆和通过的时刻t ∆遵从以 图2 下的关系式ω⋅-=∆∆L Va t p 1 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并无说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原先所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示)四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
2013年第二十三届全国初中应用物理竞赛及答案(巨人杯)(word 版) 注意事项:1、 请在密封线内填写所在地区、学校、姓名和考号。
2、 用蓝色或黑色钢笔、圆珠笔书写。
3、 本试卷共有六个大题,满分100分。
4、 答卷时间:2013年3月31日(星期日),上午9:30~11:10。
一、本题共10分,每小题2分,共20分,以下各小题给出的四个选项中只有一个是正确的,把正确选项前面的字母填在题后的括号内。
1、验钞机发出的“光”能使钞票上的荧光物质发光;家用电器的遥控器发出的“光”,能用来控制电风扇、电视机、空调器等电器的开启与关闭。
对于它们发出的“光”,下列说法中正确的是 ( )A.验钞机和遥控器发出的“光”都是紫外线B.验钞机和遥控器发出的“光”都是红外线C.验钞机发出的“光”是紫外线,遥控器发出的“光”是红外线D.验钞机发出的“光”是红外线,遥控器发出的“光”是紫外线2、在严寒的冬季,小明到滑雪场滑雪,恰逢有一块空地正在进行人工造雪。
他发现造雪机在工作过程中,不断地将水吸入,并持续地从造雪机的前方喷出“白雾”,而在“白雾“下方,已经沉积了厚厚的一层“白雪”,如图1所示。
对于造雪机在造雪过程中,水这种物质发生的最主要的物态变化,下列说法中正确的是 ( )A.凝华B.凝固C.升华D.液化3、在有些地区,人们常在小河边洗衣服。
如图2所示,人们先把脏衣服浸泡在河水里,然后提出来放在石板上,用木棒捶打,水花四溅……,如此反复多次,直到衣服被洗净为止。
这里,用木棒捶打的主要目的是( )A.把衣服上的灰尘打碎,以便于洗涤B.增大木棒与灰尘之间的摩擦,将灰尘带走C.迫使湿衣服里面的水从衣服纤维之间的缝隙中高速喷出,利用高速水流将灰尘冲洗掉D.木棒捶打,使衣服突然运动起来,而衣服上的灰尘由于具有惯性仍然静止,从而使灰尘脱离衣服 图 1图24、如图3所示,海北中学有一个跑道为400m 的操场,在操场的主席台和观众席上方一字形排列着A 、B 、C 三个相同的音箱。
第23 届全国中学生物理竞赛决赛试题2006年11月深圳★ 理论试题一、建造一条能通向太空的天梯,是人们长期的梦想.当今在美国宇航局(NASA)支持下,洛斯阿拉莫斯国家实验室的科学家已在进行这方面的研究.一种简单的设计是把天梯看作一条长度达千万层楼高的质量均匀分布的缆绳,它由一种高强度、很轻的纳米碳管制成,由传统的太空飞船运到太空上,然后慢慢垂到地球表面.最后达到这样的状态和位置:天梯本身呈直线状;其上端指向太空,下端刚与地面接触但与地面之间无相互作用;整个天梯相对于地球静止不动.如果只考虑地球对天梯的万有引力,试求此天梯的长度.已知地球半径R0 = 6.37 ×106 m ,地球表面处的重力加速度g = 9.80 m·s-2 .二、如图所示,一内半径为R 的圆筒(图中2R 为其内直径)位于水平地面上.筒内放一矩形物.矩形物中的A 、B 是两根长度相等、质量皆为m 的细圆棍,它们平行地固连在一质量可以不计的,长为l = 3R 的矩形薄片的两端.初始时矩形物位于水平位置且处于静止状2R态,A 、B 皆与圆筒内表面接触.已知A 、B 与圆筒内表面A间的静摩擦因数μ都等于1.l现令圆筒绕其中心轴线非常缓慢地转动,使A 逐渐升高.1.矩形物转过多大角度后,它开始与圆筒之间不再能保持相对静止?答:(只要求写出数值,不要求写出推导过程)2.如果矩形物与圆筒之间刚不能保持相对静止时,立即令圆筒停止转动.令θ表示A的中点和B 的中点的连线与竖直线之间的夹角,求此后θ等于多少度时,B 相对于圆筒开始滑动.(要求在卷面上写出必要的推导过程.最后用计算器对方程式进行数值求解,最终结果要求写出三位数字.)三、由于地球的自转及不同高度处的大气对太阳辐射吸收的差异,静止的大气中不同高度处气体的温度、密度都是不同的.对于干燥的静止空气,在离地面的高度小于 20 km 的大气层 内,大气温度 T e 随高度的增大而降低,已知其变化率△T e △z= -6.0 × 10-3 K ·m -1z 为竖直向上的坐标.现考查大气层中的一质量一定的微小空气团(在确定它在空间的位置时可当作质点处 理),取其初始位置为坐标原点(z = 0),这时气团的温度 T 、密度ρ 、压强 p 都分别与周 围大气的温度 T e 、密度ρe 、压强 p e 相等.由于某种原因,该微气团发生向上的小位移.因 为大气的压强随高度的增加而减小,微气团在向上移动的过程中,其体积要膨胀,温度要变 化(温度随高度变化可视为线性的).由于过程进行得不是非常快,微气团内气体的压强已 来得及随时调整到与周围大气的压强相等,但尚来不及与周围大气发生热交换,因而可以把 过程视为绝热过程.现假定大气可视为理想气体,理想气体在绝热过程中,其压强 p 与体积 V 满足绝热过程方程 pV γ = C .式中 C 和γ都是常量,但γ与气体种类有关,对空气,γ =1.40 .已知空气的摩尔质量μ = 0.029 kg • mol-1,普适气体恒量 R = 8.31 J • ( K • mol )-1.试在上述条件下定量讨论微气团以后的运动.设重力加速度 g = 9.8 m ·s -2 ,z = 0 处大气的温度T e0 = 300 K . 四、图 1 中 K 为带电粒子发射源,从中可持续不断地射出质量、电荷都相同的带正电的粒 子流,它们的速度方向都沿图中虚线 O ′O ,速度的大小具有一切可能值但都是有限的.当 粒子打在垂直于 O ′O 的屏 NN ′ 上时,会在屏上留下永久性的痕迹.屏内有一与虚线垂直的 坐标轴 Y ,其原点位于屏与虚线的交点 O 处,Y 的正方向由 O 指向 N .虚线上的 A 、B 两处,各有一电子阀门 a 和 b .阀门可以根据指令开启或关闭.开始时两阀门都处于关闭 状态,挡住粒子流.M 、M ′ 是两块较大的平行金属平板,到虚线 O ′O 的距离都是 d ,板 M 接地.在两板间加上如图 2 所示的周期为 2T 的交变电压 u ,u 的正向最大值为 2U ,负 向最大值为 U .已知当带电粒子处在两平板间的空间时,若两平板间的电压为 U ,则粒子 在电场作用下的加速度 a 、电压 u 的半周期 T 和平板到虚线的距离 d 满足以下关系aT 2 = 1d5Y N MK AB bOaO ′M ′llll已知 AB 间的距离、B 到金属板左端的距离、金属板的长度以及金属板右端到屏的距离 都是 l .不计重力的作用.不计带电粒子间的相互作用.打开阀门上的粒子被阀门吸收,不 会影响以后带电粒子的运动.只考虑 MM ′ 之间的电场并把它视为匀强电场.1.假定阀门从开启到关闭经历的时间δ比 T 小得多,可忽略不计.现在某时刻突然开启 阀门 a 又立即关闭;经过时间 T ,再次开启阀门 a 又立即关闭;再经过时间 T ,第 3 次开 启阀门 a 同时开启阀门 b ,立即同时关闭 a 、b .若以开启阀门 b 的时刻作为图 2 中 t = 0 的时刻,则屏上可能出现的粒子痕迹的 Y 坐标(只要写出结果,不必写出计算过程)为.T 2.假定阀门从开启到关闭经历的时间δ = ,现在某时刻突然开启阀门 a ,经过时间10δ立即关闭 a ;从刚开启 a 的时刻起,经过时间 T ,突然开启阀门 b ,经过时间δ关闭 b .若以刚开启阀门 b 的时刻作为图 2 中 t = 0 的时刻,则从 B 处射出的具有最大速率的粒子射 到 屏 上 所 产 生 的 痕 迹 的 Y 坐 标 ( 只 要 写 出 结 果 , 不 必 写 出 计 算 过 程 ) 为.具有最小速率的粒子射到屏上所产生的痕迹的 Y 坐标(只要写出结果,不必写出计算过程) 为.天 科 学 堂 学 科 竞 赛 网五、如图所示,坐标系 Oxyz 的 x 轴和 z 轴都位于纸P面内,y 轴垂直纸面向里.两无限大金属极板 P 和 Q 分别位于 x = -d 和 x = d 处.磁感应强度大小为 B 的匀强磁场的方向平行于 Oxz 坐标平面,与 z 轴的夹 角为α .在坐标原点 O 处,有一电荷为 q (>0)、质 量为 m 的带电粒子,以沿 y 轴正方向的初速度 v 0 开 始运动.不计重力作用.1.若两极板间未加电场,欲使该粒子在空间上恰好能到达极板(但与板不接触),则初 速度 v 0 应为多大?所需最短时间 t 0 是多少?2.若在两极板间沿 x 轴正方向加上一场强为 E 的匀强电场,使该粒子能在第 1 问中所 π4 求得的时间 t 0 到达极板,则该粒子的初速度 v 0 应为多大?若α =,求粒子到达极板时粒子 的坐标.六、在高能物理中,实验证明,在实验室参考系中,一个运动的质子与一个静止的质子相碰 时,碰后可能再产生一个质子和一个反质子,即总共存在三个质子和一个反质子.试求发生 这一情况时,碰前那个运动质子的能量(对实验室参考系)的最小值(即阈值)是多少.已知质子和反质子的静止质量都是 m 0 = 1.67 × 10-27kg .不考虑粒子间的静电作用.第 23 届全国中学生物理竞赛决赛参考解答一、要使天梯相对于地球静止不动,由地面伸向太空,与地面之间无相互作用力,这样的天 梯的下端只能位于赤道上某处,且天梯与该处地球表面垂直,并与地球同步转动.如图 1 所示.O图 1从坐标原点与地球中心固连、坐标轴指向恒星的惯性参考系来看,天梯和地球一起匀速 转动.天梯所受的外力只有地球的万有引力.把天梯看作是由线密度为ρ的许多非常小的小段组成,则每小段到地球中心的距离不同,因而所受地球引力的大小也不同,其中与地心的 距离为 r i -1 到 r i 间的长度为△r i 的小段所受地球引力为M ρ△r if i = G(1)r 2i整个天梯所受的地球引力 F 就等于每小段所受地球引力之和, 即n nM ρr F =f i= ∑G i =1i =1∑ i(2)2rin符号∑ 表示对所有小段求和.因△r i= ri- r i -1 是个小量,注意到 r i r i -1 = r i ( i =1r i -△r i ) ≈r 2,因此i n∑ i =1 r in∑ i =1 r i - r i -1 = n∑ i =1 ( 1 r i -1 - 1 ) = 1 - 1 = 2 r i r i r i -1 r i r 0 r n 用 R 0 表示地球半径,也就是天梯下端到地心的距离,R l 表示天梯上端到地心的距离, 则 r 0 = R 0 ,r n = R l ,代入(2)式得1 1 F = GM ρ(- (3)) R 0 R l整个天梯的质量m = ρ ( R l -R 0 )(4)R 0天 科 学 堂 学 科 竞 赛 网天梯的质心位于天梯的中点,它到地心的距离-R 2R l 0(5)r C = R 0 +根据质心运动定理,有2π TF = mr C ( (6))2式中 T 为地球自转的周期. 由(3)、(4)、(5)、(6)式可得GMT 2( R l -R 0 ) ( R 2 + R 0R l - ) = 0l2π2R 0R l -R 0 = 0 ,表示天梯无长度,不符合题意,符合题意的天梯长度满足的方程为GMT 2 R 2R - (7)+ R = 0 0 l l 2π2R 0因为 GM = R 2g ,所以得 0R 0gT 2R 2 R - (8)+ R = 0 0 l l 2π2【从跟随地球一起转动的参考系看,也可得到(8)式.这时,天梯在地球引力和惯性 离心力的作用下,处于平衡静止状态,地球引力仍为(3)式,天梯所受的惯性离心力可由 下面的方法求得:仍把天梯看作由很多长度为△r i 的小段组成,则第 i 小段受的惯性离心力 为2π f i ′ = ρ△r i ( )2 r iT对所有小段求和,就得到整个天梯所受的惯性离心力(4′)'n∑ f ii =1n2π = ∑ρ( ) r i△ri(5′)F ′ =2T i =12π T(5′)式中所示的和可以用图 2 过原点的直线 y = ρ( )2r 下的一个带阴影的梯形面积 来表示,即2π ρ( )2 R lT2π Tρ()2 Rl图 22π T )2 R 0 + R l 2F ′ = ρ(( R l -R 0 ) (6′)因为地球引力与惯性离心力平衡,由(3)式和(6′)式可得1 1 2π T R 0 + R l 2GM ( - ) =( R 0 R l )2 ( R l -R 0 )(7′)因为 GM = R 2g ,化简(7′)式最后也能得到(8)式.】 0 解(8)式得(9)R l = 2根号前取正号,代入有关数据,注意到 T = 8.64 ×104 s ,得R l = 1.50 ×108 m(10)所以天梯的长度L = R l -R 0 = 1.44 ×108 m(11) 二、1.90 °.2.当矩形物处于竖直位置即θ = 0° 时,B 不会滑动,矩形物静止.当圆筒缓慢转动使θ 刚超过 0° 时,A 将离开圆筒内表面而开始倾倒,按题意此时圆筒已停止转动.假定 B 仍不 动,此后,A 在竖直平面内从静止开始绕 B 做圆周运动.圆周运动的径向方程(牛顿第二定 律)为v 2m = mg cos θ-T l(1)这里 v 表示 A 的速度.T 是刚性薄片对 A 的作用力,规定其方向从 B 到 A 为正.根据 能量守恒,有mgl (1-cos θ ) = 1mv 22联立(1)、(2)式,得(2)T = mg ( 3cos θ-2 )(3)如果令 T = 0 ,可得A2 θ = arccos ( ) = 48.2°3O120°显见,θ < 48.2° 时,作用力是径向正向,对 A 是推 θ 力;θ > 48.2° 时,作用力是径向反向,对 A 是拉力.B现在再来看前面被假定不动的 B 是否运动.我们可以30°在 B 处画圆筒内表面的切面,它与水平面成 30° 夹角.因为假定 B 不动,其加速度为零, 所以 B 在垂直于切面方向的受力方程为f ⊥-mg cos30°-T cos ( 30°-θ ) = 0(4)这里 f ⊥ 是圆筒内壁对 B 的支持力.由(4)式和(3)式可以论证,如果在θ等于 60°(A将与圆筒相碰)之前 B 不动,则 f ⊥ 必将始终不等于零,这就是说,在 B 开始滑动以前,B 不会离开筒壁.B 对筒壁的正压力是 f ⊥ 的反作用力,大小和 f ⊥ 相同.式中的 T 是刚性薄片 对 B 的作用力,它和(1)式中的 T 大小相等(因薄片质量不计).由于μ =1,所以最大静摩 擦力 f max 的大小就等于正压力.f max = μf ⊥ = mg cos30° + T cos ( 30°-θ )(5)其方向是沿切面方向.沿切面方向除摩擦力外,B 还受到其他力f ∥ = mg sin30° + T sin ( 30°-θ )(6)只要 f ∥ 不大于最大静摩擦力,B 就不滑动.这个条件写出来就是f ∥ ≤ (7)f maxB 滑动与否的临界点就应由 f ∥ = f max 求出,即mg cos30° + T cos ( 30°-θ ) = mg sin30° + T sin ( 30°-θ )(8)将(3)式的 T 代入(8)式,化简后得方程( 3cos θ -2 )[ cos θ + ( 2 + 3 )sin θ ] + 1 = 0 (9)这个方程可用数值求解,即取不同的θ值代入逐步逼近,最后可得θ = 54.9 ° (10) θ 超过此值,B 将开始滑动.三、设微气团中空气的质量为 m ,当其位移为 z 时,气团的体积为 V ,气团内气体的密度 为ρ ,气团周围大气的密度为ρe .气团受到竖直向下的重力mg = V ρg 和竖直向上的浮力V ρe g 作用,若气团的加速度为α,则由牛顿第二定律有 -V ρg + V ρe g = -V ( ρ -ρe )g (1)m α = 或有ρ -ρeρα = -g(2)根据理想气体状态方程pV = m(3)RTμ可知气体的密度m μpρ = = (4)V RT利用(4)式,注意到p = p e ,(2)式可化成T e-TT eα = -g(5)周围大气在z 处的温度T e 等于z = 0 处的温度T e0 加从0 到z 温度的增量,即△T e △z (6)T e = T e0 +z若气团中气体温度随高度的变化率为△T,根据题意,有△z△T e △z (7)T = T0 +zT0 为气团位于初始位置时气团中气体的温度.根据题意T e0 = T0 ,把(6)、(7)式代入(5)式得g △T e—△Tα = -( (8)) zT e △z △z△T e △T在(8)式中,若( -) >0 ,则加速度方向向下,作用于气团的力有使气团△z △z回到初始位置的趋势,这样,大气层中的大气就处于稳定状态;反之,气团将远离其初始位置,大气层中的大气处在不稳定状态.因周围大气温度随高度的变化率△T e是已知的,故只△z要知道气团中气体温度随高度的变化率,便可对气团的运动作出判断.大气的压强随高度的增加而减小,在高度为z 和z +△z 处的压强差△p e = -ρe g△z(9)式中ρe 为z 处的空气的密度,与温度、压强有关,由(4)式表示.式中负号表示高度增加时,大气压强是减小的.把(4)式代入(9)式得μp eRT e△p e =-g△z(10)质量为m 的气团在上升过程中,其压强将随周围大气的压强的减小而减小,体积要增大,气团对周围空气做功.因为过程是绝热的,气团的内能要减少,因而温度要降低,温度、压强的变化应满足绝热过程的规律.试题给出的绝热过程方程是关于压强与体积间的关系,利用理想气体状态方程,可把绝热过程方程表示为温度与压强间的关系.由(3)式得m RTμ pV = (11)把(11)式代入pV γ = C得1γ-1 p γC γ μ mR(12)T = 当气团的压强由 p 变到 p + △p 时,气团的温度将由 T 变到 T +△T .由(12)式1γ-1 γC γ μ mRT +△T = ( p + △p )利用二项式定理,忽略△p 的高次方项,并注意到(12)式得1γ-1[ p γ+ γ-1-1 γ-1 p γγγ-1 γ Cγ μmR T△p pT +△T = (△p ) ] = T +故有γ-1 T△T =△p (13)γ p根据题意,p = p e ,△p = △p e ,由(7)式、(10)式和(13)式得T 0 △T △z γ-1 γ μg R = - (14)△T e △z γ-1 γ μg RT e0 + ( + ) z已知△T e △z= -6.0 × 10-3 K ·m -1 ,代入有关数据可求得γ-1 μg=9.8 × 10-3 K ·m -1γ 当 z 不是很大时,有R△T e γ-1 μgR T e0 +( ) z ≈T e0 +△zγ 故有△T △z γ-1 μg= - (15)γ R代入题给的有关数据得△T △z= -9.8 × 10-3 K ·m -1(16)△T e△T 负号表示高度增加时,气团的温度要下降.可见 (- ) >0 ,作用于气团的 △z △z合力的方向与气团位移的方向相反,指向气团的初始位置,气团发生向上位移后,将要回到 初始位置.当 z 不是很大时,(8)式中的 T e 可以用 T e0 代替,可知气团将在初始位置附近天 科 学 堂 学 科 竞 赛 网做简谐振动.振动的圆频率(17)ω =代入数据,得ω = 1.1 × 10-2 s-1(18)四、1.Y 1 = -0.3d ,Y 2 = 0.9d . 2.Y ′ = -0.138d ,Y ′′ = -0.138d . 附参考解法:1.当阀门 a 第 1 次开启时,具有各种速率的粒子(称之为第一批粒子)从 A 处进入 AB 之间,在 a 第 2 次开启时刻,第一批粒子中速率为l T(1)v 1 =的粒子正好射到 B 处,被阀门 b 挡住.与此同时,第二批具有各种速率的粒子从 A 处 进入 AB 之间.在阀门 a 第 3 次开启的时刻,第一批进入 AB 间的粒子中速率为l = 1 2T 2(2)v 2 = v 1的粒子与第二批进入 AB 间的粒子中速率为 v 1 的粒子同时到达 B 处.因此时阀门 b 已开 启,这些粒子都从 B 处沿虚线射向两平行板,而第三批进入 AB 间的粒子在它们到达 B 处时, 被 b 挡住.由此可知,能从 B 处射向两平行板的粒子具有 v 1 和 v 2 两种不同的速率.根据题意,粒子从 B 处射出的时刻为 t = 0 ,故速率为v 1 的粒子在时刻l v 1t 1 == T 进入两平行板之间,由本题图 2 可知,两板间的电压u = -U粒子在两板间的电场作用下的加速度为-a ,粒子通过两板经历的时间为l v 1△t 1 = = T在△t 1 时间内粒子在 Y 方向获得的分速度和位移分别为v 1y = -a △t 1 = -aT(3)1 2 - 1 2- a (△t 1 )2 = (4)y 1 = aT 2 因 aT 2 = 1 d 5,故| y 1 | = 1 d < d ,表明速率为 v 1 的粒子能穿出平板,粒子穿出平10板后做匀速运动.在从射出平板至射到屏的时间内,粒子在 Y 方向的位移△y 1 = v 1yl = -aT 2(5)v 1粒子在屏上产生的痕迹的 Y 坐标为1 3 Y 1 = y 1 +△y 1 = — aT2 -aT 2 = 2 - aT 2 = -0.3d 2(6)速率为 v 2 的粒子在时刻l v 2t 2 == 2T 进入两平行板之间,由本题图 2 可知,两板间的电压u = 2U粒子在电场作用下的加速度为 2a ,粒子通过两板经历的时间为l v 2△t 2 = = 2T因为两板间的电压在时间△t 2 内由 2U 变为-U ,粒子的加速度亦将从 2a 变成-a ,由 此可求得在△t 2 时间内粒子在 Y 方向获得的分速度和位移分别为- (7)v 2y = 2aT aT = aT1 2( 2a )T 2 + ( 2aT )T - aT 2 = 5 aT 2 1 y 2 =(8)2 2 因 aT 2 = 1y 2 = 1 d ,故 d < d ,表明速率为 v 2 的粒子亦能穿出平板.粒子穿出平5 2板后做匀速运动.在从射出平板至射到屏的时间内,粒子在 Y 方向的位移△y 2 = v 2yl = 2aT 2(9)v 2粒子打在屏上产生的痕迹的 Y 坐标为Y 2 = y 2 +△y 2 = 529 aT 2 + 2aT 2 = aT 2 = 0.9d2 (10)即粒子在屏上产生的痕迹是两个点,它们的 Y 坐标分别为 Y 1 和 Y 2 .2.由于阀门从开启到关闭要经历一段时间,在阀门 a 开启到关闭经历的δ时间间隔内的不同时刻,都有各种不同速率的粒子从 A 处进入 AB 间,有的早进入,有的晚进入.由于阀 门 b 从开启到关闭也要经历一段时间δ ,粒子可能在最早的时刻即 t = 0 的时刻从 B 处射出, 也可能在最晚的时刻即 t = δ时刻从 B 处射出.在 a 刚开启的时刻从 A 处射入 AB 间,并在 t = δ时刻从 B 处射出的粒子的速率最小,这最小速率为v min =l (11)T + δ在阀门 a 刚要关闭时刻从 A 处射进 AB 间,并在 t = 0 的时刻从 B 处射出的粒子的速率最大,这最大速率为v max =l(12)T -δ在t = 0 时刻从B 处射出的速率为v max 的粒子在时刻l v max = T -δt1 =进入两平板之间,在时刻t1′ = t1 +l= 2T -2δv max离开两平板.由本题图2 可知,在T -δ到T 时间内,两板间的电压为2U ,在T 到2T -2δ时间内,两板间的电压为-U ,与电压对应的粒子的加速度分别为2a 和-a .在粒子通过平板的时间内,粒子在Y 方向获得的分速度和位移分别为- a (T -2δ) = -aT + 4aδ(13)v1y = 2aδ1 2 ( 2a ) δ2 + ( 2a ) δ(T -2δ)-1a (T2y1 =-2δ)212= -aT 2 + 4aδT -5aδ2(14)粒子穿出平板后做匀速运动.从射出平板至射到屏的时间内,粒子在Y 方向的位移△y1 = v1yl= (-aT + 4aδ) (T -δ) v max= -aT2 + 5aδT -4aδ2(15)粒子在屏上产生的痕迹的Y 坐标为3Y1 = y1 +△y1 =—aT2 + 9aTδ2-9aδ2(16)根据题意,代入数据得-0.138d(17)Y1 =在t = δ时刻从B 处射出的速度为v min 的粒子在时刻t2 = δ+l v min进入两平板之间,在时刻= T + 2δt2′ = t2 +l= 2T + 3δv min离开两平板.由本题图2 可知,在T + 2δ到2T 时间内,两板间的电压为-U ,在2T 到2T + 3δ时间内,两板间的电压为2U ,与电压对应的粒子的加速度分别为-a 和2a .在粒子通过平板的时间内,粒子在Y 方向获得的分速度和位移分别为- a (T -2δ) + ( 2a )3δ= -aT + 8aδ(18)v2y =天科学堂学科竞赛网- 121a (T -2δ)2 -a (T -2δ) 3δ+ ( 2a ) ( 3δ) 22y2 =1= -aT 2 -aTδ + 13aδ22(19)粒子穿出平板后做匀速运动.在从射出平板至射到屏的时间内,粒子在Y 方向的位移△y2 = v2ylv min= (-aT + 8aδ) (T + δ)= -aT2 + 7aTδ+ 8aδ2(20)粒子在屏上产生的痕迹的Y 坐标为3Y2 = y2 +△y2 =—aT2 + 6aTδ+221aδ2(21)根据题意,代入数据得Y2 =-0.138d(22)由以上分析可知,速率最小和速率最大的粒子打在屏上产生的痕迹是位于Y 轴上的同一点.五、解法一1.平行板间仅有磁场,带电粒子初速度v0 的方向垂直于磁场,在洛伦兹力的作用下,粒子将在垂直于磁场方向的平面内做匀速圆周运动,圆周半径mv0qBR0 =(1)轨道平面与Oxz 坐标平面的交线如图1 中NN ′所示.要使粒子刚能到达极板Q(与板刚未接触),圆心C 应是ON ′ 的中点,有zB QPαNαO xC N ′2d图1dCN ′ = R0 =(2)2cosα由(1)、(2)式得dqB 2m cos αv 0 =(3)粒子由 O 经过半个圆周到达 N ′ ,所经历的最短时间为圆周运动的半个周期T πm(4)t 0 = = 2 qB2.以 y 轴为旋转轴,顺时针转动α角,建立新坐标系 Ox ′y ′z ′ ,如图 2 所示.在新坐标系中电场强度 E 的分量为zz ′B y ,y ′αv 0E Oαx ′图 2(5)E x ′ = E cos α E y ′ = 0 E z ′ = E sin α 磁感应强度 B 的分量为(6)B x ′ = 0B y ′ = 0 B z ′ = B 带电粒子所受到的电场力的分量为f Ex ′ = qE x ′ = qE cos αf Ey ′ = 0f Ez ′ = qE z ′ = qE sin α(7)当带电粒子速度为 v 时,带电粒子所受到磁场力的分量为f Bx ′ = qv y ′Bf By ′ = -qv x ′Bf Bz ′ = 0(8)(i )关于带电粒子在 Ox ′y ′ 平面内的分运动现设想起始时刻带电粒子沿 y ′ 轴正方向的初速度v 0 用下式表示 v 0 = v 0 + v 1- v 1= v 2- v 1式中(9)v 2 = v 0 + v 1现把 v 0 看成沿 y ′ 轴负方向运动的速度 v 1 和沿 y ′ 轴正方向运动的 v 2 的合成.这样,与前者 联系的运动使带电粒子受到沿 x ′ 轴的负方向的磁场力作用,它与电场力的分量f Ex ′ 的方向相反,当 v 1 取数值E x ′ = Ev 1=cos α (10)B B时,与- v 1 相联系的磁场力与 f Ex ′ 的合力为零,其效果是带电粒子沿 y ′ 轴负方向以速度 v 1 做匀速运动;与后者联系的运动使带电粒子仅受到磁场力作用,此力的方向既垂直于磁场方 向(z ′ 轴方向),又垂直于速度 v 2 ,即位于 Ox ′y ′ 平面内,其大小为 (11)f x ′y ′ = qv 2B粒子在此力作用下在平面内做速度为 v 2 的匀速圆周运动,圆周的半径mv 2qB(12)R =其圆频率y ′v 2ωtOx ′图 3ω = qB(13)m由以上分析可知带电粒子一方面在 Ox ′y ′ 平面内做上述匀速圆周运动,另一方面圆心沿轴负方向以速度 v 1= Ecos α做匀速直线运动. B(ii )关于粒子沿 z ′ 轴的分运动y ′由(7)、(8)两式可知,粒子在 z ′ 方向仅受电场力作用,其加速度qE z ′= qE (14)a z ′ =sin α m m即粒子沿着 z ′ 轴以加速度 a z ′ 做匀加速直线运动. (iii )关于粒子在 Ox ′y ′z ′ 坐标系中的运动方程在只考虑圆周运动的情况下,粒子的坐标随时间变的关系为x ′ = R ( 1-cos ωt ) (15) (16)y ′ = R sin ωt(17)z ′ = 0考虑了圆心运动及粒子沿 z ′ 轴的运动并注意到(9)、(10)、(12)式,在 Ox ′y ′z ′ 坐标 系中,粒子的运动方程为mv 2qB mv 0 mE x ′ x ′ =( 1-cos ωt ) = ( + qB qB 2) ( 1-cos ωt ) (18) mv 0 qB mE x ′qB 2 E x ′ t By ′ = R sin ωt - v 1t = ( + ) sin ωt - (19) 1 qE z ′ t2(20)z ′ =2 m (iv )粒子在 Oxyz 坐标系中的运动方程 利用坐标变换x = x ′c os α + z ′sin α y = y ′z = -x ′sin α + z ′cos α并注意到(5)、(9)、(10)、(13)各式,可将(18)、(19)、(20)式转换至 Oxyz 坐标 系,得到粒子在 Oxyz 坐标系中的运动方程式为2 2 m qB m qB E cos α B ) ( 1-cos q Bt ) + 1 qE sin α 2 (21) x = ( v 0cos α +t m 2 mE cos α B )sin q Bt - E cos α (22) y = ( v 0 +t m E sin2α 2BBm qB ) ( 1-cos q Bt ) + qE sin2α t 2 4m z = - (23)( v 0sin α +m T πm 根据题意,将 x = d 和 t = t 0 = = 代(21)式,解得2 qB2qB d-mE ( 4cos 2α + π2sin 2α) 2 (24)v 0 =4mB cos απ 4 T πm 将α =,t = t 0 == 和(24)式代入(21)、(22)、(23)各式,可得粒子到达极 2 qB 板 Q 时粒子的坐标为x = d(25)2qB 2 y = -(26) π2mE z = -d +(27)2qB 2解法二1.与解法一相同.2.以 y 轴为旋转轴,顺时针转动α角,建立新坐标系 Ox ′y ′z ′,设粒子速度在坐标系 Ox ′y ′z ′中分量分别为 v x ′ 、v y ′ 、v z ′ ,牛顿第二定律的三个分量形式为d v x ′d td v y ′d t d v z ′d tm = qE x ′ + qv y ′ B (1) -qv x ′ B (2) m = (3)m= qE z ′ 将(2)式表示为d v y ′ d tqB d x ′m d t = -两边积分后得qB m-() x ′ + C 1 v y ′ = C 1 为待定常量,当 t = 0 时,x ′ = 0 ,v y ′ = v 0 ,故求得 C 1 = v 0 ,上式应表为v y ′ = qB x ′ + v 0- (4)m将(4)式代入(1)式,得d 2x ′ d t 2 qB x ′ + v ) Bm= qE + q (- x ′ 0 md 2x ′ d t 2 -( qB m qB m mv 0 + qBmE x ′ qB 2 = )2 x ′ + ( )2 ( ) (5) 令mv 0 + mE x ′ qB 2 (6) R = ( )qB ω = q Bm X ′ = x ′-R(7) (8)(5)式可表为d2X ′ d t 2= -ω2X ′ (9)这是简谐运动方程,其解为(10)X ′ = A cos ( ωt + θ )由(8)式得(11) x ′ = A cos ( ωt + θ ) + R d x ′ d t= -ωA sin ( ωt + θ ) (12)= vx ′ 利用初始条件,由(11)与(12)式,得-R = A cos θ0 = -ωA sin θ解得(13)θ = 0 A = -R再由(6)式,得mv 0 + mE x ′ qB qB 2A = -( (14)) 代入(11)式mv 0 + mE x′ ) ( 1-cos ωt ) (15)x ′ = ( qB qB 2将(12)式代入(2)式,整理后得d v y ′d t= ω2A sin ωt 对上式积分,考虑初始条件,得d y ′ = Ex ′B-ωA cos ωt - (16)v y ′ = d t 积分(16)式,考虑初始条件及(14)式,得mv 0 + qB mE x ′ qB 2 E x ′tBy ′ = ( ) sin ωt - (17)对(3)式积分可得qE z ′t 22m(18)z ′ = (15)、(17)、(18)式分别与解法一中的(18)、(19)、(20)式相同,接下去的讨论与 解法一相同.解法三设粒子速度在 Oxyz 坐标中分量分别为 v x 、v y 、v z ,牛顿第二定律的三个分量 方程为d v xd td v yd td v zd tm = qE x + qv y B z(1) m = -qv x B z + qv z B x(2) -qB x v y (3)m= 令qBmω =(4)v 1 = Ecos αB方程变为如下形式(5)d v xd t d v yd td v zd tωv 1 cos α = ωv y cos α + (6) -ωv x cos α + (7) = ωv z sin α -ωv y sin α (8) = 对(6)、(8)两式积分,利用初始条件 t = 0 时,v x = 0 ,x = 0 ,y = 0 ,得v 1 )tcos α v x = ωy cos α + (9) ω ( -ωy sin α(10)v z = 将(9)、(10)两式代入(7)式,得d v y d t-ω2y -ω2v 1t = -ω2 ( y + v 1t )= 令Y = y + v 1t(11)得d2Y d t 2= -ω2Y (12)其解为Y = A cos ( ωt + θ )由(11)式可得y = A cos ( ωt + θ ) -v 1t(13)由(13)式得v y = -A ωsin ( ωt + θ ) -v 1(14)由初始条件 t = 0 时,v y = v 0 ,y = 0 ,得A cos θ = 0 v 0 = -A ωsin θ-v 1解得π2v 1 +v 0 ωθ =A = -(15)由(15)式,注意到(4)式、(5)式,得天 科 学 堂 学 科 竞 赛 网 m qB E cos α B ) sin q Bt -E cos α (16) y =( v 0 + t m BE cos α B ) cos q Bt -E cos α v y = ( v 0 + (17) m B 把(17)式代入(1)式,经积分并利用初始条件,可得2 2 m qB E cos α B ) ( 1-cos q Bt ) + m 1 qE sin α t 2 (18)x = ( v 0cos α + 2 m 将(17)式代入(8)式,经积分并利用初始条件,得 m qB E sin2α 2B ) ( 1-cos q Bt ) + qE sin2α z = - ( v 0sin α + t 2 (19)m 4m (18)、(16)、(19)式分别与解法一中的(21)、(22)、(23)式相同,接下去的讨论与 解法一相同.六、在讨论本题之前,先看一下相对论能量和动量的普遍关系式,即( mc 2)2 = c 2p 2 + m 02c 4 (1)式中 c 为光在真空中的速度,m 为粒子的质量,p 为其动量,m 0 为静止质量.【此关系式可由能量E = mc 2和动量p = mv = 导出,v 为粒子的速度.m 02c 4 m 02v 2 E 2 -c 2p 2 = -c 2 v c v c 1- ( )2 1- ( )2v 1- ( )2 = m 02c 4 c = m 02c 4 v c1- ( )2 故 E 2 = c 2p 2 + m 02c 4 】由此关系式可知,对每一个粒子,其能量的平方与 p 2 成线性关系.解法从实验室参考系来看,碰前系统的总动量等于运动的那个质子的动量,设其方向沿 x 轴 正方向,碰撞前后系统的总动量守恒,总能量守恒.若要碰后能存在三个质子和一个反质子 且总能量为最小值,则可论证这四个粒子的动量必定相等.1.先讨论碰后四个粒子的动量都沿x 轴正方向的情况.令p1 、p2 、p3 、p4 分别表示它们动量的大小,这四个动量中,若有任何两个不相等,如p1 ≠p2 ,设p1 p2 ,则若将p1 增加△p(△p <p2 -p1)而将p2 减少△p(这时总动<量不变),则有( p1 +△p )2 -p12 = 2p1△p + (△p )2p22-( p2 -△p )2 = 2p2△p-(△p )2这样一来,第一个粒子能量的平方增加了c2 [ 2p1△p + (△p )2 ],而第二个粒子能量的平方减少了c2 [ 2p2△p-(△p )2 ],两个粒子能量平方的净增量为c2 [ 2p1△p + (△p )2 ]-c2 [ 2p2△p-(△p )2 ]= c2 [ 2△p ( p1-p2 +△p ) ]因已设p1 p2 ,且△p <p2 -p1 ,所以净增量是负的,总能量将减少.这就是说,<设p1 ≠p2 时对应的总能量并不是最小值.由此可判断,四个粒子的动量必相等.2.若四个粒子中,有一个粒子其动量p1 沿x 轴的负方向,因为总动量守恒,则必有沿x 轴正方向运动的另一粒子的动量增加了p1 ,因为能量的平方与p2 成线性关系,所以这时的总能量必然大于p1 沿x 轴正方向运动时的能量.也就是说,只要四个粒子中,有沿x 轴负方向运动的,则总能量必不是最小值.3.若四个粒子的动量的方向不在同一直线上,这时将它们沿x 轴方向和垂直于x 轴方向分解,沿x 轴方向总动量守恒;垂直于x 轴方向的动量互相抵消,但它们却使粒子的能量增大了,也就是说,这时的能量也不是最小值.总结以上可见,要想碰后四个粒子的总能量最小,根据总动量守恒、能量守恒及相对论能量和动量关系式可知,碰后四个粒子的动量必相等.设碰前运动质子的动量为p ,质量为m,碰后四个粒子的动量为p1 、p2 、p3 和p4 ,四个粒子的质量为m1 、m2 、m3 和m4 ,根据动量守恒和能量守恒,有p = p1 + p2 + p3 + p4 (2)mc2 + m0c2 = m1c2 + m2c2 + m3c2 + m4c2(3)由上面论述可知pp1 = p2 = p3 = p4 =(4)4再由(1)式可知,碰后四个粒子的能量从而质量必相等.以m′表示碰后四个粒子中每个粒子的质量,由(3)式得天科学堂学科竞赛网mc2 + m0c2 = 4m′c2(5)对碰前那个运动的质子,由相对论能量和动量关系有( mc2)2 = c2p2 + m02c4(6)对四个粒子中任一个粒子,由相对论能量和动量关系有p( m′c2)2 = c2 ( )2 + m02c4(7)4由(5)、(6)、(7)式可得mc2 = 7m0c2(8)代入数据得mc2 = 1.05 ×10-9 J (9)。
全国中学生物理竞赛决赛理论考试试题也许用到的物理常量和公式:真空中的光速82.99810/c m s =⨯;地球表面重力加速度大小为g ;普朗克常量为h ,2h π=; 2111ln ,1121x dx C x x x+=+<--⎰。
1、(15分)山西大同某煤矿相对于秦皇岛的高度为c h 。
质量为t m 的火车载有质量为c m 的煤,从大同沿大秦铁路行驶路程l 后到达秦皇岛,卸载后空车返回。
从大同到秦皇岛的过程中,火车和煤总势能的一部分克服铁轨和空气做功,其余部分由发电机转换成电能,平均转换效率为1η,电能被所有存储于蓄电池中以用于返程。
空车在返程中由储存的电能驱动电动机克服重力和阻力做功,储存的电能转化为对外做功的平均转换效率为2η。
假设大秦线轨道上火车平均每运营单位距离克服阻力需要做的功与运营时(火车或火车和煤)总重量成正比,比例系数为常数μ,火车由大同出发时携带的电能为零。
(1)若空车返回大同时尚有剩余的电能,求该电能E 。
(2)问火车至少装载质量为多少的煤,才干在不此外提供能量的条件下刚好返回大同?(3)已知火车在从大同到达秦皇岛的铁轨上运营的平均速率为v ,请给出发电机的平均输出功率P 与题给的其它物理量的关系。
2、(15分)如图a ,AB 为一根均质细杆,质量为m ,长度为2l ;杆上端B 通过一不可伸长的软轻绳悬挂到固定点O ,绳长为1l 。
开始时绳和杆均静止下垂,此后所有运动均在同一竖直面内。
(1)现对杆上的D 点沿水平方向施加一瞬时冲量I ,若在施加冲量后的瞬间,B 点绕悬点O 转动的角速度和杆绕其质心转动的角速度相同,求D 点到B 点的距离和B点绕悬点O 转动的初始角速度0ω。
(2)设在某时候,绳和杆与竖直方向的夹角分别为1θ和2θ(如图b 所示),绳绕固定点O 和杆绕其质心转动的角速度分别为1ω和2ω,求绳绕固定点O 和杆绕其质心转动的角加速度1α和2α3、(15分)火星大气可视为仅由很稀薄的2CO 组成,此大气的摩尔质量记为μ,且同一高度的大气可视为处在平衡态的抱负气体。
20XX年第二十三届全国初中应用物理竞赛试题解析20XX年第二十三届全国初中应用物理竞赛(巨人杯)试题注意事项:3.本试卷共有六个大题,满分100分。
4答卷时间:20XX年3月31日(星期日)上午9:30~11:10。
一、本题共10小题,每小题2分,共20分。
以下各小题给出的四个选项中只有一个是正确的,把正确选项前面的字母填在题后的括号内。
1.验钞机发出的“光”能使钞票上的荧光物质发光;家用电器的遥控器发出的“光”,能用来控制电风扇、电视机、空调器等电器的开启与关闭。
对于它们发出的“光”,下列说法中正确的是( )A.验钞机和遥控器发出的“光”都是紫外线B.验钞机和遥控器发出的“光”都是红外线C.验钞机发出的“光”是紫外线,遥控器发出的“光”是红外线D.验钞机发出的“光”是红外线,遥控器发出的“光”是紫外线答案:C解析:验钞机是利用紫外线的荧光效应来鉴别钞票真伪,所以验钞机发出的“光”是紫外线。
遥控器利用红外线传递信号来遥控的,所以遥控器发出的“光”是红外线,选项C正确。
2.在严寒的冬季,小明到滑雪场滑雪,恰逢有一块空地正在进行人工造雪。
他发现造雪机在工作过程中,不断地将水吸入,并持续地从造雪机的前方喷出“白雾”,而在“白雾”下方,已经沉积了厚厚的一层“白雪”,如图1所示。
对于造雪机在造雪过程中,水这种物质发生的最主要的物态变化,下列说法中正确的是( )A.凝华B.凝固C.升华D.液化答案:B解析:造雪机在造雪过程中,水这种物质发生的最主要的物态变化是凝固,选项B正确。
3.在有些地区,人们常在小河边洗衣服。
如图2所示,人们先把脏衣服浸泡在河水里,然后提出来放在石板上,用木棒捶打,水花四溅……,如此反复多次,直到衣服被洗净为止。
这里,用木棒捶打的主要目的是( )A.把衣服上的灰尘打碎,以便于洗涤B.增大木棒与灰尘之间的摩擦,将灰尘带走图2 图1第1 页(共9 页)C.迫使湿衣服里面的水从衣服纤维之间的缝隙中高速喷出,利用高速水流将灰尘冲洗掉D.木棒捶打,使衣服突然运动起来,而衣服上的灰尘由于具有惯性仍然静止,从而使灰尘脱离衣服答案:C解析:用木棒捶打的主要目的是,迫使湿衣服里面的水从衣服纤维之间的缝隙中高速喷出,利用高速水流将灰尘冲洗掉,选项C正确。
第23届全国中学生物理竞赛决赛试题2006年11月深圳★理论试题一、建造一条能通向太空的天梯,是人们长期的梦想.当今在美国宇航局(NASA )支持下,洛斯阿拉莫斯国家实验室的科学家已在进行这方面的研究.一种简单的设计是把天梯看作一条长度达千万层楼高的质量均匀分布的缆绳,它由一种高强度、很轻的纳米碳管制成,由传统的太空飞船运到太空上,然后慢慢垂到地球表面.最后达到这样的状态和位置:天梯本身呈直线状;其上端指向太空,下端刚与地面接触但与地面之间无相互作用;整个天梯相对于地球静止不动.如果只考虑地球对天梯的万有引力,试求此天梯的长度.已知地球半径R 0=6.37×106m ,地球表面处的重力加速度g =9.80m ·s -2.二、如图所示,一内半径为R 的圆筒(图中2R 为其内直径)位于水平地面上.筒内放一矩形物.矩形物中的A 、B 是两根长度相等、质量皆为m 的细圆棍,它们平行地固连在一质量可以不计的,长为l =R 的矩形薄片的两端.初始时矩形物位于水平位置且处于静止状态,A 、B 皆与圆筒内表面接触.已知A 、B 与圆筒内表面间的静摩擦因数μ都等于1.现令圆筒绕其中心轴线非常缓慢地转动,使A 逐渐升高.1.矩形物转过多大角度后,它开始与圆筒之间不再能保持相对静止? 答:___________________________(只要求写出数值,不要求写出推导过程)lA 2R2.如果矩形物与圆筒之间刚不能保持相对静止时,立即令圆筒停止转动.令θ表示A的中点和B的中点的连线与竖直线之间的夹角,求此后θ等于多少度时,B 相对于圆筒开始滑动.(要求在卷面上写出必要的推导过程.最后用计算器对方程式进行数值求解,最终结果要求写出三位数字.)三、由于地球的自转及不同高度处的大气对太阳辐射吸收的差异,静止的大气中不同高度处气体的温度、密度都是不同的.对于干燥的静止空气,在离地面的高度小于20km的大气层内,大气温度T e随高度的增大而降低,已知其变化率=-6.0×10-3K·m-1z为竖直向上的坐标.现考查大气层中的一质量一定的微小空气团(在确定它在空间的位置时可当作质点处理),取其初始位置为坐标原点(z=0),这时气团的温度T、密度ρ、压强p都分别与周围大气的温度T e、密度ρe、压强p e相等.由于某种原因,该微气团发生向上的小位移.因为大气的压强随高度的增加而减小,微气团在向上移动的过程中,其体积要膨胀,温度要变化(温度随高度变化可视为线性的).由于过程进行得不是非常快,微气团内气体的压强已来得及随时调整到与周围大气的压强相等,但尚来不及与周围大气发生热交换,因而可以把过程视为绝热过程.现假定大气可视为理想气体,理想气体在绝热过程中,其压强p与体积V满足绝热过程方程pVγ=C.式中C和γ都是常量,但γ与气体种类有关,对空气,γ=1.40.已知空气的摩尔质量μ=0.029kg?mol-1,普适气体恒量R=8.31J?(K?mol)-1.试在上述条件下定量讨论微气团以后的运动.设重力加速度g=9.8m·s-2,z=0处大气的温度T e0=300K.四、图1中K 为带电粒子发射源,从中可持续不断地射出质量、电荷都相同的带正电的粒子流,它们的速度方向都沿图中虚线O ′O ,速度的大小具有一切可能值但都是有限的.当粒子打在垂直于O ′O 的屏NN ′上时,会在屏上留下永久性的痕迹.屏内有一与虚线垂直的坐标轴Y ,其原点位于屏与虚线的交点O 处,Y 的正方向由O 指向N .虚线上的A 、B 两处,各有一电子阀门a 和b .阀门可以根据指令开启或关闭.开始时两阀门都处于关闭状态,挡住粒子流.M 、M ′是两块较大的平行金属平板,到虚线O ′O 的距离都是d ,板M 接地.在两板间加上如图2所示的周期为2T 的交变电压u ,u 的正向最大值为2U ,负向最大值为U .已知当带电粒子处在两平板间的空间时,若两平板间的电压为U ,则粒子在电场作用下的加速度a 、电压u 的半周期T 和平板到虚线的距离d 满足以下关系aT 2=d已知AB 间的距离、B 到金属板左端的距离、金属板的长度以及金属板右端到屏的距离都是l .不计重力的作用.不计带电粒子间的相互作用.打开阀门上的粒子被阀门吸收,不会影响以后带电粒子的运动.只考虑MM ′之间的电场并把它视为匀强电场.1.假定阀门从开启到关闭经历的时间δ比T 小得多,可忽略不计.现在某时刻突然开启阀门a 又立即关闭;经过时间T ,再次开启阀门a 又立即关闭;再经过时间T ,第3次开启阀门a 同时开启阀门b ,立即同时关闭a 、b .若以开启阀门b 的时刻作为图2中t =0的时刻,则屏上可能出现的粒子痕迹的Y 坐标(只要写出结果,不必写出计算过程)为t /T24681012u2U 图2KOMN NO M B A a bllll__________________________________________________________________________.2.假定阀门从开启到关闭经历的时间δ=,现在某时刻突然开启阀门a ,经过时间δ立即关闭a ;从刚开启a 的时刻起,经过时间T ,突然开启阀门b ,经过时间δ关闭b .若以刚开启阀门b 的时刻作为图2中t =0的时刻,则从B 处射出的具有最大速率的粒子射到屏上所产生的痕迹的Y 坐标(只要写出结果,不必写出计算过程)为_____________________________________________________________________________.具有最小速率的粒子射到屏上所产生的痕迹的Y 坐标(只要写出结果,不必写出计算过程)为_____________________________________________________________________________.五、如图所示,坐标系Oxyz 的x 轴和z轴都位于纸面内,y 轴垂直纸面向里.两无限大金属极板P 和Q 分别位于x =-d 和x =d 处.磁感应强度大小为B 的匀强磁场的方向平行于Oxz 坐标平面,与z 轴的夹角为α.在坐标原点O 处,有一电荷为q (>0)、质量为m的带电粒子,以沿y 轴正方向的初速度v 0开始运动.不计重力作用.1.若两极板间未加电场,欲使该粒子在空间上恰好能到达极板(但与板不接触),则初速度v 0应为多大?所需最短时间t 0是多少?2.若在两极板间沿x 轴正方向加上一场强为E 的匀强电场,使该粒子能在第1问中所求得的时间t 0到达极板,则该粒子的初速度v 0应为多大?若α=,求粒子到达极板时粒子的坐标.六、在高能物理中,实验证明,在实验室参考系中,一个运动的质子与一个静止的质子相碰时,碰后可能再产生一个质子和一个反质子,即总共存在三个质子和一个反质子.试求发生这一情况时,碰前那个运动质子的能量(对实验室参考系)的最小值(即阈值)是多少.已知质子和反质子的静止质量都是m 0=1.67×10-27kg .不考虑粒子间的静电作用.第23届全国中学生物理竞赛决赛参考解答一、要使天梯相对于地球静止不动,由地面伸向太空,与地面之间无相互作用力,这样的天梯的下端只能位于赤道上某处,且天梯与该处地球表面垂直,并与地球同步转动.如图1所示.从坐标原点与地球中心固连、坐标轴指向恒星的惯性参考系来看,天梯和地球一起匀速转动.天梯所受的外力只有地球的万有引力.把天梯看作是由线密度为ρ的许多非常小的小段组成,则每小段到地球中心的距离不同,因而所受地球引力的大小也不同,其中与地心的距离为r i -1到r i 间的长度为△r i 的小段所受地球引力为f i =G )(1)整个天梯所受的地球引力F 就等于每小段所受地球引力之和, 即F =1n i i f =∑=21nii i M r Gr ρ=∑(2)图1符号1ni =∑表示对所有小段求和.因△r i =r i -r i -1是个小量,注意到r i r i -1=r i (r i -△r i )≈r ,因此用R 0表示地球半径,也就是天梯下端到地心的距离,R l 表示天梯上端到地心的距离,则r 0=R 0,r n =R l ,代入(2)式得F =GM ρ(-)(3)整个天梯的质量m =ρ(R l -R 0)(4)天梯的质心位于天梯的中点,它到地心的距离r C =R 0+(5)根据质心运动定理,有F =mr C ()2(6)式中T 为地球自转的周期.由(3)、(4)、(5)、(6)式可得(R l -R 0)(R +R 0R l -)=0R l -R 0=0,表示天梯无长度,不符合题意,符合题意的天梯长度满足的方程为R +R 0R l -=0(7)因为GM =Rg ,所以得R +R 0R l -=0(8)【从跟随地球一起转动的参考系看,也可得到(8)式.这时,天梯在地球引力和惯性离心力的作用下,处于平衡静止状态,地球引力仍为(3)式,天梯所受的惯性离心力可由下面的方法求得:仍把天梯看作由很多长度为△r i 的小段组成,则第i 小段受的惯性离心力为f i ′=ρ△r i ()2r i (4′)对所有小段求和,就得到整个天梯所受的惯性离心力F ′=1ni i f ='∑=1ni ρ=∑()2r i △r i (5′)(5′)式中所示的和可以用图2过原点的直线y =ρ()2r 下的一个带阴影的梯形面积来表示,即F ′=ρ()2(R l -R 0)(6′)因为地球引力与惯性离心力平衡,由(3)式和(6′)式可得GM (-)=()2(R l -R 0)(7′)因为GM =Rg ,化简(7′)式最后也能得到(8)式.】 解(8)式得R l =+2R 0gT 2π2),2)(9)根号前取正号,代入有关数据,注意到T =8.64×104s ,得R l =1.50×108 m (10)所以天梯的长度L =R l -R 0=1.44×108 m (11)二、1.90°.2.当矩形物处于竖直位置即θ=0°时,B 不会滑动,矩形物静止.当圆筒缓慢转动使θ刚超过0°时,A将离开圆筒内表面而开始倾倒,按题意此时圆筒已停止OR 0R lρ()2R lρ()2R 0图2转动.假定B 仍不动,此后,A 在竖直平面内从静止开始绕B 做圆周运动.圆周运动的径向方程(牛顿第二定律)为m =mg cos θ-T (1)这里v 表示A 的速度.T 是刚性薄片对A 的作用力,规定其方向从B 到A 为正.根据能量守恒,有mgl (1-cos θ)=mv 2(2)联立(1)、(2)式,得T =mg (3cos θ-2)(3)如果令T =0,可得θ=arccos()=48.2°显见,θ<48.2°时,作用力是径向正向,对A 是推力;θ>48.2°时,作用力是径向反向,对A 是拉力.现在再来看前面被假定不动的B 是否运动.我们可以在B 处画圆筒内表面的切面,它与水平面成30°夹角.因为假定B 不动,其加速度为零,所以B 在垂直于切面方向的受力方程为f ⊥-mg cos30°-T cos(30°-θ)=0(4)这里f ⊥是圆筒内壁对B 的支持力.由(4)式和(3)式可以论证,如果在θ等于60°(A 将与圆筒相碰)之前B 不动,则f ⊥必将始终不等于零,这就是说,在B 开始滑动以前,B 不会离开筒壁.B 对筒壁的正压力是f ⊥的反作用力,大小和f ⊥相同.式中的T 是刚性薄片对B 的作用力,它和(1)式中的T 大小相等(因薄片质量不计).由于μ=1,所以最大静摩擦力f max 的大小就等于正压力.12030A θf max=μf⊥=mg cos30°+T cos(30°-θ)(5)其方向是沿切面方向.沿切面方向除摩擦力外,B还受到其他力f∥=mg sin30°+T sin(30°-θ)(6)只要f∥不大于最大静摩擦力,B就不滑动.这个条件写出来就是f∥≤f max(7)B滑动与否的临界点就应由f∥=f max求出,即mg cos30°+T cos(30°-θ)=mg sin30°+T sin(30°-θ)(8)将(3)式的T代入(8)式,化简后得方程(3cosθ-2)[cosθ+(2+)sinθ]+1=0(9)这个方程可用数值求解,即取不同的θ值代入逐步逼近,最后可得θ=54.9°(10)θ超过此值,B将开始滑动.三、设微气团中空气的质量为m,当其位移为z时,气团的体积为V,气团内气体的密度为ρ,气团周围大气的密度为ρe.气团受到竖直向下的重力mg=Vρg和竖直向上的浮力Vρe g作用,若气团的加速度为α,则由牛顿第二定律有mα=-Vρg+Vρe g=-V(ρ-ρe)g(1)或有α=-g(2)根据理想气体状态方程pV=RT(3)可知气体的密度ρ==(4)利用(4)式,注意到p=p e,(2)式可化成α=-g(5)周围大气在z处的温度T e等于z=0处的温度T e0加从0到z温度的增量,即T e=T e0+z(6)若气团中气体温度随高度的变化率为,根据题意,有T=T0+z(7)T0为气团位于初始位置时气团中气体的温度.根据题意T e0=T0,把(6)、(7)式代入(5)式得α=-(-)z(8)在(8)式中,若(-)>0,则加速度方向向下,作用于气团的力有使气团回到初始位置的趋势,这样,大气层中的大气就处于稳定状态;反之,气团将远离其初始位置,大气层中的大气处在不稳定状态.因周围大气温度随高度的变化率是已知的,故只要知道气团中气体温度随高度的变化率,便可对气团的运动作出判断.大气的压强随高度的增加而减小,在高度为z和z+△z处的压强差△p e=-ρe g△z(9)式中ρe为z处的空气的密度,与温度、压强有关,由(4)式表示.式中负号表示高度增加时,大气压强是减小的.把(4)式代入(9)式得△p e=-g△z(10)质量为m的气团在上升过程中,其压强将随周围大气的压强的减小而减小,体积要增大,气团对周围空气做功.因为过程是绝热的,气团的内能要减少,因而温度要降低,温度、压强的变化应满足绝热过程的规律.试题给出的绝热过程方程是关于压强与体积间的关系,利用理想气体状态方程,可把绝热过程方程表示为温度与压强间的关系.由(3)式得V=(11)把(11)式代入pVγ=C 得T=1Cγ1pγγ-(12)当气团的压强由p变到p+△p时,气团的温度将由T变到T+△T.由(12)式T+△T=1Cγ(p+△p)1γγ-利用二项式定理,忽略△p的高次方项,并注意到(12)式得T+△T=1Cγ[1pγγ-+11pγγ--(△p)]=T+△p故有△T=△p(13)根据题意,p=p e,△p=△p e,由(7)式、(10)式和(13)式得=-+)z)(14)已知=-6.0×10-3K·m-1,代入有关数据可求得=9.8×10-3K·m-1当z不是很大时,有T e0+(+)z≈T e0故有=-(15)代入题给的有关数据得=-9.8×10-3K·m-1(16)负号表示高度增加时,气团的温度要下降.可见(-)>0,作用于气团的合力的方向与气团位移的方向相反,指向气团的初始位置,气团发生向上位移后,将要回到初始位置.当z不是很大时,(8)式中的T e可以用T e0代替,可知气团将在初始位置附近做简谐振动.振动的圆频率ω=(17)代入数据,得ω=1.1×10-2s-1(18)四、1.Y1=-0.3d,Y2=0.9d.2.Y′=-0.138d,Y′′=-0.138d.附参考解法:1.当阀门a第1次开启时,具有各种速率的粒子(称之为第一批粒子)从A处进入AB之间,在a第2次开启时刻,第一批粒子中速率为v1=(1)的粒子正好射到B处,被阀门b挡住.与此同时,第二批具有各种速率的粒子从A处进入AB之间.在阀门a第3次开启的时刻,第一批进入AB间的粒子中速率为v2==v1(2)的粒子与第二批进入AB间的粒子中速率为v1的粒子同时到达B处.因此时阀门b已开启,这些粒子都从B处沿虚线射向两平行板,而第三批进入AB间的粒子在它们到达B处时,被b挡住.由此可知,能从B处射向两平行板的粒子具有v1和v2两种不同的速率.根据题意,粒子从B处射出的时刻为t=0,故速率为v1的粒子在时刻t1==T进入两平行板之间,由本题图2可知,两板间的电压u=-U粒子在两板间的电场作用下的加速度为-a,粒子通过两板经历的时间为△t1==T在△t1时间内粒子在Y方向获得的分速度和位移分别为v1y=-a△t1=-aT(3)y1=-a(△t1)2=-aT2(4)因aT2=d,故|y1|=d<d,表明速率为v1的粒子能穿出平板,粒子穿出平板后做匀速运动.在从射出平板至射到屏的时间内,粒子在Y方向的位移△y1=v1y=-aT2(5)粒子在屏上产生的痕迹的Y坐标为Y1=y1+△y1=-aT2-aT2=-aT2=-0.3d(6)速率为v2的粒子在时刻t2==2T进入两平行板之间,由本题图2可知,两板间的电压u=2U粒子在电场作用下的加速度为2a,粒子通过两板经历的时间为△t2==2T因为两板间的电压在时间△t2内由2U变为-U,粒子的加速度亦将从2a变成-a,由此可求得在△t2时间内粒子在Y方向获得的分速度和位移分别为v2y=2aT-aT=aT(7)y2=(2a)T2+(2aT)T-aT2=aT2(8)因aT2=d,故y2=d<d,表明速率为v2的粒子亦能穿出平板.粒子穿出平板后做匀速运动.在从射出平板至射到屏的时间内,粒子在Y方向的位移△y2=v2y=2aT2(9)粒子打在屏上产生的痕迹的Y坐标为Y2=y2+△y2=aT2+2aT2=aT2=0.9d(10)即粒子在屏上产生的痕迹是两个点,它们的Y坐标分别为Y1和Y2.2.由于阀门从开启到关闭要经历一段时间,在阀门a开启到关闭经历的δ时间间隔内的不同时刻,都有各种不同速率的粒子从A处进入AB间,有的早进入,有的晚进入.由于阀门b从开启到关闭也要经历一段时间δ,粒子可能在最早的时刻即t=0的时刻从B处射出,也可能在最晚的时刻即t=δ时刻从B处射出.在a刚开启的时刻从A处射入AB间,并在t=δ时刻从B处射出的粒子的速率最小,这最小速率为v min=(11)在阀门a刚要关闭时刻从A处射进AB间,并在t=0的时刻从B处射出的粒子的速率最大,这最大速率为v max=(12)在t=0时刻从B处射出的速率为v max的粒子在时刻t1==T-δ进入两平板之间,在时刻t1′=t1+=2T-2δ离开两平板.由本题图2可知,在T-δ到T时间内,两板间的电压为2U,在T到2T-2δ时间内,两板间的电压为-U,与电压对应的粒子的加速度分别为2a和-a.在粒子通过平板的时间内,粒子在Y方向获得的分速度和位移分别为v1y=2aδ-a(T-2δ)=-aT+4aδ(13)y1=(2a)δ2+(2a)δ(T-2δ)-a(T-2δ)2=-aT2+4aδT-5aδ2(14)粒子穿出平板后做匀速运动.从射出平板至射到屏的时间内,粒子在Y方向的位移△y1=v1y=(-aT+4aδ)(T-δ)=-aT2+5aδT-4aδ2(15)粒子在屏上产生的痕迹的Y坐标为Y1=y1+△y1=-aT2+9aTδ-9aδ2(16)根据题意,代入数据得Y1=-0.138d(17)在t=δ时刻从B处射出的速度为v min的粒子在时刻t2=δ+=T+2δ进入两平板之间,在时刻t2′=t2+=2T+3δ离开两平板.由本题图2可知,在T+2δ到2T时间内,两板间的电压为-U,在2T到2T+3δ时间内,两板间的电压为2U,与电压对应的粒子的加速度分别为-a 和2a.在粒子通过平板的时间内,粒子在Y方向获得的分速度和位移分别为v2y=-a(T-2δ)+(2a)3δ=-aT+8aδ(18)y2=-a(T-2δ)2-a(T-2δ)3δ+(2a)(3δ)2=-aT2-aTδ+13aδ2(19)粒子穿出平板后做匀速运动.在从射出平板至射到屏的时间内,粒子在Y方向的位移△y2=v2y=(-aT+8aδ)(T+δ)=-aT2+7aTδ+8aδ2(20)粒子在屏上产生的痕迹的Y坐标为Y2=y2+△y2=-aT2+6aTδ+21aδ2(21)根据题意,代入数据得Y2=-0.138d(22)由以上分析可知,速率最小和速率最大的粒子打在屏上产生的痕迹是位于Y轴上的同一点.五、解法一1.平行板间仅有磁场,带电粒子初速度v 0的方向垂直于磁场,在洛伦兹力的作用下,粒子将在垂直于磁场方向的平面内做匀速圆周运动,圆周半径R 0=(1)轨道平面与Oxz 坐标平面的交线如图1中NN ′所示.要使粒子刚能到达极板Q (与板刚未接触),圆心C 应是ON ′的中点,有CN ′=R 0=(2)由(1)、(2)式得v 0=(3)粒子由O 经过半个圆周到达N ′,所经历的最短时间为圆周运动的半个周期t 0==(4)2.以y 轴为旋转轴,顺时针转动α角,建立新坐标系Ox ′y ′z ′,如图2所示.在新坐标系中电场强度E 的分量为E x ′=E cos αE y ′=0E z ′=E sin α(5)图1zz By ,xO α图Ev 0α磁感应强度B的分量为B x′=0B y′=0B z′=B(6)带电粒子所受到的电场力的分量为f Ex′=qE x′=qE cosαf Ey′=0f Ez′=qE z′=qE sinα(7)当带电粒子速度为v时,带电粒子所受到磁场力的分量为f Bx′=qv y′Bf By′=-qv x′Bf Bz′=0(8)(i)关于带电粒子在Ox′y′平面内的分运动现设想起始时刻带电粒子沿y′轴正方向的初速度v0用下式表示v0=v0+v1-v1=v2-v1式中v2=v0+v1(9)现把v0看成沿y′轴负方向运动的速度v1和沿y′轴正方向运动的v2的合成.这样,与前者联系的运动使带电粒子受到沿x′轴的负方向的磁场力作用,它与电场力的分量f Ex′的方向相反,当v1取数值v1==cosα(10)时,与-v1相联系的磁场力与f Ex′的合力为零,其效果是带电粒子沿y′轴负方向以速度v1做匀速运动;与后者联系的运动使带电粒子仅受到磁场力作用,此力的方向既垂直于磁场方向(z′轴方向),又垂直于速度v2,即位于Ox′y′平面内,其大小为f x′y′=qv2B(11)粒子在此力作用下在平面内做速度为v2的匀速圆周运动,圆周的半径R=(12)其圆频率ω=B (13)由以上分析可知带电粒子一方面在Ox ′y ′平面内做上述匀速圆周运动,另一方面圆心沿y ′轴负方向以速度v 1=cos α做匀速直线运动.(ii )关于粒子沿z ′轴的分运动由(7)、(8)两式可知,粒子在z ′方向仅受电场力作用,其加速度a z ′==sin α(14)即粒子沿着z ′轴以加速度a z ′做匀加速直线运动. (iii )关于粒子在Ox ′y ′z ′坐标系中的运动方程 在只考虑圆周运动的情况下,粒子的坐标随时间变的关系为x ′=R (1-cos ωt )(15) y ′=R sin ωt (16) z ′=0(17)考虑了圆心运动及粒子沿z ′轴的运动并注意到(9)、(10)、(12)式,在Ox ′y ′z ′坐标系中,粒子的运动方程为x ′=(1-cos ωt )=(+)(1-cos ωt )(18) y ′=R sin ωt -v 1t =(+)sin ωt -t (19) z ′=t 2(20)图(iv)粒子在Oxyz坐标系中的运动方程利用坐标变换x=x′cosα+z′sinαy=y′z=-x′sinα+z′cosα并注意到(5)、(9)、(10)、(13)各式,可将(18)、(19)、(20)式转换至Oxyz坐标系,得到粒子在Oxyz坐标系中的运动方程式为x=(v0cosα+)(1-cos Bt)+t2(21)y=(v0+)sin Bt-t(22)z=-(v0sinα+)(1-cos Bt)+t2(23)根据题意,将x=d和t=t0==代(21)式,解得v0=(24)将α=,t=t0==和(24)式代入(21)、(22)、(23)各式,可得粒子到达极板Q时粒子的坐标为x=d(25)y=-(26)z=-d+(27)解法二1.与解法一相同.2.以y轴为旋转轴,顺时针转动α角,建立新坐标系Ox′y′z′,设粒子速度在坐标系Ox′y′z′中分量分别为v x′、v y′、v z′,牛顿第二定律的三个分量形式为m=qE x′+qv y′B(1)m=-qv x′B(2)m=qE z′(3)将(2)式表示为=-两边积分后得v y′=-()x′+C1C1为待定常量,当t=0时,x′=0,v y′=v0,故求得C1=v0,上式应表为v y′=-Bx′+v0(4)将(4)式代入(1)式,得m=qE x′+q(-x′+v0)B=-()2x′+()2(+)(5)令R=(+)(6)ω=B(7)X′=x′-R(8)(5)式可表为=-ω2X′(9)这是简谐运动方程,其解为X′=A cos(ωt+θ)(10)由(8)式得x′=A cos(ωt+θ)+R(11)=v x′=-ωA sin(ωt+θ)(12)利用初始条件,由(11)与(12)式,得-R=A cosθ0=-ωA sinθ解得θ=0(13)A=-R再由(6)式,得A=-(+)(14)代入(11)式x′=(+)(1-cosωt)(15)将(12)式代入(2)式,整理后得=ω2A sinωt对上式积分,考虑初始条件,得v y′==-ωA cosωt-(16)积分(16)式,考虑初始条件及(14)式,得y′=(+)sinωt-t(17)对(3)式积分可得z′=t2(18)(15)、(17)、(18)式分别与解法一中的(18)、(19)、(20)式相同,接下去的讨论与解法一相同.解法三设粒子速度在Oxyz坐标中分量分别为v x、v y、v z,牛顿第二定律的三个分量方程为m=qE x+qv y B z(1)m=-qv x B z+qv z B x(2)m=-qB x v y(3)令ω=(4)v1=cosα(5)方程变为如下形式=ωv y cosα+(6)=-ωv x cosα+ωv z sinα(7)=-ωv y sinα(8)对(6)、(8)两式积分,利用初始条件t=0时,v x=0,x=0,y=0,得v x=ωy cosα+ω()t(9)v z=-ωy sinα(10)将(9)、(10)两式代入(7)式,得=-ω2y-ω2v1t=-ω2(y+v1t)令Y=y+v1t(11)得=-ω2Y(12)其解为Y=A cos(ωt+θ)由(11)式可得y=A cos(ωt+θ)-v1t(13)由(13)式得v y=-Aωsin(ωt+θ)-v1(14)由初始条件t=0时,v y=v0,y=0,得A cosθ=0v0=-Aωsinθ-v1θ=A=-(15)由(15)式,注意到(4)式、(5)式,得y=(v0+)sin Bt-t(16)v y=(v0+)cos Bt-(17)把(17)式代入(1)式,经积分并利用初始条件,可得x=(v0cosα+)(1-cos Bt)+t2(18)将(17)式代入(8)式,经积分并利用初始条件,得z=-(v0sinα+)(1-cos Bt)+t2(19)(18)、(16)、(19)式分别与解法一中的(21)、(22)、(23)式相同,接下去的讨论与解法一相同.六、在讨论本题之前,先看一下相对论能量和动量的普遍关系式,即(mc2)2=c2p2+m02c4(1)式中c为光在真空中的速度,m为粒子的质量,p为其动量,m0为静止质量.【此关系式可由能量E=mc2和动量p=mv=导出,v为粒子的速度.E2-c2p2=-c2=m02c4=m02c4故E2=c2p2+m02c4】由此关系式可知,对每一个粒子,其能量的平方与p2成线性关系.从实验室参考系来看,碰前系统的总动量等于运动的那个质子的动量,设其方向沿x轴正方向,碰撞前后系统的总动量守恒,总能量守恒.若要碰后能存在三个质子和一个反质子且总能量为最小值,则可论证这四个粒子的动量必定相等.1.先讨论碰后四个粒子的动量都沿x轴正方向的情况.令p1、p2、p3、p4分别表示它们动量的大小,这四个动量中,若有任何两个不相等,如p1≠p2,设p1<p2,则若将p1增加△p(△p<p2-p1)而将p2减少△p(这时总动量不变),则有(p1+△p)2-p12=2p1△p+(△p)2p22-(p2-△p)2=2p2△p-(△p)2这样一来,第一个粒子能量的平方增加了c2[2p1△p+(△p)2],而第二个粒子能量的平方减少了c2[2p2△p-(△p)2],两个粒子能量平方的净增量为c2[2p1△p+(△p)2]-c2[2p2△p-(△p)2]=c2[2△p(p1-p2+△p)]因已设p1<p2,且△p<p2-p1,所以净增量是负的,总能量将减少.这就是说,设p1≠p2时对应的总能量并不是最小值.由此可判断,四个粒子的动量必相等.2.若四个粒子中,有一个粒子其动量p1沿x轴的负方向,因为总动量守恒,则必有沿x轴正方向运动的另一粒子的动量增加了p1,因为能量的平方与p2成线性关系,所以这时的总能量必然大于p1沿x轴正方向运动时的能量.也就是说,只要四个粒子中,有沿x轴负方向运动的,则总能量必不是最小值.3.若四个粒子的动量的方向不在同一直线上,这时将它们沿x轴方向和垂直于x轴方向分解,沿x轴方向总动量守恒;垂直于x轴方向的动量互相抵消,但它们却使粒子的能量增大了,也就是说,这时的能量也不是最小值.总结以上可见,要想碰后四个粒子的总能量最小,根据总动量守恒、能量守恒及相对论能量和动量关系式可知,碰后四个粒子的动量必相等.设碰前运动质子的动量为p,质量为m,碰后四个粒子的动量为p1、p2、p3和p4,四个粒子的质量为m1、m2、m3和m4,根据动量守恒和能量守恒,有p=p1+p2+p3+p4(2)mc2+m0c2=m1c2+m2c2+m3c2+m4c2(3)由上面论述可知p1=p2=p3=p4=(4)再由(1)式可知,碰后四个粒子的能量从而质量必相等.以m′表示碰后四个粒子中每个粒子的质量,由(3)式得mc2+m0c2=4m′c2(5)对碰前那个运动的质子,由相对论能量和动量关系有(mc2)2=c2p2+m02c4(6)对四个粒子中任一个粒子,由相对论能量和动量关系有(m′c2)2=c2()2+m02c4(7)由(5)、(6)、(7)式可得mc2=7m0c2(8)代入数据得mc2=1.05×10-9J(9)。
2013年第二十三届全国初中应用物理竞赛(巨人杯)试题一、本题共10小题,每小题2分,共20分。
1。
验钞机发出的“光”能使钞票上的荧光物质发光;家用电器的遥控器发出的“光”,能用来控制电风扇、电视机、空调器等电器的开启与关闭。
对于它们发出的“光”,下列说法中正确的是( )A。
验钞机和遥控器发出的“光”都是紫外线B.验钞机发出的“光"是紫外线,遥控器发出的“光”是红外线C。
验钞机和遥控器发出的“光”都是红外线D。
验钞机发出的“光”是红外线,遥控器发出的“光”是紫外线2.在严寒的冬季,小明到滑雪场滑雪,恰逢有一块空地正在进行人工造雪。
他发现造雪机在工作过程中,不断地将水吸入,并持续地从造雪机的前方喷出“白雾”,而在“白雾“下方,已经沉积了厚厚的一层“白雪",如图示.对于造雪机在造雪过程中,水这种物质发生的最主要的物态变化,下列说法中正确的是()A.凝华B.凝固 C。
升华 D。
液化’3。
在有些地区,人们常在小河边洗衣服。
如图示,人们先把脏衣服浸泡在河水里,然后提出来放在石板上,用木棒捶打,水花四溅……,如此反复多次,直到衣服被洗净为止.这里,用木棒捶打的主要目的是( )A。
把衣服上的灰尘打碎,以便于洗涤B。
增大木棒与灰尘之间的摩擦,将灰尘带走C.迫使湿衣服里面的水从衣服纤维之间的缝隙中高速喷出,利用高速水流将灰尘冲洗掉D.木棒捶打,使衣服突然运动起来,而衣服上的灰尘由于具有惯性仍然静止,从而使灰尘脱离衣服4。
如图示,海北中学有一个跑道为400 m的操场,在操场的主席台和观众席上方一字形排列着A、B、C三个相同的音箱。
在一次运动会的开幕式上,站在操场中的所有同学都可以听到音箱发出的足够大的声音,但站在某些位置的同学却感觉听不清音箱中播放的内容,在图中的l、2、3三个位置中,位于哪个位置附近的同学应该是“感觉听不清"的?( )A。
1 B.2 C.3 D。
在哪个位置都一样5。
炒菜时如果发生油锅起火现象,下列做法中最不应该的是 ( )A。
第23届全国中学生物理竞赛决赛试题2006年11月 深圳★ 理论试题一、建造一条能通向太空的天梯,是人们长期的梦想.当今在美国宇航局(NASA )支持下,洛斯阿拉莫斯国家实验室的科学家已在进行这方面的研究.一种简单的设计是把天梯看作一条长度达千万层楼高的质量均匀分布的缆绳,它由一种高强度、很轻的纳米碳管制成,由传统的太空飞船运到太空上,然后慢慢垂到地球表面.最后达到这样的状态和位置:天梯本身呈直线状;其上端指向太空,下端刚与地面接触但与地面之间无相互作用;整个天梯相对于地球静止不动.如果只考虑地球对天梯的万有引力,试求此天梯的长度.已知地球半径R 0 = 6.37 ×106 m ,地球表面处的重力加速度 g = 9.80 m ·s-2.二、如图所示,一内半径为R 的圆筒(图中2R 为其内直径)位于水平地面上.筒内放一矩形物.矩形物中的A 、B 是两根长度相等、质量皆为m 的细圆棍,它们平行地固连在一质量可以不计的,长为l = 3R 的矩形薄片的两端.初始时矩形物位于水平位置且处于静止状态,A 、B 皆与圆筒内表面接触.已知A 、B 与圆筒内表面间的静摩擦因数μ都等于1.现令圆筒绕其中心轴线非常缓慢地转动,使A 逐渐升高. 1.矩形物转过多大角度后,它开始与圆筒之间不再能保持相对静止?答:___________________________(只要求写出数值,不要求写出推导过程) 2.如果矩形物与圆筒之间刚不能保持相对静止时,立即令圆筒停止转动.令θ表示A 的中点和B 的中点的连线与竖直线之间的夹角,求此后θ等于多少度时,B 相对于圆筒开始滑动.(要求在卷面上写出必要的推导过程.最后用计算器对方程式进行数值求解,最终结果要求写出三位数字.)lA 2R三、由于地球的自转及不同高度处的大气对太阳辐射吸收的差异,静止的大气中不同高度处气体的温度、密度都是不同的.对于干燥的静止空气,在离地面的高度小于20 km的大气层内,大气温度T e 随高度的增大而降低,已知其变化率△T e△z= -6.0 × 10-3 K·m-1z为竖直向上的坐标.现考查大气层中的一质量一定的微小空气团(在确定它在空间的位置时可当作质点处理),取其初始位置为坐标原点(z = 0),这时气团的温度T 、密度ρ、压强p都分别与周围大气的温度T e 、密度ρe、压强p e 相等.由于某种原因,该微气团发生向上的小位移.因为大气的压强随高度的增加而减小,微气团在向上移动的过程中,其体积要膨胀,温度要变化(温度随高度变化可视为线性的).由于过程进行得不是非常快,微气团内气体的压强已来得及随时调整到与周围大气的压强相等,但尚来不及与周围大气发生热交换,因而可以把过程视为绝热过程.现假定大气可视为理想气体,理想气体在绝热过程中,其压强p与体积V满足绝热过程方程pV γ= C.式中C和γ都是常量,但γ与气体种类有关,对空气,γ= 1.40 .已知空气的摩尔质量μ= 0.029 kg • mol-1 ,普适气体恒量R = 8.31 J • ( K• mol )-1 .试在上述条件下定量讨论微气团以后的运动.设重力加速度g = 9.8 m·s-2 ,z = 0处大气的温度T e0= 300 K .四、图1中K为带电粒子发射源,从中可持续不断地射出质量、电荷都相同的带正电的粒子流,它们的速度方向都沿图中虚线O′O ,速度的大小具有一切可能值但都是有限的.当粒子打在垂直于O′O的屏NN′上时,会在屏上留下永久性的痕迹.屏内有一与虚线垂直的坐标轴Y ,其原点位于屏与虚线的交点O处,Y的正方向由O指向N.虚线上的A、B 两处,各有一电子阀门a和b.阀门可以根据指令开启或关闭.开始时两阀门都处于关闭状态,挡住粒子流.M、M′是两块较大的平行金属平板,到虚线O′O的距离都是d,板M接地.在两板间加上如图2所示的周期为2T的交变电压u,u 的正向最大值为2U,负向最大值为U.已知当带电粒子处在两平板间的空间时,若两平板间的电压为U,则粒子在电场作用下的加速度a、电压u的半周期T和平板到虚线的距离d满足以下关系aT2 = 1 5d已知AB 间的距离、B 到金属板左端的距离、金属板的长度以及金属板右端到屏的距离都是l .不计重力的作用.不计带电粒子间的相互作用.打开阀门上的粒子被阀门吸收,不会影响以后带电粒子的运动.只考虑MM ′ 之间的电场并把它视为匀强电场.1.假定阀门从开启到关闭经历的时间δ比T 小得多,可忽略不计.现在某时刻突然开启阀门a 又立即关闭;经过时间T ,再次开启阀门a 又立即关闭;再经过时间T ,第3次开启阀门a 同时开启阀门b ,立即同时关闭a 、b .若以开启阀门b 的时刻作为图2中t = 0的时刻,则屏上可能出现的粒子痕迹的Y 坐标(只要写出结果,不必写出计算过程)为__________________________________________________________________________.2.假定阀门从开启到关闭经历的时间δ =T10,现在某时刻突然开启阀门a ,经过时间δ立即关闭a ;从刚开启a 的时刻起,经过时间T ,突然开启阀门 b ,经过时间δ关闭b .若以刚开启阀门b 的时刻作为图2中t = 0的时刻,则从B 处射出的具有最大速率的粒子射到屏上所产生的痕迹的Y 坐标(只要写出结果,不必写出计算过程)为_____________________________________________________________________________.具有最小速率的粒子射到屏上所产生的痕迹的Y 坐标(只要写出结果,不必写出计算过程)为_____________________________________________________________________________.t / T0 2 4 6 8 10 12 u 2U-U图2K O ′M ′N ′NYOMB Aab ll ll 图1五、如图所示,坐标系Oxyz 的x 轴和z 轴都位于纸面内,y 轴垂直纸面向里.两无限大金属极板P 和Q 分别位于x = -d 和x = d 处.磁感应强度大小为B 的匀强磁场的方向平行于Oxz 坐标平面,与z 轴的夹角为α .在坐标原点O 处,有一电荷为q (>0)、质量为m 的带电粒子,以沿y 轴正方向的初速度v 0开始运动.不计重力作用.1.若两极板间未加电场,欲使该粒子在空间上恰好能到达极板(但与板不接触),则初速度v 0应为多大?所需最短时间t 0是多少?2.若在两极板间沿x 轴正方向加上一场强为E 的匀强电场,使该粒子能在第1问中所求得的时间t 0到达极板,则该粒子的初速度v 0应为多大?若α = π4 ,求粒子到达极板时粒子的坐标.六、在高能物理中,实验证明,在实验室参考系中,一个运动的质子与一个静止的质子相碰时,碰后可能再产生一个质子和一个反质子,即总共存在三个质子和一个反质子.试求发生这一情况时,碰前那个运动质子的能量(对实验室参考系)的最小值(即阈值)是多少.已知质子和反质子的静止质量都是m 0 = 1.67 × 10-27kg .不考虑粒子间的静电作用.P第23届全国中学生物理竞赛决赛参考解答一、要使天梯相对于地球静止不动,由地面伸向太空,与地面之间无相互作用力,这样的天梯的下端只能位于赤道上某处,且天梯与该处地球表面垂直,并与地球同步转动.如图1所示.从坐标原点与地球中心固连、坐标轴指向恒星的惯性参考系来看,天梯和地球一起匀速转动.天梯所受的外力只有地球的万有引力.把天梯看作是由线密度为ρ的许多非常小的小段组成,则每小段到地球中心的距离不同,因而所受地球引力的大小也不同,其中与地心的距离为r i -1 到r i 间的长度为△r i 的小段所受地球引力为f i = GM ρ△r ir 2i(1) 整个天梯所受的地球引力F 就等于每小段所受地球引力之和, 即F =1ni i f =∑=21nii iM r Gr ρ=∑ (2) 符号1ni =∑表示对所有小段求和.因△r i = r i - r i -1 是个小量,注意到r i r i -1 = r i ( r i -△r i ) ≈r 2i ,因此121111101111()nnnii i i i i i i i i i n r r r r rr r r r r -===---==-=-∑∑∑ 用R 0表示地球半径,也就是天梯下端到地心的距离,R l 表示天梯上端到地心的距离,则r 0 = R 0 ,r n = R l ,代入(2)式得F =G Mρ(1R 0 - 1R l) (3)整个天梯的质量m = ρ ( R l -R 0 ) (4)图1天梯的质心位于天梯的中点,它到地心的距离r C = R 0 +R l -R 02(5) 根据质心运动定理,有F = mr C ( 2πT)2 (6)式中T 为地球自转的周期. 由(3)、(4)、(5)、(6)式可得( R l -R 0 ) ( R 2l + R 0R l- GMT 22π2R 0) = 0 R l -R 0 = 0 ,表示天梯无长度,不符合题意,符合题意的天梯长度满足的方程为R 2l + R 0R l- GMT 22π2R 0= 0 (7) 因为GM = R 20g ,所以得R 2l + R 0R l- R 0gT 22π2= 0 (8)【从跟随地球一起转动的参考系看,也可得到(8)式.这时,天梯在地球引力和惯性离心力的作用下,处于平衡静止状态,地球引力仍为(3)式,天梯所受的惯性离心力可由下面的方法求得:仍把天梯看作由很多长度为△r i 的小段组成,则第i 小段受的惯性离心力为f i ′ = ρ△r i ( 2πT)2 r i (4′)对所有小段求和,就得到整个天梯所受的惯性离心力F ′ =1ni i f ='∑=1ni ρ=∑( 2πT )2 r i △r i (5′)(5′)式中所示的和可以用图2过原点的直线y = ρ( 2πT )2 r 下的一个带阴影的梯形面积来表示,即0l ρ( 2πT)2R l ρ(2πT)2R 0图2F ′ = ρ( 2πT )2 R 0 + R l2( R l -R 0 ) (6′)因为地球引力与惯性离心力平衡,由(3)式和(6′)式可得GM (1R 0 - 1R l ) =( 2πT )2 R 0 + R l2( R l -R 0 ) (7′) 因为GM = R 20g ,化简(7′)式最后也能得到(8)式.】解(8)式得R l =-R 0 ± R 20 + 2R 0gT2π2 2(9)根号前取正号,代入有关数据,注意到T = 8.64 ×104 s ,得R l = 1.50 ×108 m (10)所以天梯的长度L = R l -R 0 = 1.44 ×108 m (11)二、1.90 °.2.当矩形物处于竖直位置即θ = 0° 时,B 不会滑动,矩形物静止.当圆筒缓慢转动使θ刚超过0° 时,A 将离开圆筒内表面而开始倾倒,按题意此时圆筒已停止转动.假定B 仍不动,此后,A 在竖直平面内从静止开始绕B 做圆周运动.圆周运动的径向方程(牛顿第二定律)为m v 2l= mg cos θ-T (1)这里v 表示A 的速度.T 是刚性薄片对A 的作用力,规定其方向从B 到A 为正.根据能量守恒,有mgl (1-cos θ ) = 12mv 2 (2)联立(1)、(2)式,得T = mg ( 3cos θ-2 ) (3) 如果令 T = 0 ,可得θ = arccos ( 23) = 48.2°显见,θ < 48.2° 时,作用力是径向正向,对A 是推力;θ > 48.2° 时,作用力是径向反向,对A 是拉力.120°30°OABθ现在再来看前面被假定不动的B是否运动.我们可以在B处画圆筒内表面的切面,它与水平面成30°夹角.因为假定B不动,其加速度为零,所以B在垂直于切面方向的受力方程为f⊥-mg cos30°-T cos ( 30°-θ)= 0 (4)这里f⊥是圆筒内壁对B的支持力.由(4)式和(3)式可以论证,如果在θ等于60°(A将与圆筒相碰)之前B不动,则f⊥必将始终不等于零,这就是说,在B开始滑动以前,B不会离开筒壁.B对筒壁的正压力是f⊥的反作用力,大小和f⊥相同.式中的T是刚性薄片对B的作用力,它和(1)式中的T大小相等(因薄片质量不计).由于μ=1,所以最大静摩擦力f max的大小就等于正压力.f max = μf⊥= mg cos30° + T cos ( 30°-θ) (5)其方向是沿切面方向.沿切面方向除摩擦力外,B还受到其他力f∥= mg sin30° + T sin ( 30°-θ) (6)只要f∥不大于最大静摩擦力,B就不滑动.这个条件写出来就是f∥≤f max(7)B滑动与否的临界点就应由f∥= f max 求出,即mg cos30° + T cos ( 30°-θ) = mg sin30° + T sin ( 30°-θ) (8)将(3)式的T代入(8)式,化简后得方程( 3cosθ-2 )[ cosθ+ ( 2 + 3 )sinθ] + 1 = 0 (9)这个方程可用数值求解,即取不同的θ值代入逐步逼近,最后可得θ = 54.9°(10)θ超过此值,B将开始滑动.三、设微气团中空气的质量为m,当其位移为z时,气团的体积为V,气团内气体的密度为ρ,气团周围大气的密度为ρe .气团受到竖直向下的重力mg = Vρg和竖直向上的浮力Vρe g作用,若气团的加速度为α,则由牛顿第二定律有mα= -Vρg + Vρe g = -V( ρ-ρe ) g (1)或有α= -g ρ-ρeρ(2)根据理想气体状态方程pV = mμRT (3)可知气体的密度ρ = m V = μpRT(4)利用(4)式,注意到p = p e ,(2)式可化成α = -gT e -TT e(5) 周围大气在z 处的温度T e 等于z = 0处的温度T e0 加从0到z 温度的增量,即T e = T e0 +△T e △zz (6) 若气团中气体温度随高度的变化率为△T△z,根据题意,有T = T 0 +△T e △zz (7) T 0为气团位于初始位置时气团中气体的温度.根据题意T e0 = T 0 ,把(6)、(7)式代入(5)式得α = -g T e ( △T e△z - △T △z) z (8) 在(8)式中,若(△T e △z - △T △z) >0 ,则加速度方向向下,作用于气团的力有使气团回到初始位置的趋势,这样,大气层中的大气就处于稳定状态;反之,气团将远离其初始位置,大气层中的大气处在不稳定状态.因周围大气温度随高度的变化率△T e△z 是已知的,故只要知道气团中气体温度随高度的变化率,便可对气团的运动作出判断.大气的压强随高度的增加而减小,在高度为z 和z +△z 处的压强差△p e = -ρe g △z (9)式中ρe 为z 处的空气的密度,与温度、压强有关,由(4)式表示. 式中负号表示高度增加时,大气压强是减小的.把(4)式代入(9)式得△p e = -μp eRT eg △z (10) 质量为m 的气团在上升过程中,其压强将随周围大气的压强的减小而减小,体积要增大,气团对周围空气做功.因为过程是绝热的,气团的内能要减少,因而温度要降低,温度、压强的变化应满足绝热过程的规律.试题给出的绝热过程方程是关于压强与体积间的关系,利用理想气体状态方程,可把绝热过程方程表示为温度与压强间的关系.由(3)式得V = m μ RTp(11)把(11)式代入pV γ = C得T = 1C γμmR 1pγγ- (12)当气团的压强由p 变到 p + △p 时,气团的温度将由T 变到T +△T .由(12)式T +△T = 1C γμmR( p + △p )1γγ-利用二项式定理,忽略△p 的高次方项,并注意到(12)式得T +△T = 1C γμmR [1pγγ-+γ-1γ11pγγ-- (△p ) ] = T +γ-1γ Tp△p 故有△T =γ-1γ Tp△p (13) 根据题意,p = p e ,△p = △p e ,由(7)式、(10)式和(13)式得△T △z= - γ-1γ μgRT 0T e0 + ( △T e △z+ γ-1γ μg R ) z(14)已知△T e △z= -6.0 × 10-3 K ·m -1 ,代入有关数据可求得γ-1γ μg R=9.8 × 10-3 K ·m -1 当z 不是很大时,有T e0 +(△T e △z+ γ-1γ μgR ) z ≈T e0故有△T △z= - γ-1γ μgR (15)代入题给的有关数据得△T △z= -9.8 × 10-3 K ·m -1 (16) 负号表示高度增加时,气团的温度要下降.可见 (△T e △z - △T△z) >0 ,作用于气团的合力的方向与气团位移的方向相反,指向气团的初始位置,气团发生向上位移后,将要回到初始位置.当z 不是很大时,(8)式中的T e可以用T e0代替,可知气团将在初始位置附近做简谐振动.振动的圆频率ω =gT e0 (△T e△z-△T△z) (17)代入数据,得ω = 1.1 × 10-2 s-1(18)四、1.Y1 = -0.3d,Y2 = 0.9d .2.Y′ = -0.138d,Y′′ = -0.138d .附参考解法:1.当阀门a第1次开启时,具有各种速率的粒子(称之为第一批粒子)从A处进入AB 之间,在a第2次开启时刻,第一批粒子中速率为v1 = lT(1)的粒子正好射到B处,被阀门b挡住.与此同时,第二批具有各种速率的粒子从A处进入AB之间.在阀门a第3次开启的时刻,第一批进入AB间的粒子中速率为v2 =l2T=12 v1(2)的粒子与第二批进入AB间的粒子中速率为v1的粒子同时到达B处.因此时阀门b已开启,这些粒子都从B处沿虚线射向两平行板,而第三批进入AB间的粒子在它们到达B处时,被b挡住.由此可知,能从B处射向两平行板的粒子具有v1和v2两种不同的速率.根据题意,粒子从B处射出的时刻为t = 0 ,故速率为v1的粒子在时刻t1 = lv1= T进入两平行板之间,由本题图2可知,两板间的电压u = -U粒子在两板间的电场作用下的加速度为-a ,粒子通过两板经历的时间为△t1 = lv1= T在△t1时间内粒子在Y方向获得的分速度和位移分别为v1y = -a△t1 = -aT(3)y1 = -12 a (△t1 )2 = -12 aT2(4)因aT2 = 15 d,故| y1 | =110 d<d,表明速率为v1的粒子能穿出平板,粒子穿出平板后做匀速运动.在从射出平板至射到屏的时间内,粒子在Y方向的位移△y1 = v1y lv1= -aT2(5)粒子在屏上产生的痕迹的Y坐标为Y1 = y1 +△y1 = -12 aT2 -aT2 = -32 aT2 =-0.3d (6)速率为v2 的粒子在时刻t2 = lv2= 2T进入两平行板之间,由本题图2可知,两板间的电压u = 2U粒子在电场作用下的加速度为2a ,粒子通过两板经历的时间为△t2 = lv2= 2T因为两板间的电压在时间△t2内由2U变为-U,粒子的加速度亦将从2a变成-a,由此可求得在△t2时间内粒子在Y方向获得的分速度和位移分别为v2y = 2aT-aT = aT(7)y2 = 12 ( 2a )T2 + ( 2aT )T-12 aT2 =52 aT2(8)因aT2= 15 d,故y2=12 d<d,表明速率为v2的粒子亦能穿出平板.粒子穿出平板后做匀速运动.在从射出平板至射到屏的时间内,粒子在Y方向的位移△y2 = v2y lv2= 2aT2(9)粒子打在屏上产生的痕迹的Y坐标为Y2 = y2 +△y2 = 52 aT2 + 2aT2 =92 aT2 =0.9d (10)即粒子在屏上产生的痕迹是两个点,它们的Y坐标分别为Y1和Y2 .2.由于阀门从开启到关闭要经历一段时间,在阀门a开启到关闭经历的δ时间间隔内的不同时刻,都有各种不同速率的粒子从A处进入AB间,有的早进入,有的晚进入.由于阀门b从开启到关闭也要经历一段时间δ,粒子可能在最早的时刻即t = 0的时刻从B处射出,也可能在最晚的时刻即t = δ时刻从B处射出.在a刚开启的时刻从A处射入AB间,并在t = δ时刻从B处射出的粒子的速率最小,这最小速率为v min =lT + δ(11)在阀门a刚要关闭时刻从A处射进AB间,并在t = 0的时刻从B处射出的粒子的速率最大,这最大速率为v max =lT-δ(12)在t = 0时刻从B处射出的速率为v max的粒子在时刻t1 =lv max= T-δ进入两平板之间,在时刻t1′ = t1+lv max= 2T-2δ离开两平板.由本题图2可知,在T-δ到T时间内,两板间的电压为2U,在T到2T-2δ时间内,两板间的电压为-U ,与电压对应的粒子的加速度分别为2a和-a .在粒子通过平板的时间内,粒子在Y方向获得的分速度和位移分别为v1y = 2aδ-a (T-2δ) = -aT + 4aδ(13)y1 = 12 ( 2a )δ2 + ( 2a )δ(T-2δ)-12 a (T-2δ)2= -12 aT2 + 4aδT-5aδ2 (14)粒子穿出平板后做匀速运动.从射出平板至射到屏的时间内,粒子在Y方向的位移△y1 = v1ylv max= (-aT + 4aδ) (T-δ)= -aT2 + 5aδT-4aδ2 (15)粒子在屏上产生的痕迹的Y坐标为Y1 = y1 +△y1 = -32 aT2 + 9aTδ-9aδ2 (16)根据题意,代入数据得Y1 = -0.138d (17)在t = δ时刻从B处射出的速度为v min的粒子在时刻t2 = δ+lv min= T+ 2δ进入两平板之间,在时刻t2′ = t2+lv min= 2T+ 3δ离开两平板.由本题图2可知,在T+2δ到2T时间内,两板间的电压为-U,在2T到2T+ 3δ时间内,两板间的电压为2U ,与电压对应的粒子的加速度分别为-a和2a .在粒子通过平板的时间内,粒子在Y方向获得的分速度和位移分别为v2y = -a (T-2δ) + ( 2a )3δ= -aT + 8aδ(18)y2 = -12 a (T-2δ)2 -a (T-2δ) 3δ+12 ( 2a ) ( 3δ)2= -12 aT2 -aTδ+ 13aδ2 (19)粒子穿出平板后做匀速运动.在从射出平板至射到屏的时间内,粒子在Y方向的位移△y2 = v2ylv min= (-aT + 8aδ) (T+ δ)= -aT2 + 7aTδ+ 8aδ2 (20)粒子在屏上产生的痕迹的Y坐标为Y2 = y2 +△y2 = -32 aT2 + 6aTδ+ 21aδ2 (21)根据题意,代入数据得Y2 = -0.138d (22)由以上分析可知,速率最小和速率最大的粒子打在屏上产生的痕迹是位于Y轴上的同一点.五、解法一1.平行板间仅有磁场,带电粒子初速度v0的方向垂直于磁场,在洛伦兹力的作用下,粒子将在垂直于磁场方向的平面内做匀速圆周运动,圆周半径R0 = mv0qB(1)轨道平面与Oxz坐标平面的交线如图1中NN ′所示.要使粒子刚能到达极板Q(与板刚未接触),圆心C应是ON ′的中点,有P图1NCN ′ = R 0 = d 2cos α (2) 由(1)、(2)式得v 0 = dqB 2m cos α(3) 粒子由O 经过半个圆周到达N ′ ,所经历的最短时间为圆周运动的半个周期t 0 = T 2 = πm qB(4) 2.以y 轴为旋转轴,顺时针转动α角,建立新坐标系Ox ′y ′z ′ ,如图2所示.在新坐标系中电场强度E 的分量为E x ′ = E cos α E y ′ = 0 E z ′ = E sin α (5)磁感应强度B 的分量为B x ′ = 0 B y ′ = 0 B z ′ = B (6)带电粒子所受到的电场力的分量为f Ex ′ = qE x ′ = qE cos α f Ey ′ = 0 f Ez ′ = qE z ′ = qE sin α (7)当带电粒子速度为v 时,带电粒子所受到磁场力的分量为f Bx ′ = qv y ′B f By ′ = -qv x ′B f Bz ′ = 0 (8)(i )关于带电粒子在Ox ′y ′ 平面内的分运动现设想起始时刻带电粒子沿y ′ 轴正方向的初速度v 0用下式表示v 0 = v 0 + v 1- v 1= v 2- v 1式中v 2 = v 0 + v 1 (9)现把v 0看成沿y ′ 轴负方向运动的速度v 1和沿y ′ 轴正方向运动的v 2的合成.这样,与前者z z ′ B y ,y ′ x ′ O α 图2E v 0 α联系的运动使带电粒子受到沿x ′ 轴的负方向的磁场力作用,它与电场力的分量f Ex ′ 的方向相反,当v 1取数值v 1= E x ′B = E Bcos α (10) 时,与- v 1相联系的磁场力与f Ex ′ 的合力为零,其效果是带电粒子沿y ′ 轴负方向以速度v 1做匀速运动;与后者联系的运动使带电粒子仅受到磁场力作用,此力的方向既垂直于磁场方向(z ′ 轴方向),又垂直于速度v 2 ,即位于Ox ′y ′ 平面内,其大小为f x ′y ′ = qv 2B (11)粒子在此力作用下在平面内做速度为v 2的匀速圆周运动,圆周的半径R =mv 2qB (12) 其圆频率 ω = q mB (13) 由以上分析可知带电粒子一方面在Ox ′y ′ 平面内做上述匀速圆周运动,另一方面圆心沿y ′ 轴负方向以速度v 1= E Bcos α做匀速直线运动. (ii )关于粒子沿z ′ 轴的分运动由(7)、(8)两式可知,粒子在z ′ 方向仅受电场力作用,其加速度a z ′ = qE z ′m = qE msin α (14) 即粒子沿着z ′ 轴以加速度a z ′ 做匀加速直线运动.(iii )关于粒子在Ox ′y ′z ′ 坐标系中的运动方程在只考虑圆周运动的情况下,粒子的坐标随时间变的关系为x ′ = R ( 1-cos ωt ) (15)y ′ = R sin ωt (16)图3′z′ = 0 (17)考虑了圆心运动及粒子沿z ′轴的运动并注意到(9)、(10)、(12)式,在Ox′y′z′坐标系中,粒子的运动方程为x′ = mv2qB( 1-cosωt ) = (mv0qB+mE x′qB2) ( 1-cosωt ) (18)y′ = R sinωt -v1t = ( mv0qB+mE x′qB2) sinωt -E x′B t(19)z′ = 12qE z ′m t2(20)(iv)粒子在Oxyz坐标系中的运动方程利用坐标变换x = x′cosα+ z′sinαy = y′z = -x′sinα+ z′cosα并注意到(5)、(9)、(10)、(13)各式,可将(18)、(19)、(20)式转换至Oxyz坐标系,得到粒子在Oxyz坐标系中的运动方程式为x = mqB( v0cosα+E cos2αB) ( 1-cosqm Bt ) +12qE sin2αm t2(21)y = mqB( v0+E cosαB)sinqm Bt -E cosαB t(22)z = -mqB( v0sinα+E sin2α2B) ( 1-cosqm Bt ) +qE sin2α4m t2(23)根据题意,将x = d和t = t0 = T2=πmqB代(21)式,解得v0 = 2qB2d -mE ( 4cos2α+ π2sin2α)4mB cosα(24)将α= π4,t = t0 =T2=πmqB和(24)式代入(21)、(22)、(23)各式,可得粒子到达极板Q时粒子的坐标为x = d(25)y =-2πmE2qB2(26)z = -d + π2mE2qB2(27)解法二1.与解法一相同.2.以y轴为旋转轴,顺时针转动α角,建立新坐标系Ox′y′z′,设粒子速度在坐标系Ox ′y ′z ′ 中分量分别为v x ′ 、v y ′ 、v z ′ ,牛顿第二定律的三个分量形式为md v x ′d t = qE x ′ + qv y ′ B (1) md v y ′d t = -qv x ′ B (2) md v z ′d t= qE z ′ (3) 将(2)式表示为d v y ′d t = - qB m d x ′d t两边积分后得v y ′ = -( qB m) x ′ + C 1 C 1为待定常量,当t = 0时,x ′ = 0 ,v y ′ = v 0 ,故求得C 1 = v 0 ,上式应表为v y ′ = - q mB x ′ + v 0 (4) 将(4)式代入(1)式,得m d 2x ′d t 2 = qE x ′ + q (- qB mx ′ + v 0 ) B d 2x ′d t 2 = -( qB m )2 x ′ + ( qB m )2 ( mv 0qB + mE x ′qB 2) (5) 令R = ( mv 0qB + mE x ′qB 2) (6) ω = q mB (7) X ′ = x ′-R (8)(5)式可表为d 2X ′d t 2= -ω2X ′ (9) 这是简谐运动方程,其解为X ′ = A cos ( ωt + θ ) (10)由(8)式得x ′ = A cos ( ωt + θ ) + R (11)d x ′d t= v x ′ = -ωA sin ( ωt + θ ) (12) 利用初始条件,由(11)与(12)式,得-R = A cos θ0 = -ωA sinθ解得θ = 0 (13)A =-R再由(6)式,得A =-(mv0qB+mE x ′qB2) (14)代入(11)式x′ = (mv0qB+mE x ′qB2) ( 1-cosωt ) (15)将(12)式代入(2)式,整理后得d v y ′d t= ω2A sinωt对上式积分,考虑初始条件,得v y ′= d y ′d t= -ωA cosωt-E x ′B(16)积分(16)式,考虑初始条件及(14)式,得y′ = (mv0qB+mE x ′qB2) sinωt-E x ′B t(17)对(3)式积分可得z′ =qE z ′2m t2(18)(15)、(17)、(18)式分别与解法一中的(18)、(19)、(20)式相同,接下去的讨论与解法一相同.解法三设粒子速度在Oxyz坐标中分量分别为v x 、v y 、v z ,牛顿第二定律的三个分量方程为m d v xd t= qE x + qv y B z(1)m d v yd t=-qv x B z + qv z B x(2)m d v zd t= -qB x v y(3)令ω= qBm(4)v1 = EB cosα(5)方程变为如下形式d v xd t= ωv y cosα+ ωv1cosα(6)d v yd t=-ωv x cosα+ ωv z sinα(7)d v zd t= -ωv y sinα(8)对(6)、(8)两式积分,利用初始条件t = 0时,v x = 0 ,x= 0 ,y= 0 ,得v x = ωy cosα+ ω (v1cosα)t(9)v z = -ωy sinα(10)将(9)、(10)两式代入(7)式,得d v yd t=-ω2y-ω2v1t =-ω2 ( y+ v1t )令Y = y+ v1t(11)得d2Yd t2= -ω2Y(12)其解为Y = A cos ( ωt + θ)由(11)式可得y = A cos ( ωt + θ)-v1t(13)由(13)式得v y= -Aωsin ( ωt + θ)-v1(14)由初始条件t = 0时,v y= v0 ,y = 0 ,得A cosθ= 0v0 = -Aωsinθ-v1解得θ= π2 A = -v1 + v0ω(15)由(15)式,注意到(4)式、(5)式,得y = m qB ( v 0 + E cos αB ) sin q m Bt -E cos αBt (16) v y = ( v 0 +E cos αB ) cos q m Bt -E cos αB (17) 把(17)式代入(1)式,经积分并利用初始条件,可得x = m qB ( v 0cos α + E cos 2αB ) ( 1-cos q m Bt ) + 12 qE sin 2αmt 2 (18) 将(17)式代入(8)式,经积分并利用初始条件,得z = - m qB ( v 0sin α + E sin2α2B ) ( 1-cos q m Bt ) + qE sin2α4mt 2 (19) (18)、(16)、(19)式分别与解法一中的(21)、(22)、(23)式相同,接下去的讨论与解法一相同.六、在讨论本题之前,先看一下相对论能量和动量的普遍关系式,即( mc 2)2 = c 2p 2 + m 02c 4 (1)式中c 为光在真空中的速度,m 为粒子的质量,p 为其动量,m 0为静止质量.【此关系式可由能量E = mc 2和动量p = mv = m 0v1- ( v c )2导出,v 为粒子的速度.E 2 -c 2p 2 = m 02c 41- ( v c )2 -c 2 m 02v 21- ( v c)2 = m 02c 4 1- ( v c )21- ( v c)2 = m 02c 4 故 E 2 = c 2p 2 + m 02c 4 】由此关系式可知,对每一个粒子,其能量的平方与p 2 成线性关系.解法从实验室参考系来看,碰前系统的总动量等于运动的那个质子的动量,设其方向沿x 轴正方向,碰撞前后系统的总动量守恒,总能量守恒.若要碰后能存在三个质子和一个反质子且总能量为最小值,则可论证这四个粒子的动量必定相等.1.先讨论碰后四个粒子的动量都沿x 轴正方向的情况.令p1、p2、p3、p4分别表示它们动量的大小,这四个动量中,若有任何两个不相等,如p1 ≠p2 ,设p1<p2 ,则若将p1增加△p(△p<p2 -p1)而将p2减少△p(这时总动量不变),则有( p1 +△p )2-p12 = 2p1△p + (△p )2p22-( p2-△p )2= 2p2△p-(△p )2这样一来,第一个粒子能量的平方增加了c2[ 2p1△p + (△p )2 ],而第二个粒子能量的平方减少了c2[ 2p2△p-(△p )2 ],两个粒子能量平方的净增量为c2[ 2p1△p + (△p )2 ]-c2[ 2p2△p-(△p )2 ]= c2[ 2△p( p1-p2+△p ) ]因已设p1<p2 ,且△p<p2 -p1 ,所以净增量是负的,总能量将减少.这就是说,设p1 ≠p2时对应的总能量并不是最小值.由此可判断,四个粒子的动量必相等.2.若四个粒子中,有一个粒子其动量p1沿x轴的负方向,因为总动量守恒,则必有沿x轴正方向运动的另一粒子的动量增加了p1 ,因为能量的平方与p2成线性关系,所以这时的总能量必然大于p1沿x轴正方向运动时的能量.也就是说,只要四个粒子中,有沿x轴负方向运动的,则总能量必不是最小值.3.若四个粒子的动量的方向不在同一直线上,这时将它们沿x轴方向和垂直于x轴方向分解,沿x轴方向总动量守恒;垂直于x轴方向的动量互相抵消,但它们却使粒子的能量增大了,也就是说,这时的能量也不是最小值.总结以上可见,要想碰后四个粒子的总能量最小,根据总动量守恒、能量守恒及相对论能量和动量关系式可知,碰后四个粒子的动量必相等.设碰前运动质子的动量为p ,质量为m ,碰后四个粒子的动量为p1、p2、p3 和p4 ,四个粒子的质量为m1、m2、m3和m4 ,根据动量守恒和能量守恒,有p = p1 +p2 +p3 + p4(2)mc2 + m0c2 = m1c2 + m2c2 + m3c2 + m4c2(3)由上面论述可知p1 =p2 = p3 = p4 = p4(4)再由(1)式可知,碰后四个粒子的能量从而质量必相等.以m′表示碰后四个粒子中每个粒子的质量,由(3)式得mc2 + m0c2 = 4m′c2(5)对碰前那个运动的质子,由相对论能量和动量关系有( mc2)2 = c2p2+ m02c4(6)对四个粒子中任一个粒子,由相对论能量和动量关系有( m′c2)2 = c2 (p4)2+ m02c4(7)由(5)、(6)、(7)式可得mc2 = 7m0c2(8)代入数据得mc2 = 1.05 ×10-9 J(9)。