四川省中考数学试题(含答案)
- 格式:docx
- 大小:1.26 MB
- 文档页数:16
2024年四川省南充市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1 )A .点AB .点BC .点CD .点D2.学校举行篮球技能大赛,评委从控球技能和投球技能两方面为选手打分,各项成绩均按百分制计,然后再按控球技能占60%,投球技能占40%计算选手的综合成绩(百分制人选手李林控球技能得90分,投球技能得80分.李林综合成绩为( )A .170分B .86分C .85分D .84分【答案】B【分析】本题考查求加权平均数,利用加权平均数的计算方法,进行求解即可.【详解】解:9060%8040%86⨯+⨯=(分);故选B .3.如图,两个平面镜平行放置,光线经过平面镜反射时,1240∠=∠=︒,则3∠的度数为( )A .80︒B .90︒C .100︒D .120︒【答案】C 【分析】本题考查利用平行线的性质求角的度数,平角的定义求出4∠的度数,再根据平行线的性质,即可得出结果.【详解】解:∵1240∠=∠=︒,∴418012100∠=︒-∠-∠=︒,∵两个平面镜平行放置,∴经过两次反射后的光线与入射光线平行,∴34100∠=∠=︒;故选C .4.下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ⋅=D .()326327a a =【答案】D【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行判断即可.【详解】解:A 、23,a a 不能合并,原选项计算错误,不符合题意;B 、844a a a ÷=,原选项计算错误,不符合题意;C 、235a a a ⋅=,原选项计算错误,不符合题意;D 、()326327a a =,原选项计算正确,符合题意;故选D .5.如图,在Rt ABC 中,90306C B BC ∠=︒∠=︒=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A B C .2D .3【答案】C 【分析】本题主要考查解直角三角形和角平分线的性质,垂线段最短,根据题意求得BAC ∠和AC ,结合角平分线的性质得到CAD ∠和DC ,当DE AB ⊥时,线段DE 长度的最小,结6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .779(1)x y x y+=⎧⎨-=⎩B .779(1)x y x y +=⎧⎨+=⎩C .779(1)x y x y -=⎧⎨-=⎩D .779(1)x y x y-=⎧⎨+=⎩【答案】A 【分析】根据“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”分别列出两个方程,联立成方程组即可.【详解】根据题意有779(1)x y x y+=⎧⎨-=⎩故选:A .【点睛】本题主要考查列二元一次方程组,读懂题意找到等量关系是解题的关键.7.若关于x 的不等式组2151x x m -<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <,∴13m +≥,∴2m ≥;故选B .8.如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,以BC 长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 长为半径画弧,交AB 于点E .若AE mAB =,则m 的值为( )A B C 1D 29.当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A10.如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形ABCD 中,10AB =.下列三个结论:①若3tan 4ADF ∠=,则2EF =;②若Rt ABG △的面积是正方形EFGH 面积的3倍,则点F 是AG 的三等分点;③将ABG 绕点A 逆时针旋转90︒得到ADG '△,则BG '的最大值为5.其中正确的结论是( )A.①②B.①③C.②③D.①②③∴2255BO OA AB =+=∴555BG BO OG ''≤+=+即:BG '的最大值为55+故选D .【点睛】本题考查解直角三角形,勾股定理,旋转的性质,解一元二次方程,求圆外一点到圆上一点的最值,熟练掌握相关知识点,并灵活运用,是解题的关键.二、填空题11.计算---a b a b a b 的结果为 .12.若一组数据6,6,m ,7,7,8的众数为7,则这组数据的中位数为.【答案】7【分析】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据13.如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.14.已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.15.如图,在矩形ABCD 中,E 为AD 边上一点,30ABE ∠=︒,将ABE 沿BE 折叠得FBE ,连接CF ,DF ,若CF 平分BCD ∠,2AB =,则DF 的长为 .∴90CMF CNF ∠=∠=︒,∵四边形ABCD 是矩形,∴90DCM ABC ∠=∠=︒,∴四边形CMFN 是矩形,16.已知抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),且AB CD =.下列四个结论:①1C 与2C 交点为(1,1)-;②4m n +=;③0mn >;④A ,D 两点关于(1,0)-对称.其中正确的结论是 .(填写序号)【点睛】本题考查了二次函数的图象与性质,二次函数与一元二次方程的关系,解一元二次方程,根的判别式,熟练掌握知识点的应用是解题的关键.三、解答题17.先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.【答案】41x +,7-【分析】本题主要考查了整式的化简求值,运用完全平方公式展开,先算除法,再算加减法,最后代入求值即可.【详解】解:原式()()22443x x x =++-+22443x x x =++--41x =+,当2x =-时,原式4(2)17=⨯-+=-.18.如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE =【答案】(1)见解析(2)见解析【分析】本题考查全等三角形的判定和性质,中垂线的判定和性质:(1)由中点,得到BD CD =,由BE AC ∥,得到,E DAC DBE C ∠=∠∠=∠,即可得证;(2)由全等三角形的性质,得到ED AD =,进而推出BD 垂直平分AE ,即可得证.【详解】(1)证明:D 为BC 的中点,BD CD ∴=.,BE AC ∥,E DAC DBE C ∴∠=∠∠=∠;在BDE 和CDA 中,E DAC DBE C BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS BDE CDA ∴ ≌;(2)证明:,BDE CDA △≌△ED AD∴=,AD BC ⊥ BD ∴垂直平分AE ,BA BE ∴=.19.某研学基地开设有A ,B ,C ,D 四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).根据图中信息,解答下列问题:(1)参加调查统计的学生中喜爱B 类研学项目有多少人?在扇形统计图中,求C 类研学项目所在扇形的圆心角的度数.(2)从参加调查统计喜爱D 类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.20.已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨21.如图,直线y kx b =+经过(0,2),(1,0)A B --两点,与双曲线(0)my x x=<交于点(,2)C a .(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.综上:点P 坐标为(4,0)-或(1,0)-或(1,0)或(4,0).22.如图,在O 中,AB 是直径,AE 是弦,点F 是»AE 上一点,AF BE =,,AE BF 交于点C ,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==,求O 的半径长.23.2024年“五一”假期期间,阆中古城景区某特产店销售A ,B 两类特产.A 类特产进价50元/件,B 类特产进价60元/件.已知购买1件A 类特产和1件B 类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件(2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x 得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元.根据题意得()35132540x x +-=.解得60x =.则每件B 类特产的售价1326072-=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件.(2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =--++⨯-221040180010(2)1840x x x =-++=--+.100,-<Q ∴当2x =时,w 有最大值1840.答:A 类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.24.如图,正方形ABCD 边长为6cm ,点E 为对角线AC 上一点,2CE AE =,点P 在AB 边上以1cm /s 的速度由点A 向点B 运动,同时点Q 在BC 边上以2cm /s 的速度由点C 向点B 运动,设运动时间为t 秒(03t <≤).(1)求证:AEP CEQ ∽.(2)当EPQ △是直角三角形时,求t 的值.(3)连接AQ ,当1tan 3AQE ∠=时,求AEQ △的面积.①当90EPQ ∠=︒时,有即22416324t t t -+=-解得12623,6t t =-=②当90PEQ ∠=︒时,有又2CE AE = ,13AE AE AC AF ∴==1tan 3AFE ∴∠=.125.已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.l y=,则(N'由题意得直线:4。
2024年四川省广安市中考数学试题+答案详解(试题部分)注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分.考试时间120分钟,满分120分.2.考生答题前,请先将姓名、准考证号等信息用黑色墨迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致.3.请将选择题答案用2B 铅笔填涂在答题卡上的相应位置,非选择题用0.5毫米黑色字迹签字笔答在答题卡上的相应位置.超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑.4.考试结束,监考人员必须将缺考学生和参考学生的答题卡、试题卷一并收回.一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 下列各数最大的是( ) A. 2−B. 12−C. 0D. 12. 代数式3x −的意义可以是( ) A. 3−与x 的和B. 3−与x 的差C. 3−与x 的积D. 3−与x 的商3. 下列运算中,正确的是( ) A. 235a a a +=B. ()32628a a −=− C. 22(1)1a a −=−D. 842a a a ÷=4. 将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. 校B. 安C. 平D. 园5. 如图,在ABC 中,点D ,E 分别是AC ,BC 的中点,若45A ∠=︒,70CED ∠=︒,则C ∠的度数为( )A. 45︒B.50︒C. 60︒D. 65︒6. 下列说法正确的是( )A. 将580000用科学记数法表示为:45.810⨯B. 在8,6,3,5,8,8这组数据中,中位数和众数都是8C. 甲乙两组同学参加“环保知识竞赛”,若甲乙两组同学的平均成绩相同,甲组同学成绩的方差21.2S =甲,乙组同学成绩的方差20.05S =乙,则甲组同学的成绩较稳定D. “五边形的内角和是540︒”是必然事件7. 若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( ) A. 0m <且1m ≠− B. 0m ≥ C. 0m ≤且1m ≠−D. 0m <8. 向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y (单位:帕),时间为x (单位:秒),则y 关于x 的函数图象大致为( )A. B.C. D.9. 如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则DE 的长度为( )A.π9B.5π9C.10π9D.25π910. 如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫−⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 3=______.12. 分解因式:39a a −=________________. 13. 若2230x x −−=,则2241x x −+=______.14. 如图,直线22y x =+与x 轴、y 轴分别相交于点A ,B ,将AOB 绕点A 逆时针方向旋转90︒得到ACD ,则点D 的坐标为______.15. 如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为______.16. 已知,直线:33l y x =−与x轴相交于点1A ,以1OA 为边作等边三角形11OA B ,点1B 在第一象限内,过点1B 作x 轴的平行线与直线l 交于点2A ,与y 轴交于点1C ,以12C A 为边作等边三角形122C A B (点2B 在点1B 的上方),以同样的方式依次作等边三角形233C A B ,等边三角形344C A B ,则点2024A 的横坐标为______.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+− ⎪ ⎪⎝⎭⎝⎭.18. 先化简2344111a a a a a ++⎛⎫+−÷⎪−−⎝⎭,再从2−,0,1,2中选取一个适合的数代入求值. 19. 如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .20. 如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数ky x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n −两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.(1)本次抽取调查的学生共有______人,扇形统计图中表示C 类学生平均每天睡眠时间的扇形的圆心角度数为______.(2)请补全条形统计图.(3)被抽取调查的E 类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.22. 某小区物管中心计划采购A ,B 两种花卉用于美化环境.已知购买2株A 种花卉和3株B 种花卉共需要21元;购买4株A 种花卉和5株B 种花卉共需要37元. (1)求A ,B 两种花卉的单价.(2)该物管中心计划采购A ,B 两种花卉共计10000株,其中采购A 种花卉的株数不超过B 种花卉株数的4倍,当A ,B 两种花卉分别采购多少株时,总费用最少?并求出最少总费用.23. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点A ,B ,C ,D 均在同一平面内,AB BC ⊥).已知斜坡CD 长为20米,斜坡CD 的坡角为60︒,在斜坡顶部D 处测得风力发电机塔杆顶端A 点的仰角为20︒,坡底与塔杆底的距离30BC =米,求该风力发电机塔杆AB 的高度.(结果精确到个位;参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈ 1.73≈)24. 如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁; ②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.五、推理论证题(9分)25. 如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长. 六、拓展探究题(10分)26. 如图,抛物线223y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)−,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.2024年四川省广安市中考数学试题+答案详解(答案详解)注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分.考试时间120分钟,满分120分.2.考生答题前,请先将姓名、准考证号等信息用黑色墨迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致.3.请将选择题答案用2B 铅笔填涂在答题卡上的相应位置,非选择题用0.5毫米黑色字迹签字笔答在答题卡上的相应位置.超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑.4.考试结束,监考人员必须将缺考学生和参考学生的答题卡、试题卷一并收回.一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 下列各数最大的是( ) A. 2− B. 12−C. 0D. 1【答案】D 【解析】【分析】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.把选项中的4个数按从小到大排列,即可得出最大的数. 【详解】解:∵12012−<−<<, ∴最大的数是1 故选:D .2. 代数式3x −的意义可以是( ) A. 3−与x 的和 B. 3−与x 的差C. 3−与x 的积D. 3−与x 的商【答案】C 【解析】【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x −中的运算关系解答即可.【详解】解:代数式3x −的意义可以是3−与x 的积.故选C .3. 下列运算中,正确的是( ) A. 235a a a += B. ()32628a a −=− C. 22(1)1a a −=−D. 842a a a ÷=【答案】B 【解析】【分析】本题考查整式的运算,根据合并同类项法则、积的乘方运算法则、完全平方公式和同底数幂的除法运算法则逐项判断即可解答.【详解】解:A 、2a 和3a 不是同类项,不能加减,故原计算错误,不符合题意; B 、()32628a a −=−,计算正确,符合题意;C 、22(1)21a a a −=−+,故原计算错误,不符合题意;D 、844a a a ÷=,故原计算错误,不符合题意; 故选:B .4. 将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. 校B. 安C. 平D. 园【答案】A 【解析】【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答. 【详解】解:与“共”字所在面相对面上的汉字是“校”, 故选:A .5. 如图,在ABC 中,点D ,E 分别是AC ,BC 的中点,若45A ∠=︒,70CED ∠=︒,则C ∠的度数为( )A. 45︒B. 50︒C. 60︒D. 65︒【答案】D【解析】 【分析】本题考查了三角形中位线定理、平行线的性质定理,三角形的内角和定理,熟记性质并准确识图是解题的关键.先证明DE AB ∥,可得45CDE A ∠=∠=︒,再利用三角形的内角和定理可得答案.【详解】解:∵点D ,E 分别是AC ,BC 的中点,∴DE AB ∥,∵45A ∠=︒,∴45CDE A ∠=∠=︒,∵70CED ∠=︒,∴180457065C ∠=︒−︒−︒=︒,故选D6. 下列说法正确的是( )A. 将580000用科学记数法表示为:45.810⨯B. 在8,6,3,5,8,8这组数据中,中位数和众数都是8C. 甲乙两组同学参加“环保知识竞赛”,若甲乙两组同学的平均成绩相同,甲组同学成绩的方差21.2S =甲,乙组同学成绩的方差20.05S =乙,则甲组同学的成绩较稳定 D. “五边形的内角和是540︒”是必然事件【答案】D【解析】【分析】本题考查了多角形的内角和定理,科学记数法,众数和中位数的定义,方差的意义等知识.根据多角形的内角和定理,科学记数法,众数和中位数的定义,方差的意义判断即可.【详解】解:A 、将580000用科学记数法表示为:55.810⨯,故本选项不符合题意;B 、这列数据从小到大排列为3,5,6,8,8,8中,8出现了3次,故众数是8,中位数是6872+=,故本选项不符合题意; C 、0.05 1.2<,则22S S <乙甲,则乙组同学的成绩较稳定,故本选项不符合题意;D 、“五边形的内角和是540︒”是必然事件,故本选项符合题意.故选:D .7. 若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( )A. 0m <且1m ≠−B. 0m ≥C. 0m ≤且1m ≠−D. 0m <【答案】A【解析】【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +−+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案. 【详解】解:关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,∴()()22410m ∆=−−+>,解得:0m <, 10m +≠,1m ∴≠−,m ∴的取值范围是:0m <且1m ≠−.故选:A .8. 向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y (单位:帕),时间为x (单位:秒),则y 关于x 的函数图象大致为( )A. B.C. D.【答案】B【解析】【分析】此题主要考查了函数图象.由于压强与水面的高度成正比,而上下两个容器粗细不同,那么水面高度h 随时间x 变化而分两个阶段.【详解】解:最下面的容器较粗,那么第一个阶段的函数图象水面高度h 随时间x 的增大而增长缓慢,用时较长,即压强y 随时间x 的增大而增长缓慢,用时较长,最上面容器最小,则压强y 随时间x 的增大而增长变快,用时最短.故选:B .9. 如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则DE 的长度为( )A. π9B. 5π9C. 10π9D. 25π9【答案】C【解析】【分析】本题考查了求弧长.根据等腰三角形的性质和三角形的内角和定理求得A ∠的度数,证明OE AC ∥,再由OA OD =,再由等腰三角形的性质和平行线的性质求得DOE ∠的度数,利用弧长公式即可求解.【详解】解:连接OD ,OE ,∵AB AC =,∴70ABC C ∠=∠=︒,∵OE OB =,∴70OEB B ∠=∠=︒,∴70OEB C ∠=∠=︒∴OE AC ∥,在ABC 中,180A ABC C ∠+∠+∠=︒,∴180180707040A ABC C ∠=︒−∠−∠=︒−︒−︒=︒, 又152OA OD AB ===, ∵OE AC∴40A ADO DOE ∠=∠=︒=∠,∴DE 的长度为40π510π1809⨯=, 故选:C .10. 如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与x 轴交点问题逐项分析判断即可.【详解】解:由图可知,二次函数开口方向向下,与y 轴正半轴交于一点,<0a ∴,>0c . <02b a−, <0b ∴.>0abc ∴.故①错误;对称轴是直线12x =−,点()11,y −和点()22,y 都在抛物线上, 而()11111112222222⎛⎫−−−=−+=<−−= ⎪⎝⎭, 12y y ∴>.故②错误;当x m =时,2y am bm c =++,当12x =−时,函数取最大值21142a b c −+, ∴对于任意实数m 有:221142am bm c a b c ++≤−+, ∴21142am bm a b +≤−,故③正确; 122b a −=−, b a ∴=.当32x =−时,0y =, 93042a b c ∴−+=. 9640a b c ∴−+=,即340a c +=,故④正确.综上所述,正确的有③④.故选:B.【点睛】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与坐标轴的交点.二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 3=______.【答案】0【解析】【分析】本题考查的是实数的混合运算,先计算算术平方根,再计算减法运算即可.【详解】解:3330=−=,故答案为:012. 分解因式:39a a −=________________.【答案】()()33a a a +−【解析】【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a −=+−, 故答案为:()()33a a a +−.13. 若2230x x −−=,则2241x x −+=______.【答案】7【解析】【分析】本题考查了求代数式的值.对已知等式变形得到2246x x −=,再整体代入计算求解即可.【详解】解:∵2230x x −−=,∴223x x −=,∴2246x x −=,∴2241617x x −+=+=,故答案为:7.14. 如图,直线22y x =+与x 轴、y 轴分别相交于点A ,B ,将AOB 绕点A 逆时针方向旋转90︒得到ACD ,则点D 的坐标为______.【答案】(3,1)−【解析】【分析】本题考查一次函数图象与坐标轴的交点,旋转的性质,正方形的判定和性质等,延长DC 交y 轴于点E ,先求出点A 和点B 的坐标,再根据旋转的性质证明四边形OACE 是正方形,进而求出DE 和OE 的长度即可求解.【详解】解:如图,延长DC 交y 轴于点E ,22y x =+中,令0x =,则2y =,令220y x =+=,解得=1x −,∴(1,0)A −,(0,2)B ,∴1OA =,2OB =, AOB 绕点A 逆时针方向旋转90︒得到ACD ,∴90ACD AOB OAC ∠=∠=∠=︒,1OA OC ==,2OB CD ==,∴四边形OACE 是正方形.∴1CE OE OA ===,∴213DE CD CE =+=+=,∴点D 的坐标为(3,1)−.故答案为:(3,1)−.15. 如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为______.【解析】【分析】如图,作A 关于直线BC 的对称点A ',连接A D '交BC 于M ',则AH A H '=,AH BC ⊥,AM A M '''=,当,M M '重合时,MA MD +最小,最小值为A D ',再进一步结合勾股定理求解即可.【详解】解:如图,作A 关于直线BC 的对称点A ',连接A D '交BC 于M ',则AH A H '=,AH BC ⊥,AM A M '''=,∴当,M M '重合时,MA MD +最小,最小值为A D ',∵4AB =,30ABC ∠=︒,在ABCD Y 中, ∴122AH AB ==,AD BC ∥, ∴24AA AH '==,AA AD '⊥,∵5AD =,∴A D '==【点睛】此题考查了平行四边形的性质,勾股定理,轴对称的性质,求最小值问题,正确理解各性质及掌握各知识点是解题的关键.16. 已知,直线:l y x =与x 轴相交于点1A ,以1OA 为边作等边三角形11OA B ,点1B 在第一象限内,过点1B 作x 轴的平行线与直线l 交于点2A ,与y 轴交于点1C ,以12C A 为边作等边三角形122C A B (点2B 在点1B 的上方),以同样的方式依次作等边三角形233C A B ,等边三角形344C A B ,则点2024A 的横坐标为______.【答案】202352⎛⎫ ⎪⎝⎭【解析】【分析】直线直线:33l y x =−可知,点1A 坐标为()1,0,可得11OA =,由于11OA B 是等边三角形,可得点112B ⎛ ⎝⎭,把2y =代入直线解析式即可求得2A 的横坐标,可得2152A C =,由于221B A B 是等边三角形,可得点252A ⎛ ⎝⎭;同理,3254A ⎛ ⎝⎭,发现规律即可得解,准确发现坐标与字母的序号之间的规律是解题的关键.【详解】解:∵直线l ::l y x =与x 轴负半轴交于点1A , ∴点1A 坐标为()1,0, ∴11OA =,过1B ,2B ,作1B M x ⊥轴交x 轴于点M ,2B N x ⊥轴交21A B 于点D ,交x 轴于点N ,∵11A BO 为等边三角形,∴130OB M ∠=︒∴11122MO AO ==,∴12B M === ∴1122B ⎛⎫ ⎪ ⎪⎝⎭,,当2y =时,233x =−,解得:52x =,∴2152A C =,252A ⎛ ⎝⎭, ∴1211524C CD A ==,∴2B D ===∴2B N ==,∴当4y =时,343x =−,解得:254x =,∴32544A ⎛⎫ ⎪ ⎪⎝⎭,; 而225542⎛⎫= ⎪⎝⎭, 同理可得:4A 的横坐标为3512528⎛⎫= ⎪⎝⎭, ∴点2024A 的横坐标为202352⎛⎫ ⎪⎝⎭, 故答案为:202352⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了一次函数图象上点的坐标的特征,勾股定理的应用,等边三角形的性质,特殊图形点的坐标的规律,掌握探究的方法是解本题的关键.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+− ⎪ ⎪⎝⎭⎝⎭.【答案】1【解析】【分析】先计算零次幂,代入特殊角的三角函数值,化简绝对值,计算负整数指数幂,再合并即可.【详解】解:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+−− ⎪ ⎪⎝⎭⎝⎭1222=+−122=1=【点睛】本题考查的是含特殊角的三角函数值的混合运算,零次幂,负整数指数幂的含义,化简绝对值,掌握相应的运算法则是解本题的关键.18. 先化简2344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭,再从2−,0,1,2中选取一个适合的数代入求值. 【答案】22a a −+,0a =时,原式1=−,2a =时,原式0=. 【解析】【分析】本题考查的是分式的化简求值,先计算括号内分式的加减运算,再计算分式的除法运算,再结合分式有意义的条件代入计算即可. 【详解】解:2344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭ 2213(2)111a a a a a ⎛⎫−+=−÷ ⎪−−−⎝⎭ 2(2)(2)11(2)a a a a a +−−=⋅−+ 22a a −=+ 1a ≠且2a ≠−∴当0a =时,原式1=−;当2a =时,原式0=.19. 如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .【答案】见解析【解析】【分析】根据菱形的性质可得AB =BC =CD =AD ,∠A =∠C ,再由BE =BF ,可推出AE =CF ,即可利用SAS 证明△ADE ≌△CDF 得到DE =DF ,则∠DEF =∠DFE .【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠A =∠C ,∵BE =BF ,∴AB -BE =BC -BF ,即AE =CF ,∴△ADE ≌△CDF (SAS ),∴DE =DF ,∴∠DEF =∠DFE .【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.20. 如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数k y x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n −两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.【答案】(1)2y x =+,8y x =(2)4m >或8m <−【解析】【分析】(1)将A 点坐标代入反比例函数解析式求得反比例函数,再把B 点坐标代入所求得的反比例函数解析式,求得m ,进而把A 、B 的坐标代入一次函数解析式便可求得一次函数的解析式;(2)由一次函数的解析式求得与x 轴的交点C 的坐标,然后PAC △的面积大于12,再建立不等式即可求解.【小问1详解】解:∵(2,4)A 在反比例函数()0k y k x =≠的图象上, ∴248k =⨯=,∴反比例函数的解析式为:8y x =, 把(,2)B n −代入8y x=,得n =−4, ∴()4,2B −−, 把(2,4)A ,()4,2B −−都代入一次函数y ax b =+,得2442a b a b +=⎧⎨−+=−⎩ , 解得12a b =⎧⎨=⎩, ∴一次函数的解析式为:2y x =+;【小问2详解】解:如图,对于2y x =+,当20y x =+=,解得=2x −,∴()2,0C −,∵(,0)P m , ∴2CP m =+,∵PAC △的面积大于12, ∴142122m ⨯+>,即26m +>, 当2m ≥−时,则26m +>,解得:4m >,当2m <−时,则26m −−>,解得:8m <−;∴4m >或8m <−.【点睛】本题考查了一次函数和反比例函数的交点问题,反比例函数图象上点的坐标特征,三角形的面积等,求得交点坐标是解题的关键.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.(1)本次抽取调查的学生共有______人,扇形统计图中表示C类学生平均每天睡眠时间的扇形的圆心角度数为______.(2)请补全条形统计图.(3)被抽取调查的E类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.【答案】(1)50;144︒(2)见解析(3)1 6【解析】【分析】本题主要考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适用于两步完成是事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图.(1)根据B类人数和人数占比即可求出本次被调查的学生人数;用360度乘以C类的人数占比即可求出C类学生平均每天睡眠时间的扇形的圆心角度数;(2)根据(1)所求,求出D类的人数即可补全统计图;(3)先画出树状图得到所有的等可能性的结果数,再找到所选的2人恰好都是男生的结果数,最后依据概率计算公式求解即可.【小问1详解】解:1428%50÷=(人);2036014450⨯=︒︒; 故答案为:50;144︒;【小问2详解】解:D 类的人数为506142046−−−−=(人),补全条形统计图,如图,【小问3详解】解:画树状图如下:共有12种等可能结果,其中两人恰好是2名男生的结果有2种.()221126P ∴==抽到男. 22. 某小区物管中心计划采购A ,B 两种花卉用于美化环境.已知购买2株A 种花卉和3株B 种花卉共需要21元;购买4株A 种花卉和5株B 种花卉共需要37元.(1)求A ,B 两种花卉的单价.(2)该物管中心计划采购A ,B 两种花卉共计10000株,其中采购A 种花卉的株数不超过B 种花卉株数的4倍,当A ,B 两种花卉分别采购多少株时,总费用最少?并求出最少总费用.【答案】(1)A 种花卉的单价为3元/株,B 种花卉的单价为5元/株(2)当购进A 种花卉8000株,B 种花卉2000株时,总费用最少,最少费用为34000元【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键.(1)设A 种花卉的单价为x 元/株,B 种花卉的单价为y 元/株,根据题意列出二元一次方程组,解方程组即可求解;(2)设采购A 种花卉m 株,则B 种花卉(10000)m −株,总费用为W 元,根据题意列出不等式,得出8000m ≤,进而根据题意,得到35(10000)W m m =+−,根据一次函数的性质即可求解.【小问1详解】解:设A 种花卉的单价为x 元/株,B 种花卉的单价为y 元/株,由题意得:23214537x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 答:A 种花卉的单价为3元/株,B 种花卉的单价为5元/株.【小问2详解】解:设采购A 种花卉m 株,则B 种花卉(10000)m −株,总费用为W 元,由题意得:35(10000)250000W m m m =+−=−+,4(10000)m m ≤−,解得:8000m ≤,在250000W m =−+中,20−<,∴W 随m 的增大而减小,∴当8000m =时W 的值最小,280005000034000W =−⨯+=最小,此时100002000m −=.答:当购进A 种花卉8000株,B 种花卉2000株时,总费用最少,最少费用为34000元.23. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点A ,B ,C ,D 均在同一平面内,AB BC ⊥).已知斜坡CD 长为20米,斜坡CD 的坡角为60︒,在斜坡顶部D 处测得风力发电机塔杆顶端A 点的仰角为20︒,坡底与塔杆底的距离30BC =米,求该风力发电机塔杆AB 的高度.(结果精确到个位;参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈ 1.73≈)【答案】32m【解析】【分析】本题考查的是矩形的判定与性质,解直角三角形的实际应用,过点D 作DF AB ⊥于点F ,作DH BE ⊥于点H ,先求解cos6010m CH CD =⋅︒=,sin 6017.3m DH CD =︒≈,再证明40m BH BC CH =+=,再利用锐角的正切可得tan 2014.4m AF FD =⋅︒=,从而可得答案.【详解】解:过点D 作DF AB ⊥于点F ,作DH BE ⊥于点H由题意得:20m DC =,60DCH ∠=︒在Rt DCH △中,cos 60CHCD ︒=,sin 60DH CD︒= ∴cos6010m CH CD =⋅︒=,sin6017.3m DH CD =︒=≈90DFB B DHB ∠=∠=∠=︒,∴四边形DFBH 为矩形,∴BH FD =,BF DH =,(3010)m 40m BH BC CH =+=+=,∴40m FD =在AFD △中.tan 20AF FD=︒, tan 20400.3614.4m AF FD ∴=⋅︒≈⨯=(17.314.4)m 31.7m 32m AB AF BF ∴=+≈+=≈答:该风力发电机塔杆AB 的高度为32m .24. 如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁;②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.【答案】见解析【解析】【分析】本题考查的是矩形的性质,全等图形的定义与性质,同时考查了学生实际的动手操作能力,根据全等图形的性质分别画出符合题意的图形即可.【详解】解:如图,五、推理论证题(9分)25. 如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长.【答案】(1)见解析 (2)14【解析】【分析】(1)连接OC ,由圆周角定理求得90ACB ∠=︒,再利用等角的余角相等求得90OCD ∠=︒,据此即可证明DC 是O 的切线;(2)利用三角函数的定义求得8OC OA ==,在Rt OCD △中,利用勾股定理求得6CD =,再证明DOC DEG △△∽,利用相似三角形的性质列式计算即可求解.【小问1详解】证明:连接OC ,OB OC =,OBC OCB ∴∠=∠,DCA OBC ∠=∠,DCA OCB ∴∠=∠,而AB 是O 的直径,90ACB ∴∠=︒,90DCA OCA OCA OCB ∴∠+∠=∠+∠=︒,90OCD ∴∠=︒,∴DC 是O 的切线;【小问2详解】解:设OC OA r ==,4sin 5OC D OD ==, 425r r ∴=+, 8r ∴=,8OC OA ∴==,在Rt OCD △中,6CD ===,90DCA ECF BFG CBA ∠+∠=∠+∠=︒,∴ECF BFG ∠=∠, 又BFG EFC ∠=∠,∴ECF EFC ∠=∠,EC EF ∴=,设EC EF x ==,D D ∠=∠,DCO DGE ∠=∠,∴DOC DEG △△∽, ∴DO OC DE EG =,则10862x x =++, 解得:14x =经检验14x =是所列方程的解,∴14CE =.【点睛】本题考查了切线的判定与相似三角形的判定与性质,三角函数的定义,勾股定理.正确证明DOC DEG △△∽是解决本题的关键.六、拓展探究题(10分)26. 如图,抛物线223y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)−,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.【答案】(1)224233y x x =−++。
2024年四川省宜宾市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2的绝对值是( )A .12-B .12C .2-D .2【答案】D【分析】根据绝对值的意义即可求解.【详解】解:2的绝对值是是2,故选:D .【点睛】本题考查了绝对值的计算,掌握正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数,是解题的关键.2.下列计算正确的是( )A .2a a a +=B .532a a -=C .2326x x x ⋅=D .32()()x x x -÷-=【答案】C【分析】本题主要考查了同底数幂的运算法则,合并同类项.根据同底数幂的运算法则以及合并同类项的法则,逐个进行计算,即可解答.【详解】解:A 、22a a a a +=≠,故本选项不符合题意;B 、5322a a a -=≠,故本选项不符合题意;C 、2326x x x ⋅=,故本选项符合题意;D 、32()()x x x x -÷-=-≠,故本选项不符合题意;故选:C .3.某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是( )A .方差为0B .众数为75C .中位数为77.5D .平均数为754.如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于( )A .30︒B .45︒C .60︒D .90︒【答案】A 【分析】本题考查了直径所对的圆周角为直角,同弧或等弧所对的圆周角相等.根据直径所对的圆周角为直角得到90ACB ∠=︒,同弧或等弧所对的圆周角相等得到60CDB A ∠=∠=︒,进一步计算即可解答.【详解】解:AB 是O 的直径,90ACB ∴∠=︒,60CDB ∠=︒ ,60A CDB ∴∠=∠=︒,9030ABC A ∴∠=︒-∠=︒,故选:A .5.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,问快马几天可追上慢马?则快马追上慢马的天数是( )A .5天B .10天C .15天D .20天【答案】D【分析】本题考查了一元一次方程的应用.设快马x 天可以追上慢马,根据快马和慢马所走的路程相等建立方程,解出即可.【详解】解:设快马x 天可以追上慢马,据题题意:24015012150x x =+⨯,解得:20x =.答:快马20天可以追上慢马.故选:D .6.如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1、2、3,且6123=++,则称6为完美数.下列数中为完美数的是( )A .8B .18C .28D .32【答案】C【分析】本题考查新定义,解题的关键是正确读懂新定义.根据新定义逐个判断即可得到答案.【详解】解∶∵81824=⨯=⨯,12478++=≠,∴8不是完美数,故选项A 不符合题意;∵181182936=⨯=⨯=⨯,123692118++++=≠,∴18不是完美数,故选项B 不符合题意;∵2812821447=⨯=⨯=⨯,12471428++++=,∴28是完美数,故选项C 符合题意;∵3213221648=⨯=⨯=⨯,1248163132++++=≠,∴32不是完美数,故选项D 不符合题意;故选:C7.如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是( )A .B 点B .C 点C .D 点D .E 点【答案】B【分析】本题考查了平面图形和立体图形,把图形围成立体图形求解.【详解】解:把图形围成立方体如图所示:所以与顶点A 距离最远的顶点是C ,故选:B .8.某果农将采摘的荔枝分装为大箱和小箱销售,其中每个大箱装4千克荔枝,每个小箱装3千克荔枝.该果农现采摘有32千克荔枝,根据市场销售需求,大小箱都要装满,则所装的箱数最多为( )A .8箱B .9箱C .10箱D .11箱9.如图,ABC 内接于O ,BC 为O 的直径,AD 平分BAC ∠交O 于D .则AB AC AD+的值为( )A B C .D .【答案】A 【分析】本题考查了三角形的外接圆,特殊角的三角函数,圆周角定理,图形的旋转等知识点,合理作辅助线为解题的关键.作辅助线如图,先证明BD CD =,180ACD ABD ∠+∠=︒,从而可以得到旋转后的图形,再证明A DA ' 是等腰直角三角形,利用三角函数即可求得结果.【详解】解:如图,连接BD 、CD ,∵BC 是O 的直径,∴90BAC BDC ∠=∠=︒,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴ BDDC =,∴BD CD =,在四边形ABDC 中,90BAC BDC ∠=∠=︒,∴180ACD ABD ∠+∠=︒,∴ADC △绕D 点逆时针旋转90︒,如图所示∴AB AC AB A B AA ''+=+=,∵由旋转可知A DB ADC '=∠∠,A D AD'=∴90A DA A DB BDA ADC BDA BDC ''∠=∠+∠=∠+∠=∠=︒,10.如图,等腰三角形ABC 中,AB AC =,反比例函数()0k y k x =≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则AN AB的值为( )A .13B .14C .15D .25在等腰三角形ABC 中,AD BC ⊥设,k A a a ⎛⎫ ⎪⎝⎭,,k B b b ⎛⎫ ⎪⎝⎭,由BC 中点为D ,AB AC =,故等腰三角形∴BD DC a b ==-,11.如图,在ABC 中,2AB AC ==,以BC 为边作Rt BCD ,BC BD =,点D 与点A 在BC 的两侧,则AD 的最大值为( )A .2+B .6+C .5D .812.如图,抛物线()2<0y ax bx c a =++的图象交x 轴于点()30A -,、()10B ,,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =④当3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +.其中正确结论有( )A .1个B .2个C .3个D .4个∴423OH==,二、填空题13.分解因式:222m -= .【答案】2(1)(1)m m +-【详解】解:222m -=22(1)m -=2(1)(1)m m +-.故答案为2(1)(1)m m +-.14.分式方程1301x x +-=-的解为 .15.如图,正五边形ABCDE 的边长为4,则这个正五边形的对角线AC 的长是 .∵五边形ABCDE 是正五边形,∴(5ABC BCD ∠=∠=∴180BCA BAC ∠=∠=∴10836ABF ∠=︒-︒=16.如图,在平行四边形ABCD 中,24AB AD ==,,E 、F 分别是边CD AD 、上的动点,且CE DF =.当AE CF +的值最小时,则CE = .∵四边形ABCD 为平行四边形,∴2AB DC ==,4AD BC ==,AD BC ∥∴D ECG ∠=∠,CD CG =∵AD CG ,∴AED GEC ∽△△,∴AD DE GC CE=,即422CE CE -=,17.如图,一个圆柱体容器,其底部有三个完全相同的小孔槽,分别命名为甲槽、乙槽、丙槽.有大小质地完全相同的三个小球,每个小球标有从1至9中选取的一个数字,且每个小球所标数字互不相同.作如下操作:将这三个小球放入容器中,摇动容器使这三个小球全部落入不同的小孔槽(每个小孔槽只能容下一个小球),取出小球记录下各小孔槽的计分(分数为落入该小孔槽小球上所标的数字),完成第一次操作.再重复以上操作两次.已知甲槽、乙槽、丙槽三次操作计分之和分别为20分、10分、9分,其中第一次操作计分最高的是乙槽,则第二次操作计分最低的是 (从“甲槽”、“乙槽”、“丙槽”中选填).【答案】乙槽【分析】设第一次操作乙得x 分,第二次操作乙得y 分,第三次操作乙得z 分,根据题意,得10x y z ++=,当1y z ==时,x 最大,为8,根据每次操作数字不相同,故数字1不可能再出现,故第二次操作最小的是乙槽.本题考查了方程的应用,特殊解,熟练掌握整数解是解题的关键.【详解】设第一次操作乙得x 分,第二次操作乙得y 分,第三次操作乙得z 分,根据题意,得10x y z ++=,当1y z ==时,x 最大,为8,根据每次操作数字不相同,故数字1不可能再出现,故第二次操作计分最低的是乙槽.故答案为:乙槽.18.如图,正方形ABCD 的边长为1,M 、N 是边BC 、CD 上的动点.若45MAN ∠=︒,则MN 的最小值为 .将ADN △顺时针旋转∴DAN BAP ∠=∠,∠∴点P 、B 、M 、C 共线,∵45MAN ∠=︒,∴MAP MAB BAP ∠=∠+三、解答题19.(1)计算:()022sin302︒-+--(2)计算:2211111a a a ⎫⎛÷- ⎪--+.=.120.某校为了落实“五育并举”,提升学生的综合素养.在课外活动中开设了四个兴趣小组:A.插花组:B.跳绳组;C.话剧组;D.书法组.为了解学生对每个兴趣小组的参与情况,随机抽取了部分学生进行调查,并将调查结果绘制成不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了___________名学生,并将条形统计图补充完整;(2)话剧组所对应扇形的圆心角为___________度;(3)书法组成绩最好的4名学生由3名男生和1名女生构成.从中随机抽取2名参加比赛,请用列表或画树状图的方法,求刚好抽到1名男生与1名女生的概率.;故答案为:40;(2)解:83607240⨯︒=︒,故答案为:72;(3)解:画树状图如下:共有12种等可能的结果,其中刚好抽到1名男生与1名女生的结果共有6121.如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD CE=,BE与AD交于点F.求证:AD BE=.【答案】见解析【分析】本题考查了等边三角形的性质,全等三角形的判定与性质,根据等边三角形的性质得出AB BC=,60ABD BCE∠=∠=︒,然后根据SAS证明ABD BCE≌,根据全等三角形的性质即可得证.【详解】证明∶∵ABC是等边三角形,∴AB BC =,60ABD BCE ∠=∠=︒,又BD CE =,∴()SAS ABD BCE ≌△△,∴AD BE =.22.宜宾地标广场位于三江汇合口(如图1,左侧是岷江,右侧是金沙江,正面是长江).某同学在数学实践中测量长江口的宽度,他在长江口的两岸选择两个标点C 、D ,在地标广场上选择两个观测点A 、B (点A 、B 、C 、D 在同一水平面,且AB CD ).如图2所示,在点A 处测得点C 在北偏西18.17︒方向上,测得点D 在北偏东21.34︒方向上;在B 处测得点C 在北偏西21.34︒方向上,测得点D 在北偏东18.17︒方向上,测得100AB =米.求长江口的宽度CD 的值(结果精确到1米).(参考数据:sin18.170.31︒≈,cos18.170.95︒≈,tan18.170.33︒≈,sin 21.340.36︒≈,cos21.340.93︒≈,tan 21.340.39︒≈)【答案】长江口的宽度CD 为1200米.【分析】如图,过C 作CH AB ⊥于H ,过A 作AG CD ⊥于G ,过B 作BK CD ⊥于K ,而AB CD ∥,可得四边形AHCG ,ABKG 都是矩形,由题意可得:18.17CAG DBK ∠=∠=︒,21.34GAD CBK ∠=∠=︒,证明AGC BKD ≌,可得CG DK =,设AH x =,CH y =,再利用三角函数建立方程组求解即可.【详解】解:如图,过C 作CH AB ⊥于H ,过A 作AG CD ⊥于G ,过B 作BK CD ⊥于K ,而AB CD ∥,∴四边形AHCG ,ABKG 都是矩形,∴100GK AB ==,CG AH =,CH =∵由题意可得:18.17CAG DBK ∠=∠=∴18.17ACH CAG ∠=∠=︒,BCH ∠=∵90AGC BKD ∠=∠=︒,∴AGC BKD ≌,∴CG DK =,23.如图,一次函数.()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象交于点()()1,4,1A B n -、.(1)求反比例函数和一次函数的表达式;(2)利用图象,直接写出不等式k ax b x+<的解集;(3)已知点D 在x 轴上,点C 在反比例函数图象上.若以A 、B 、C 、D 为顶点的四边形是平行四边形,求点C 的坐标.24.如图,ABC 内接于O ,10AB AC ==,过点A 作AE BC ∥,交O 的直径BD 的延长线于点E ,连接CD .(1)求证:AE 是O 的切线;(2)若1tan2ABE ∠=,求CD 和DE 的长.∵OA OB OC ==,∴OAB ABO ∠=∠,OAC ∠∵AB AC =,∴A ABC CB =∠∠,∵BD 是O 的直径,∴90BAD BCD ∠=∠=︒,∵1tan 2ABE ∠=,AB AC =∴5AD =,25.如图,抛物线2y x bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,4C -,其顶点为D .(1)求抛物线的表达式及顶点D 的坐标;(2)在y 轴上是否存在一点M ,使得BDM 的周长最小.若存在,求出点M 的坐标;若不存在,请说明理由;(3)若点E 在以点()3,0P 为圆心,1为半径的P 上,连接AE ,以AE 为边在AE 的下方作等边三角形AEF ,连接BF .求BF 的取值范围.则B M BM'=,∴DM BM DM B M'+=+设直线DB'的解析式为y则40325 24k nk n-+=⎧⎪⎨+=-⎪⎩,。
2024年四川省遂宁市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,无理数是()C D.0A.2-B.122.古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用,右图是某个部件“榫”的实物图,它的主视图是()A.B.C.D.【答案】A【分析】本题考查了三视图,根据从正面看到的图形即可求解,掌握三视图的画法是解题的关键.【详解】解:由实物图可知,从从正面看到的图形是,故选:A .3.中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯4.下列运算结果正确的是( )A .321a a -=B .236a a a ⋅=C .()44a a -=-D .()()2339a a a +-=-【答案】D【分析】本题考查了整式的运算,根据合并同类项法则、同底数幂的乘法、积的乘方运算、平方差公式分别运算即可判断求解,掌握整式的运算法则是解题的关键.【详解】解:A 、32a a a -=,该选项错误,不合题意;B 、235a a a ⋅=,该选项错误,不合题意;C 、()44a a -=,该选项错误,不合题意;D 、()()2339a a a +-=-,该选项正确,符合题意;故选:D .5.不等式组32212x x x -<+⎧⎨≥⎩的解集在数轴上表示为( )A .B .C .D .【答案】B【分析】本题考查了在数轴上表示不等式组的解集,先求出不等式组的解集,再根据解集在数轴上表示出来即可判断求解,正确求出一元一次不等式组的解集是解题的关键.【详解】解:32212x x x -<+⎧⎨≥⎩①②,由①得,3x <,由②得,2x ≥,∴不等式组的解集为23x ≤<,∴不等式组的解集在数轴上表示为,故选:B .6.佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为1080︒的正多边形图案,这个正多边形的每个外角为( )A .36︒B .40︒C .45︒D .60︒【答案】C【分析】本题考查了正多边形的外角,设这个正多边形的边数为n ,先根据内角和求出正多边形的边数,再用外角和360︒除以边数即可求解,掌握正多边形的性质是解题的关键.【详解】解:设这个正多边形的边数为n ,则()21801080n -⨯︒=︒,∴8n =,∴这个正多边形的每个外角为360845︒÷=︒,故选:C .7.分式方程2111m x x =---的解为正数,则m 的取值范围( )A .3m >-B .3m >-且2m ≠-C .3m <D .3m <且2m ≠-8.工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积( )A .1π6B .1π6C .2π3D .11π64-9.如图1,ABC 与111A B C △满足1A A ∠=∠,11AC A C =,11BC B C =,1C C ∠≠∠,我们称这样的两个三角形为“伪全等三角形”如图2,在ABC 中,AB AC =,点,D E 在线段BC 上,且BE CD =,则图中共有“伪全等三角形”( )A .1对B .2对C .3对D .4对【答案】D【分析】本题考查了新定义,等边对等角,根据“伪全等三角形”的定义可得两个三角形的两边相等,一个角相等,且这个角不是夹角,据此分析判断,即可求解.【详解】解:∵AB AC =,∴B C ∠=∠,在ABD △和ABE 中,,,B B AB AB AD AE ∠=∠==,在,ACE ACD △△中,,,C C AC AC AE AD ∠=∠==,在,ABD ACD △△中,,,B C AB AC AD AD ∠=∠==,在,ACE ABE 中,,,B C AE AE AC AB ∠=∠==综上所述,共有4对“伪全等三角形”,故选:D .10.如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x -,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2-,()0,3-之间(不含端点),则下列结论正确的有多少个( )①0abc >;②930a b c -+≥;③213a <<;④若方程21ax bx c x +=++两根为(),m n m n <,则31m n -<<<.A .1B .2C .3D .4【答案】B【分析】本题主要考查二次函数和一次函数的性质,根据题干可得0a >,20b a =>,32c -<<-,即可判断①错误;根据对称轴和一个交点求得另一个交点为()3,0-,即可判断②错误;将c 和b 用a 表示,即可得到332a -<-<-,即可判断③正确;结合抛物线方程21+两根为m+=+ax bx c x故选:B.二、填空题11.分解因式:4ab a += .【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +三、单选题12.反比例函数1k y x-=的图象在第一、三象限,则点()3k -,在第 象限.四、填空题13.体育老师要在甲和乙两人中选择1人参加篮球投篮大赛,下表是两人5次训练成绩,从稳定的角度考虑,老师应该选 参加比赛.甲88798乙69799【答案】甲【分析】本题考查了方差,分别求出甲乙的方差即可判断求解,掌握方差计算公式是解题的关键.14.在等边ABC 三边上分别取点D E F 、、,使得AD BE CF ==,连结三点得到DEF ,易得ADF BED CFE ≌≌,设1ABC S =△,则13A EF D D FS S =-△△如图①当12AD AB =时,111344DEF S =-⨯=△如图②当13AD AB =时,211393DEF S =-⨯=△如图③当AD 1AB 4=时,37131616DEF S =-⨯=△……直接写出,当110AD AB =时,DEF S =△ .15.如图,在正方形纸片ABCD 中,E 是AB 边的中点,将正方形纸片沿EC 折叠,点B 落在点P 处,延长CP 交AD 于点Q ,连结AP 并延长交CD 于点F .给出以下结论:①AEP △为等腰三角形;②F 为CD 的中点;③:2:3AP PF =;④3cos 4DCQ ∠=.其中正确结论是 .(填序号)∵E 为AB 的中点,∴AE EB=设正方形的边长为2a ,则AE EB a==∵90QAE ∠=︒,QPE ∠=又EQ EQ=∴AEQ PEQ≌∴AQ PQ=又∵EA EP=五、解答题16.计算:11sin4512021-⎛⎫︒ ⎪⎝⎭.17.先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.18.康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O ;②以点O 为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA OB OC OD 、、、;③顺次连结所得的四点得到四边形ABCD .于是可以直接判定四边形ABCD 是平行四边形,则该判定定理是:______.(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD 是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD 是平行四边形,AC BD =.求证:四边形ABCD 是矩形.【答案】(1)对角线互相平分的四边形是平行四边形(2)证明见解析【分析】(1)由作图结合对角线互相平分的四边形是平行四边形可得答案;(2)先证明180ABC BCD ∠+∠=︒,再证明ABC DCB △≌△,可得90ABC DCB ∠=∠=︒,从而可得结论.【详解】(1)解:由作图可得:OA OC =,OB OD =,∴四边形ABCD 是平行四边形,该判定定理是:对角线互相平分的四边形是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AB CD ∥,AB CD =,∴180ABC BCD ∠+∠=︒,∵AC BD =,BC CB =,∴ABC DCB △≌△,∴90ABC DCB ∠=∠=︒,∴四边形ABCD 是矩形.【点睛】本题考查的是平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,掌握平行四边形与矩形的判定方法是关键.19.小明的书桌上有一个L 型台灯,灯柱AB 高40cm ,他发现当灯带BC 与水平线BM 夹角为9︒时(图1),灯带的直射宽(),DE BD BC CE BC ⊥⊥为35cm ,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30︒时(图2),直射宽度刚好合适,求此时台灯最高点C 到桌面的距离.(结果保留1位小数)(sin90.16,cos90.99,tan90.16≈≈≈︒︒︒)在图1中,DE BM∥∵,BD BC CE BC⊥⊥∴BD CE∥∴四边形BDEM 是平行四边形,∴35BM DE ==在Rt BMC △中,cos9BC BM =⋅︒答:此时台灯最高点C到桌面的距离为57.3cm.20.某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200、两种客房均有10间入住,一天营业额为3200元.元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W 最大,最大营业额为多少元?21.已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.【答案】(1)证明见解析;(2)11m =或22m =-.【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=-x x m ,进行变形后代入即可求解.【详解】(1)证明:()()22Δ24118m m m ⎡⎤=-+-⨯⨯-=+⎣⎦,∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵12,x x 是方程()2210x m x m -++-=的两个实数根,∴122x x m +=+,121⋅=-x x m ,∴()()()22221212121232319x x x x x x x x m m +-=+-=+--=,解得:11m =或22m =-.22.遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:xx 小组关于xx 学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象xx 学校学生数据的整理与描述景点A :中国死海B :龙凤古镇C :灵泉风景区D :金华山E :未出游F :其他数据分析及运用(1)本次被抽样调查的学生总人数为______,扇形统计图中,m=______,“B:龙凤古镇”对应圆心角的度数是______;(2)请补全条形统计图;(3)该学校总人数为1800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A、B、C、D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.(3)解:81800144100⨯=答:请你估计该学校学生“五一”假期未出游的人数为(4)列表如下,AB C D AAA AB AC AD 23.如图,一次函数()10y kx b k =+≠的图象与反比例函数()20m y m x=≠的图象相交于()()1,3,1A B n -,两点.(1)求一次函数和反比例函数的表达式;(2)根据图象直接写出12y y >时,x 的取值范围;的面积.(3)过点B作直线OB,交反比例函数图象于点C,连结AC,求ABC∵点B C 、关于原点对称,∴()3,1C ,∴312MN =-=,1CN =,ON ∴ABC BOD ADOM S S S S =++ 梯形梯形()(11124.如图,AB 是O 的直径,AC 是一条弦,点D 是 AC 的中点,DN AB ⊥于点E ,交AC 于点F ,连结DB 交AC 于点G .(1)求证:AF DF =;(2)延长GD 至点M ,使DM DG =,连接AM .①求证:AM 是O 的切线;②若6DG =,5DF =,求O 的半径.∵点D 是 AC 的中点,∴ AD CD=,∴ABD CAD ∠=∠,∵DN AB ⊥,AB 为O ∴ AN AD =,25.二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B -,,与y 轴交于点()0,3C -,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标;(3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.把P x m =代入2=23y x x --得223P y m m =--,把1Q x m =+代入2=23y x x --得24Q y m =-,∵()()23231OEGF S OE OF m m m m m =⋅=---+=-+矩形()23211123222OEP S EP EO m m m m m ⎡⎤=⋅=---=-+⎣⎦ ()()231111142222OFQ S OF FQ m m m ⎡⎤=⋅=+--=--⎣⎦ ()()2211142322QGP S GP QG m m m ⎡⎤=⋅=⨯⨯----=⎣⎦ ∵OPQ OPE OFQ PQG OEGF S S S S S =---△△△△矩形,∴3232135322OPQ S m m m m m m ⎛⎫⎛=-+++--++-- ⎪ ⎝⎭⎝。
2024年四川省达州市中考数学试题本考试为闭卷考试.考试时间120分钟、满分150分.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1-2页,第Ⅱ卷3-8页,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置,待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B 铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内.超出答题区答案无效;在草稿纸、试题卷上作答无效.3.不要折叠、弄破、弄皱答题卡.不得使用涂改液、修正带、刮纸刀等影响答题卡整洁.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题共40分)一、单项选择题(每小题4分.共40分)1.有理数2024的相反数是()A.2024B.2024- C.12024D.12024-【答案】B 【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024-,故选:B .2.大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为()A.9210⨯B.8210⨯ C.80.210⨯ D.7210⨯【答案】B 【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:2亿8200000000210==⨯,故选:B .3.下列计算正确的是()A.235a a a +=B.()22224a a a +=++C.()3236928a b a b -=- D.1262a a a ÷=【答案】C 【解析】【分析】本题主要考查了完全平方公式,积的乘方计算,同底数幂除法计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、2a 与3a 不是同类项,不能合并,原式计算错误,不符合题意;B 、()22244a a a +=++,原式计算错误,不符合题意;C 、()3236928a b a b -=-,原式计算正确,符合题意;D 、1266a a a ÷=,原式计算错误,不符合题意;故选:C .4.如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国【答案】B 【解析】【分析】本题考查了正方体相对两个面上的文字,正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答即可.【详解】解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,则与“我”字相对的字是“爱”,与“们”字相对的字是“中”,与“国”字相对的字是“热”,故选:B .5.小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的()A.平均数B.众数C.中位数D.方差【答案】C 【解析】【分析】此题考查数据平均数、众数、中位数方差的计算方法,根据中位数的定义求解可得.【详解】解:依题意“■”该数据在30~40之间,则这组数据的中位数为28,∴“■”在范围内无论为何值都不影响这组数据的中位数.故选:C .6.当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示).图中180∠=︒,240∠=︒,则3∠的度数为()A.30︒B.40︒C.50︒D.70︒【答案】B 【解析】【分析】本题考查了平行线的性质,根据平行线的性质可得123∠=∠+∠,代入数据,即可求解.【详解】解:依题意,水面与容器底面平行,∴123∠=∠+∠∵180∠=︒,240∠=︒,∴312804040∠=∠-∠=︒-︒=︒故选:B .7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x 个零件.可列方程为()A.120120301.2x x-= B.120120301.2x x-=C.120120301.260x x -= D.120120301.260x x -=【答案】D 【解析】【分析】本题主要考查了分式方程的实际应用,设乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,再根据时间=工作总量÷工作效率结合甲的工作时间比乙的工作时间少30分钟列出方程即可.【详解】解:设乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,由题意得120120301.260x x -=,故选:D .8.如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,120ABD ∠=︒,其中点A ,B ,C 都在格点上,则tan BCD ∠的值为()A.2B.C.32D.3【答案】B 【解析】【分析】本题考查了菱形的性质,解直角三角形,延长BC 交格点于点F ,连接AF ,,E G 分别在格点上,根据菱形的性质,进而得出90AFC ∠=︒,解直角三角形求得,AF FC 的长,根据对顶角相等,进而根据正切的定义,即可求解.【详解】解:如图所示,延长BC 交格点于点F ,连接AF ,,E G 分别在格点上,依题意,120,EGF EG GF ∠=︒=,,60GF GC FGC =∠=︒∴30,60CEF ECF ∠=︒∠=︒∴90AFC ∠=︒又2FC =,∴324cos30422AF EF EG ==︒=⨯⨯=∴tan tan 2AF BCD ACF FC ∠=∠===故选:B .9.抛物线2y x bx c =-++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是()A.1b c +>B.2b = C.240b c +< D.0c <【答案】A 【解析】【分析】本题考查了二次函数的性质,设抛物线2y x bx c =-++与x 轴交于两点,横坐标分别为1212,,x x x x <,依题意,121,1x x <>,根据题意抛物线开口向下,当1x =时,0y >,即可判断A 选项,根据对称轴即可判断B 选项,根据一元二次方程根的判别式,即可求解.判断C 选项,无条件判断D 选项,据此,即可求解.【详解】解:依题意,设抛物线2y x bx c =-++与x 轴交于两点,横坐标分别为1212,,x x x x <依题意,121,1x x <>∵10a =-<,抛物线开口向下,∴当1x =时,0y >,即10b c -++>∴1b c +>,故A 选项正确,符合题意;若对称轴为1222b b b x a =-=-==-,即2b =,而121,1x x <>,不能得出对称轴为直线1x =,故B 选项不正确,不符合题意;∵抛物线与坐标轴有2个交点,∴方程20x bx c -++=有两个不等实数解,即240b ac ∆=->,又1a =-∴240b c +>,故C 选项错误,不符合题意;无法判断c 的符号,故D 选项错误,不符合题意;故选:A .10.如图,ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,点D ,E 分别在AC ,BC 边上运动,连结AE ,BD 交于点F ,且始终满足2AD =,则下列结论:①AE BD =;②135DFE ∠=︒;③ABF △面积的最大值是4;④CF 的最小值是-)A.①③B.①②④C.②③④D.①②③④【答案】D 【解析】【分析】过点B 作BM AC ⊥于点M ,证明ABE BMD ∽,根据相似三角形的性质即可判断①;得出BAE MBD ∠=∠,根据三角形内角和定理即可判断②;在AB 的左侧,以AB 为斜边作等腰直角三角形AOB ,以OA 为半径作O ,根据定弦定角得出F 在O 的 AB 上运动,进而根据当OF AB ⊥时,ABF △面积的最大,根据三角形的面积公式求解,即可判断③,当F 在OC 上时,FC 最小,过点O 作OH BC⊥交CB 的延长线于点H ,勾股定理,即可求解.【详解】解:如图所示,过点B 作BM AC ⊥于点M ,∵ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,∴AB BC AC ===,,∵2AD =,∴()1122222222DM AC AD CE BC CE BE =-=-=-=∴22DM AD BE CE ==又∵90DMB EBA ∠=∠=︒∴ABE BMD ∽,∴AE AB BD BM==∵ABE BMD ∽,∴BAE MBD ∠=∠,∴BAE ABD MBD ABD∠+∠=∠+∠即()()180180BAE ABD MBD ABD ︒-∠+∠=︒-∠+∠在ABF △中,()180AFB BAE ABD ∠=︒-∠+∠即()180AFB MBD ABD ∠=︒-∠+∠∵ABC 是等腰直角三角形,BM AC ⊥∴BM 平分ABC ∠∴1452ABM CBM ABC ∠=∠=∠=︒∴()180180135AFB MBD ABD ABM ∠=︒-∠+∠=︒-∠=︒∴()180135AFB BAE ABD ∠=︒-∠+∠=︒,∴135DFE ∠=︒,故②正确,如图所示,在AB 的左侧,以AB 为斜边作等腰直角三角形AOB ,以OA 为半径作O ,且4AB =∴90AOB ∠=︒,4OA OB ====,AB ∵135AFB ∠=︒∴11802DFE AOB ∠+∠=︒∴F 在O 的 AB 上运动,∴422OF AO AB ====,连接OF 交AB 于点G ,则2AG GB ==,∴当OF AB ⊥时,结合垂径定理,OG 最小,∵OF 是半径不变∴此时CF 最大则ABF △面积的最大,∴()22ABF AGF AOF AOG S S S S ==- 211222OF AG OG ⎛⎫=⨯⨯- ⎪⎝⎭222=-4=-,故③正确;如图所示,当F 在OC 上时,FC 最小,过点O 作OHBC ⊥交CB 的延长线于点H ,∴OHB 是等腰直角三角形,∴22222OH HB OB OA ====,在Rt OHC 中,6HC HB BC =+=,∴OC ==∴CF 的最小值是故选:D .【点睛】本题考查了相似三角形的性质与判定,圆内接四边形对角互补,求圆外一点到圆上的距离最值问题,勾股定理,等腰直角三角形的性质与判定,熟练掌握以上知识是解题的关键.第II 卷(非选择题共110分)二、填空题(每小题4分,共20分)11.分解因式:3x 2﹣18x+27=________.【答案】3(x ﹣3)2【解析】【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.12.“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.【答案】16【解析】【分析】本题考查画树状图法求等可能事件的概率;画树状图,共有12种等可能的结果,其中抽取的两本恰好是《水浒传》和《西游记》的结果有2种,再由概率公式求解即可.【详解】解:把《红楼梦》《水浒传》《三国演义》《西游记》四本书分别记为A ,B ,C ,D ,根据题意,画出如下的树状图:由树状图可知看出,所有可能出现的结果共有12种,这些结果出现的可能性相等.两本是《三国演义》和《西游记》的结果有2种,所以P (两本是《三国演义》和《西游记》)21126==.故答案为:16.13.若关于x 的方程31122k x x --=--无解,则k 的值为______.【答案】4【解析】【分析】本题主要考查了根据分式方程解的情况求参数,先解分式方程得到6x k =-,再根据分式方程无解得到620k --=,解方程即可得到答案.【详解】解:31122k x x --=--去分母得:312k x -+=-,解得6x k =-,∵关于x 的方程31122k x x --=--无解,∴原方程有增根,∴20x -=,即620k --=,∴4k =,故答案为:4.14.如图,在ABC 中,1AE ,1BE 分别是内角CAB ∠、外角CBD ∠的三等分线,且113E AD CAB ∠=∠,113E BD CBD ∠=∠,在1ABE 中,2AE ,2BE 分别是内角1E AB ∠,外角1E BD ∠的三等分线.且2113E AD E AB ∠=∠,2113E BD E BD ∠=∠,…,以此规律作下去.若C m ∠=︒.则n E ∠=______度.【答案】13n m 【解析】【分析】本题考查了三角形的外角定理,等式性质,熟练掌握知识点是解题的关键.先分别对1,ABC E AB △△运用三角形的外角定理,设1E AD α∠=,则3CAB α∠=,1E BD β∠=,则3CBD β∠=,得到1E βα=+∠,33C βα=+∠,同理可求:2211133E E C ⎛⎫∠=∠=∠ ⎪⎝⎭,所以可得13nn E C ⎛⎫∠=∠ ⎪⎝⎭.【详解】解:如图:∵113E AD CAB ∠=∠,113E BD CBD ∠=∠,∴设1E AD α∠=,1E BD β∠=,则3CAB α∠=,3CBD β∠=,由三角形的外角的性质得:1E βα=+∠,33C βα=+∠,∴113E C ∠=∠,如图:同理可求:2113E E ∠=∠,∴2213E C ⎛⎫∠=∠ ⎪⎝⎭,……,∴13nn E C ⎛⎫∠=∠ ⎪⎝⎭,即13n nE m ∠=︒,故答案为:13n m .15.如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是______.【答案】403【解析】【分析】本题考查解直角三角形,勾股定理.过D 作DE AB ⊥于E ,设DB x =,则1CB x =+,利用sin AC DE B AB DBÐ==列出等式即可.【详解】解:过D 作DE AB ⊥于E ,90C ∠=︒ ,4AC =,1CD =,AD \=45BAD ∠=︒ADE ∴V 是等腰直角三角形23422DE AD \==设DB x =,则1CB x =+AB \=sin AC DE B AB DB Ð==342x \解得175x =-(舍去)或173x =经检验173x =是原分式方程的解,111740(142233ABC S CB AC \=鬃=�△.故答案为:403.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.(1)计算:()2012sin 60π20242-⎛⎫--︒-- ⎪⎝⎭;(2)解不等式组323122x x x --<-⎧⎪⎨-≤+⎪⎩【答案】(1)3-(2)15x -<≤【解析】【分析】本题考查了实数的混合运算,解一元一次不等式组;(1)根据负整数指数幂,二次根式的性质,特殊角的三角函数值,零指数幂进行计算即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)()212sin 60π20242-⎛⎫--︒-- ⎪⎝⎭4212=-⨯-41=-3=-(2)323122x x x --<-⎧⎪⎨-≤+⎪⎩①②解不等式①得:1x >-解不等式②得:5x ≤∴不等式组的解集为:15x -<≤17.先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【解析】【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,∴2x ≠±且0x ≠且1x ≠-,∴当1x =时,原式4211==+.18.2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级A B C D分数段90~10080~8970~7960~69频数440280m40请根据表中提供的信息.解答下列问题:(1)此次调查共抽取了______名选手,m=______,n=______;(2)扇形统计图中,B等级所对应的扇形圆心角度数是______度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.【答案】(1)800,40,5(2)126(3)1 3【解析】【分析】本题考查了列表法求概率,频数分布表以及扇形统计图;(1)根据A等级的人数除以占比得出总人数,进而求得,m n的值;(2)根据B等级的占比乘以360︒,即可求解;(3)设三个项目的冠军分别为,,A B C,根据列表法求概率,即可求解.【小问1详解】解:依题意,44080055%=名选手,8005%40m=⨯=,40%100%5%800n=⨯=∴5n=故答案为:800,40,5.【小问2详解】扇形统计图中,B 等级所对应的扇形圆心角度数是280360126800⨯︒=︒,故答案为:126.【小问3详解】解:设三个项目的冠军分别为,,A B C ,列表如下,A B CA AB AC B BA BCC CA CB共有6种等可能结果,其中恰好抽到马拉松和欢乐跑冠军的有2种情形,∴恰好抽到马拉松和欢乐跑冠军的概率为2163=19.如图,线段AC 、BD 相交于点O .且AB CD ∥,AE BD ⊥于点E .(1)尺规作图:过点C 作BD 的垂线,垂足为点F 、连接AF 、CE ;(不写作法,保留作图痕迹,并标明相应的字母)(2)若AB CD =,请判断四边形AECF 的形状,并说明理由.(若前问未完成,可画草图完成此问)【答案】(1)见解析(2)四边形AECF 是平行四边形,理由见解析【解析】【分析】本题主要考查了平行四边形的判定,垂线的尺规作图,全等三角形的性质与判定:(1)先根据垂线的尺规作图方法作出点F ,再连接AF 、CE 即可;(2)先证明()ASA ABO CDO ≌,得到OA OC =,再证明90AE CF AEO CFO ==︒∥,∠∠,进而证明()AAS AOE COF ≌,得到AE CF =,即可证明四边形AECF 是平行四边形.【小问1详解】解:如图所示,即为所求;【小问2详解】解:四边形AECF 是平行四边形,理由如下:∵AB CD ∥,∴B D OAB OCD ==∠∠,∠∠,又∵AB CD =,∴()ASA ABO CDO ≌,∴OA OC =,∵AE BD CF BD ⊥⊥,,∴90AE CF AEO CFO ==︒∥,∠∠,又∵AOE COF ∠=∠,∴()AAS AOE COF ≌,∴AE CF =,∴四边形AECF 是平行四边形.20.“三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起源于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,AB 是彩婷的中轴、甲同学站在C 处.借助测角仪观察,发现中轴AB 上的点D 的仰角是30︒,他与彩婷中轴的距离6BC =米.乙同学在观测点E 处借助无人机技术进行测量,测得AE 平行于水平线BC ,中轴AB 上的点F 的仰角45AEF ∠=︒,点E 、F 之间的距离是4米,已知彩婷的中轴 6.3AB =米,甲同学的眼睛到地面的距离 1.5MC =米,请根据以上数据,求中轴上DF 的长度.(结果精确到0.1米,参考数据1.73≈1.41≈)【答案】中轴上DF 的长度为1.5米【解析】【分析】本题考查了解直角三角形的应用;过点M 作MN AB ⊥于点N ,分别求得,DN AF 的长,根据DF AF DB AB =+-,即可求解.【详解】解:如图,过点M 作MN AB ⊥于点N ,依题意,四边形MCBN 是矩形,30,45DMN AEF ∠=︒∠=︒∴3tan 3063DN MN =⋅︒=⨯=2sin 4542AF EF =⋅︒=⨯=∴DF AF DB AB =+-1.5 6.3=++-21.4121.73 1.5 6.3=⨯+⨯+-1.5≈米答:中轴上DF 的长度为1.5米.21.如图,一次函数y kx b =+(k 、b 为常数,0k ≠)的图象与反比例函数m y x=(m 为常数,0m ≠)的图象交于点()2,3A ,(),2B a -.(1)求反比例函数和一次函数的解析式;(2)若点C 是x 轴正半轴上的一点.且90BCA ∠=︒.求点C 的坐标.【答案】(1)6y x =,1y x =+(2)(3,0)C 【解析】【分析】本题考查反比例函数与一次函数综合题型,也考查了锐角三角函数的应用.(1)用待定系数法先求反比例函数解析式,再求一次函数解析式即可;(2)过A 作AM x ⊥轴于M ,过B 作BN x ⊥轴于N ,设(,0)C c ,先求得NCB MAC ∠=∠得到tan tan NCB MAC Ð=Ð,即NB MC NC AM =,得出等量关系解出c 即可.【小问1详解】解:将()2,3A 代入m y x=得236m =⨯=6y x∴=将(),2B a -代入6y x =得62a -=3a ∴=-()3,2B ∴--将()2,3A 和()3,2B --代入y kx b =+得2332k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩1y x ∴=+故反比例函数和一次函数的解析式分别为6y x=和1y x =+;【小问2详解】如图,过A 作AM x ⊥轴于M ,过B 作BN x ⊥轴于N ,90BCA ∠=︒90NCB ACM \Ð+Ð=°90MAC ACM Ð+Ð=°NCB MAC\Ð=Ðtan tan NCB MAC\Ð=Ð即NB MC NC AM=设(,0)C c ,则2MC c =-,3NC c =+3,2AM BN == 2233c c -\=+解得4c =-(舍去)或3c =经检验,3c =是原分式方程的解,(3,0)C ∴.22.为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将A 、B 两个品种的柑橘加工包装成礼盒再出售.已知每件A 品种柑橘礼盒比B 品种柑橘礼盒的售价少20元.且出售25件A 品种柑橘礼盒和15件B 品种柑橘礼盒的总价共3500元.(1)求A 、B 两种柑橘礼盒每件的售价分别为多少元?(2)已知加工A 、B 两种柑橘礼盒每件的成本分别为50元、60元、该乡镇计划在某农产品展销活动中售出A 、B 两种柑橘礼盒共1000盒,且A 品种柑橘礼盒售出的数量不超过B 品种柑橘礼盒数量的1.5倍.总成本不超过54050元.要使农户收益最大,该乡镇应怎样安排A 、B 两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?【答案】(1)A 、B 两种柑橘礼盒每件的售价分别为80,100元(2)要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元【解析】【分析】本题考查了二元一次方程组的应用;一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种柑橘礼盒每件的售价分别为a 元,b 元,根据题意列出二元一次方程组,即可求解;(2)设售出A 种柑橘礼盒x 盒,则售出B 种柑橘礼盒()1000x -盒,根据题意列出不等式组,得出595600x ≤≤,设收益为y 元,根据题意列出函数关系式,进而根据一次函数的性质,即可求解.【小问1详解】解:设A 、B 两种柑橘礼盒每件的售价分别为a 元,b 元,根据题意得,2025153500a b a b +=⎧⎨+=⎩解得:80100a b =⎧⎨=⎩答:A 、B 两种柑橘礼盒每件的售价分别为80,100元;【小问2详解】解:设售出A 种柑橘礼盒x 盒,则售出B 种柑橘礼盒()1000x -盒,根据题意得,()()1.510005060100054050x x x x ⎧≤-⎪⎨+-≤⎪⎩解得:595600x ≤≤设收益为y 元,根据题意得,()()()80501006010001040000y x x x =-+--=-+∵100-<∴y 随x 的增大而减小,∴当595x =时,y 取得最大值,最大值为105954000034050-⨯+=(元)∴售出B 种柑橘礼盒1000595405-=(盒)答:要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元.23.如图,BD 是O 的直径.四边形ABCD 内接于O .连接AC ,且AB AC =,以AD 为边作DAF ACD ∠=∠交BD 的延长线于点F .(1)求证:AF 是O 的切线;(2)过点A 作AE BD ⊥交BD 于点E .若3CD DE =,求cos ABC ∠的值.【答案】(1)证明见解析(2【解析】【分析】(1)如图所示,连接OA ,由直径所对的圆周角是直角得到90BAD ∠=︒,导角可证明DAF OAB ∠=∠,进而得到90OAF ∠=︒,据此即可证明AF 是O 的切线;(2)延长CD 交AF 于H ,延长AO 交BC 于G ,连接OC ,由直径所对的圆周角是直角得到90BCD ∠=︒,证明AG CH ∥,得到90AHC ∠=︒,接着证明()AAS ABE ACH ≌,得到AE AH BE CH ==,,进一步证明()Rt Rt HL ADE ADH ≌,得到DH DE =,设DH DE a ==,则3CD a =,4BE CH a ==,进而得到5BD BE DE a =+=,则 2.5OA OD a ==,由勾股定理得到2AE a ==,AD ==,则cos 5DE ADE AD ==∠,进一步可得cos cos 5ABC ADE ==∠∠.【小问1详解】证明:如图所示,连接OA ,∵BD 是O 的直径,∴90BAD ∠=︒,∴90OAB OAD ∠+∠=︒,∵OA OB =,∴OAB OBA ∠=∠,∵DAF ACD ∠=∠,OBA ACD ∠=∠,∴DAF OAB ∠=∠,∴90DAF OAD OAB OAD +=+=︒∠∠∠∠,∴90OAF ∠=︒,∴OA AF ⊥,又∵OA 是O 的半径,∴AF 是O 的切线;【小问2详解】解:如图所示,延长CD 交AF 于H ,延长AO 交BC 于G ,连接OC ,∵BD 是O 的直径,∴90BCD ∠=︒,即CH BC ⊥,∵AB AC OB OC ==,,∴OA 垂直平分BC ,∴AG BC ⊥,∴AG CH ∥,∵90OAF ∠=︒,∵AE BD ⊥,∴90AEB AHC ==︒∠∠,又∵ABE ACH ∠=∠,∴()AAS ABE ACH ≌,∴AE AH BE CH ==,,∵AD AD =,∴()Rt Rt HL ADE ADH ≌,∴DH DE =,设DH DE a ==,则3CD a =,∴4BE CH DH CD a ==+=,∴5BD BE DE a =+=,∴ 2.5OA OD a ==,∴ 1.5OE OD DE a =-=,∴2AE a ==,∴AD ==,∴5cos 5DE ADE AD ==∠,∵AB AC =,∴A ABC CB =∠∠,∵ADE ACB ∠=∠,∴ABC ADE ∠=∠,∴cos cos 5ABC ADE ==∠∠.【点睛】本题主要考查了切线的判定,求角的余弦值,直径所对的圆周角是直角,同弧所对的圆周角相等,勾股定理,全等三角形的性质与判定等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.24.如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.【答案】(1)223y x x =+-(2)()1,0P 或()4,5P -;(3)(N -或(1,-或()1,1--或()3-【解析】【分析】(1)待定系数法求解析式,即可求解;(2)先求得,,C M D 的坐标,根据勾股定理的逆定理得出MCD △是等腰三角形,进而根据2PMC DMC S S =△△得出2PMC S =△,连接MB ,设MD 交x 轴于点E ,则2ME EB ==得出MBE △是等腰直角三角形,进而得出2BMC S =△,则点P 与点B 重合时符合题意,()1,0P ,过点B 作BP AC ∥交抛物线于点P ,得出直线BP 的解析式为1y x =-+,联立抛物线解析式,即可求解;(3)勾股定理求得222,,AC AN CN ,根据等腰三角形的性质,分类讨论解方程,即可求解.【小问1详解】解:∵抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,∴933030a k a k --=⎧⎨+-=⎩解得:12a k =⎧⎨=⎩∴抛物线的解析式为223y x x =+-;【小问2详解】由223y x x =+-,当0x =时,=3y -,则()0,3C -∵()222314y x x x =+-=+-,则()1,4D --,对称轴为直线=1x -设直线AC 的解析式为11y k x b =+,代入()3,0A -,()0,3C -∴11303k b b -+=⎧⎨=-⎩解得:1113k b =-⎧⎨=-⎩∴直线AC 的解析式为3y x =--,当=1x -时,=2y -,则()1,2M --∴()242,MC MD CD ===---===∴222MD MC CD =+∴MCD △是等腰三角形,∴212222PMC DMC S CD S ==⨯⨯=△△连接MB ,设MD 交x 轴于点E ,则2ME EB ==∴MBE △是等腰直角三角形,∴45BME ∠=︒,BM =,又45DMC ∠=︒∴BM AC⊥∴11222BMC S MC BM =⨯⨯== ∴点P 与点B 重合时符合题意,()1,0P 如图所示,过点B作BP AC ∥交抛物线于点P ,设直线BP 的解析式为y x m =-+,将()1,0B 代入得,01m=-+解得:1m =∴直线BP 的解析式为1y x =-+联立2123y x y x x =-+⎧⎨=+-⎩解得:45x y =-⎧⎨=⎩,10x y =⎧⎨=⎩∴()4,5P -综上所述,()1,0P 或()4,5P -;【小问3详解】解:∵()3,0A -,()0,3C -,∴2223318AC =+=∵点N 是抛物线对称轴上位于点D 上方的一动点,设()1,N n -其中4n >-∴()2222314AN n n =-++=+,()222213610CN n n n =++=++①当AN AC =时,2418n +=,解得:n =或n =②当NA NC =时,224610n n n +=++,解得:1n =-③当CA CN =时,218610n n =++,解得:3n =-或3n =(舍去)综上所述,(N -或(1,-或()11--,或()13-.【点睛】本题考查了二次函数综合问题,待定系数法求解析式,面积问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.25.倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2AB ∴=______+______.化简整理得22AC BD +=______.【类比探究】(2)如图2.若四边形ABCD 是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形ABCD 为平行四边形,对角线AC ,BD 相交于点O ,点E 为AO 的中点,点F 为BC 的中点,连接EF ,若8AB =,8BD =,12AC =,直接写出EF 的长度.【答案】(1)214AC ,214BD ,24AB ;(2)222222AC BD AB AD +=+;(3【解析】【分析】(1)根据菱形的性质及勾股定理补充过程,即可求解;(2)过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥交AB 的延长线于点F ,根据平行四边形的性质得AB CD =,AB CD ∥,AD BC =,证明()AAS DAE CBF ≌,得AE BF =,DE CF =,,根据勾股定理得()22222DB DE BB DE AB AE =+=+-,()22222AC CF AF CF AB BF =+=++,继而得出22AC BD +的值即可;(3)由(2)可得222222AC BD AB AD +=+得出AD =,过点,E O 分别作BC 的垂线,垂足分别为,M G ,连接OF ,根据勾股定理以及已知条件,分别求得,,OG CG BG ,根据EM OG ∥得出131024MG CG ==,MF =根据COG CEM ∽得出32EM OG ==可求解.【详解】解:(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2221144AB AC BD ∴=+.化简整理得2224AC BD AB +=故答案为:214AC ,214BD ,24AB .(2)222222AC BD AB AD +=+,理由如下,过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥交AB 的延长线于点F,∴90DEA DEB CFB ∠=∠=∠=︒,∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,AD BC =,∴DAE CBF ∠=∠,在DAE 和CBF V 中,DAE CBF DEA CFB AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DAE CBF ≌,∴AE BF =,DE CF =,在Rt DBE 中,()22222DB DE BE DE AB AE =+=+-,在Rt CAF △中,()22222AC CF AF CF AB BF =+=++,∴()()222222AC BD DE AB AE CF AB BF +=+-+++22222222DE AB AB AE AE AB AB AE AE =+-⋅+++⋅+()22222DE AE AB =++2222AD AB =+,∴222222AC BD AB AD +=+(3)∵四边形ABCD 是平行四边形,8AB =,8BD =,12AC =,∴由(2)可得222222AC BD AB AD +=+∴2222128282AD +=⨯+解得:AD =∵四边形ABCD 是平行四边形,12,8,AC BD ==∴BC AD ==6OA OC ==,142OB OD BD ===,如图所示,过点,E O 分别作BC 的垂线,垂足分别为,M G ,连接OF ,∵F 分别为BC 的中点,∴11422OF AB OB BD ====,∵OG BF ⊥,∴BG GF =12BF =,∵F 是BC 的中点,∴12BF BC =∴BG GF =1110242BF BC ===,∴CG BC BG =-=,在Rt OGC △中,OG BC ⊥,∴362OG ===,∵E 为AO 的中点,∴12OE OA =,∵AO OC =,∴12OE OC =,∴23OC EC =,12OE OC =,∵,EM BC OG BC ⊥⊥,∴EM OG ∥,∴12EO MG OC CG ==,∴131024MG CG ==,∴3101042MF MG GF =+=+=,∵EM OG ∥,∴COG CEM ∽,∴23OG OC EM EC ==,∴32EM OG ==在Rt EMF △中,EF ===.【点睛】本题考查了菱形的性质,平行四边形的性质,勾股定理,全等三角形的性质与判定,相似三角形的性质与判定,平行线分线段成比例,熟练掌握勾股定理是解题的关键.。
2024年四川省凉山州中考数学试卷一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置。
1.下列各数中:5,﹣,﹣3,0,﹣25.8,+2,负数有( )A.1个B.2个C.3个D.4个2.如图,由3个相同的小正方体搭成的几何体的俯视图是( )A.B.C.D.3.下列运算正确的是( )A.2ab+3ab=5ab B.(ab2)3=a3b5C.a8÷a2=a4D.a2•a3=a64.一副直角三角板按如图所示的方式摆放,点E在AB的延长线上,当DF∥AB时,∠EDB 的度数为( )A.10°B.15°C.30°D.45°5.点P(a,﹣3)关于原点对称的点是P′(2,b),则a+b的值是( )A.1B.﹣1C.﹣5D.56.如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=( )A.25cm B.45cm C.50cm D.55cm7.匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度h随时间t变化的大致图象是( )A.B.C.D.8.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,每个团参加表演的8位女演员身高的折线统计图如下.则甲、乙两团女演员身高的方差s甲2、s乙2大小关系正确的是( )A.s甲2>s乙2B.s甲2<s乙2C.s甲2=s乙2D.无法确定9.若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是x=0,则a的值为( )A.2B.﹣2C.2或﹣2D.10.数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点A,B,连接AB,作AB的垂直平分线CD交AB于点D,交于点C,测出AB=40cm,CD=10cm,则圆形工件的半径为( )A.50cm B.35cm C.25cm D.20cm11.如图,一块面积为60cm2的三角形硬纸板(记为△ABC)平行于投影面时,在点光源O 的照射下形成的投影是△A1B1C1,若OB:BB1=2:3,则△A1B1C1的面积是( )A.90cm2B.135cm2C.150cm2D.375cm212.抛物线y=(x﹣1)2+c经过(﹣2,y1),(0,y2),(,y3)三点,则y1,y2,y3的大小关系正确的是( )A.y1>y2>y3B.y2>y3>y1C.y3>y1>y2D.y1>y3>y2二、填空题(共5小题,每小题4分,共20分)13.已知a2﹣b2=12,且a﹣b=﹣2,则a+b= .14.方程=的解是 .15.如图,△ABC中,∠BCD=30°,∠ACB=80°,CD是边AB上的高,AE是∠CAB的平分线,则∠AEB的度数是 .16.如图,四边形ABCD各边中点分别是E、F、G、H,若对角线AC=24,BD=18,则四边形EFGH的周长是 .17.如图,一次函数y=kx+b的图象经过A(3,6)、B(0,3)两点,交x轴于点C,则△AOC 的面积为 .三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.(5分)计算:+|2﹣|+2﹣1+cos30°﹣(﹣1)0.19.(5分)求不等式组﹣3<4x﹣7≤9的整数解.20.(7分)为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:请根据统计图回答下列问题:(1)本次调查的总人数是 人,估计全校1500名学生中最喜欢乒乓球项目的约有 人;(2)补全条形统计图;(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.21.(7分)为建设全城旅游西昌,加快旅游产业发展.2022年9月29日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为1845.4平方米,塔顶金碧辉煌,为“火珠垂莲”窣(sū)堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级(2)班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上A点处,测得塔顶C的仰角为30°,眼睛B距离地面1.8m,向塔前行67m,到达点D处,测得塔顶C的仰角为60°,求塔高CF.(参考数据:≈1.414,≈1.732,结果精确到0.01m)22.(8分)如图,正比例函数y1=x与反比例函数y2=(x>0)的图象交于点A(m,2).(1)求反比例函数的解析式;(2)把直线y1=x向上平移3个单位长度与y2=(x>0)的图象交于点B,连接AB、OB,求△AOB的面积.四、填空题(共2小题,每小题5分,共10分)23.(5分)已知y2﹣x=0,x2﹣3y2+x﹣3=0,则x的值为 .24.(5分)如图,⊙M的圆心为M(4,0),半径为2,P是直线y=x+4上的一个动点,过点P作⊙M的切线,切点为Q,则PQ的最小值为 .五、解答题(共4小题,共40分)25.(8分)阅读下面材料,并解决相关问题:如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n行有n个点…,容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为 ,前15行的点数之和为 ,那么,前n行的点数之和为 .(2)体验:三角点阵中前n行的点数之和 (填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆,…,第n排2n盆的规律摆放而成,则一共能摆放多少排?26.(10分)如图,在菱形ABCD中,∠ABC=60°,AB=2,E是BC边上一个动点,连接AE,AE的垂直平分线MN交AE于点M,交BD于点N,连接EN、CN.(1)求证:EN=CN;(2)求2EN+BN的最小值.27.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD平分∠BAC交⊙O于点D,过点D 的直线DE⊥AC,交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)连接EO并延长,分别交⊙O于M、N两点,交AD于点G,若⊙O的半径为2,∠F =30°,求GM•GN的值.28.(12分)如图,抛物线y=﹣x2+bx+c与直线y=x+2相交于A(﹣2,0),B(3,m)两点,与x轴相交于另一点C.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一个动点(不与A、B重合),过点P作直线PD⊥x 轴于点D,交直线AB于点E,当PE=2ED时,求P点坐标;(3)抛物线上是否存在点M使△ABM的面积等于△ABC面积的一半?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置。
2024年四川省达州市中考数学试卷一、单项选择题(每小题4分,共40分)1.有理数2024的相反数是( )A.2024B.﹣2024C.D.2.大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为( )A.2×109B.2×108C.0.2×108D.2×1073.下列计算正确的是( )A.a2+a3=a5B.(a+2)2=a2+2a+4C.(﹣2a2b3)3=﹣8a6b9D.a12÷a6=a24.如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A.热B.爱C.中D.国5.小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间,则“■”在范围内无论为何值都不影响这组数据的( )A.平均数B.众数C.中位数D.方差6.当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示),图中∠1=80°,∠2=40°,则∠3的度数为( )A.30°B.40°C.50°D.70°7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为( )A.﹣=30B.﹣=30C.﹣=D.﹣=8.如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,∠ABD=120°,其中点A,B,C都在格点上,则tan∠BCD的值为( )A.2B.C.D.39.抛物线y=﹣x2+bx+c与x轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )A.b+c>1B.b=2C.b2+4c<0D.c<010.如图,△ABC是等腰直角三角形,∠ABC=90°,AB=4,点D,E分别在AC,BC边上运动,连结AE,BD交于点F,且始终满足AD=CE,则下列结论:①=;②∠DFE=135°;③△ABF面积的最大值是4﹣4;④CF的最小值是2﹣2.其中正确的是( )A.①③B.①②④C.②③④D.①②③④二、填空题(每小题4分,共20分)11.分解因式:3x2﹣18x+27= .12.“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是 .13.若关于x的方程﹣=1无解,则k的值为 .14.如图,在△ABC中,AE1,BE1分别是内角∠CAB,外角∠CBD的三等分线,且∠E1AD=∠CAB,∠E1BD=∠CBD,在△ABE1中,AE2,BE2分别是内角∠E1AB,外角∠E1BD的三等分线,且∠E2AD=∠E1AB,∠E2BD=∠E1BD,…,以此规律作下去,若∠C=m°,则∠E n= 度.15.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠BAD=45°,若AC=4,CD=1,则△ABC的面积是 .三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.(8分)(1)计算:(﹣)﹣2﹣+2sin60°﹣(π﹣2024)0;(2)解不等式组:.17.(6分)先化简:(﹣)÷,再从﹣2,﹣1,0,1,2之中选择一个合适的数作为x的值代入求值.18.(8分)2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑,本次赛事以“相约巴人故里,乐跑红色达州”为主题,旨在增强全市民众科学健身意识,推动全民健身活动.本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目.赛后随机抽取了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级A B C D分数段90﹣10080﹣8970﹣7960﹣69频数440280m40请根据表中提供的信息,解答下列问题:(1)此次调查共抽取了 名选手,m= ,n= ;(2)扇形统计图中,B等级所对应的扇形圆心角度数是 度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.19.(8分)如图,线段AC,BD相交于点O,且AB∥CD,AE⊥BD于点E.(1)尺规作图:过点C作BD的垂线,垂足为点F,连接AF,CE;(不写作法,保留作图痕迹,并标明相应的字母)(2)若AB=CD,请判断四边形AECF的形状,并说明理由.(若前问未完成,可画草图完成此问)20.(8分)“三汇彩亭会”是达州市渠县三汇镇独有的传统民俗文化活动,起源于汉代,融数学、力学、锻造、绑扎、运载于一体(如图1),在一次展演活动中,某数学“综合与实践”小组将彩亭抽象成如图2的示意图,AB是彩亭的中轴,甲同学站在C处.借助测角仪观察,发现中轴AB上的点D的仰角是30°,他与彩亭中轴的距离BC=6米,乙同学在观测点E处借助无人机技术进行测量,测得AE平行于水平线BC,中轴AB上的点F的俯角∠AEF=45°,点E、F之间的距离是4米,已知彩亭的中轴AB=6.3米,甲同学的眼睛到地面的距离MC=1.5米,请根据以上数据,求中轴上DF的长度.(结果精确到0.1米,参考数据≈1.73,≈1.41)21.(9分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数(m为常数,m ≠0)的图象交于点A(2,3),B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若点C是x轴正半轴上的一点,且∠BCA=90°,求点C的坐标.22.(10分)为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将A、B两个品种的柑橘加工包装成礼盒再出售.已知每件A品种柑橘礼盒比B品种柑橘礼盒的售价少20元,且出售25件A品种柑橘礼盒和15件B品种柑橘礼盒的总价共3500元.(1)求A、B两种柑橘礼盒每件的售价分别为多少元?(2)已知加工A、B两种柑橘礼盒每件的成本分别为50元、60元,乡镇计划在某农产品展销活动中售出A、B两种柑橘礼盒共1000盒,且A品种柑橘礼盒售出的数量不超过B品种柑橘礼盒数量的1.5倍,总成本不超过54050元,要使农户收益最大,该乡镇应怎样安排A、B两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?23.(10分)如图,BD是⊙O的直径,四边形ABCD内接于⊙O,连结AC,且AB=AC,以AD为边作∠DAF=∠ACD交BD的延长线于点F.(1)求证:AF是⊙O的切线;(2)过点A作AE⊥BD交BD于点E,若CD=3DE,求cos∠ABC的值.24.(11分)如图1,抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC,DC,直线AC交抛物线的对称轴于点M,若点P是直线AC上方抛物线上一点,且S△PMC=2S△DMC,求点P的坐标;(3)若点N是抛物线对称轴上位于点D上方的一动点,是否存在以点N,A,C为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.25.(12分)在学习特殊的平行四边形时,我们发现正方形的对角线等于边长的倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1)∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∴AB2=AO2+BO2又∵AC=2AO,BD=2BO,∴AB2= + .化简整理得AC2+BD2= .[类比探究](2)如图2,若四边形ABCD是平行四边形,请说明边长与对角线的数量关系.[拓展应用](3)如图3,四边形ABCD为平行四边形,对角线AC,BD相交于点O,点E为AO的中点,点F为BC的中点,连接EF,若AB=8,BD=8,AC=12,直接写出EF的长度.参考答案一、单项选择题(每小题4分,共40分)1.解:2024的相反数是﹣2024,故选:B.2.解:2亿用科学记数法表示为2×108,故选:B.3.解:a2+a3不能化简,故A选项错误;(a+2)2=a2+4a+4,故B选项错误;(﹣2a2b3)3=﹣8a6b9,故C选项正确;a12÷a6=a6,故D选项错误;故选:C.4.解:根据图示知:“我””与“爱”相对;“热”与“国”相对;“们”与“中”相对.故选:B.5.解:一组数据“12,12,28,35,■”,该数据■在30~40之间,四个数据的和随数据■的变化而变化,所以平均数是变化的,选项A错误.众数也变化,选项B错误.中位数是28,不变,选项C正确.因为平均数改变,方差随着改变,选项D错误.故选:C.6.解:如图,∵AB∥CD,∴∠1=∠AMN=∠2+∠3,∵∠1=80°,∠2=40°,∴∠3=40°,故选:B.7.解:设乙每小时加工x个零件,则甲每小时加工1.2x个零件,根据题意得﹣=.故选:D.8.解:如图,延长BC交格点于E,连接AE,由题意可得:AE⊥BE,AE=4,EC=2,∴tan∠BCD=tan∠ACE===2,故选:B.9.解:∵抛物线y=﹣x2+bx+c与x轴交于两点,分别为(x1,0)和(x2,0),且x1<1,∴x1﹣1<0,x2﹣1>0,∴(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,由根与系数的关系可得,﹣c﹣b+1<0,∴b+c>1,故选:A.10.解:①∵△ABC是等腰直角三角形,∠ABC=90°,AB=4,∴∠BCA=∠BAC=45°,AB=BC=4,由勾股定理得:AC==,∴,∵AD=CE,∴,∴,又∵∠ECA=∠DAB=45°,∴△CAE∽△ABD,∴,故结论①正确;②∵△CAE∽△ABD,∴∠CAE=∠ABD,∴∠BFE=∠BAF+∠ABD=∠BAF+∠CAE=∠BAC=45°,∴∠DFE=180°﹣∠BFE=180°﹣45°=135°,故结论②正确;③以AB为斜边在△ABC外侧构造等腰Rt△OAB,作△OAB的外接圆⊙O,过点O作OK⊥AB于K,OK的延长线交⊙O于H,连接AH,BH,过点O作OM⊥CB交CB的延长线于M,连接OC 交⊙O于P,如下图所示:∴∠AOB=90°,∴∠AHB=180°﹣∠AOB=180°﹣×90°=135°,∵∠DFE=135°,∴点F在上运动,∵AB=4,∴当点F与点H重合时,△ABF的面积为最大,最大值为△ABH的面积,根据等腰直角三角形的性质得:AK=BK=AB=2,∠AOH=45°,∴AK=OK=2,在Rt△AOK中,由勾股定理得:OA==,∴OA=OH=OB=OP=,∴KH=OH﹣OK=,∴S△ABH=AB•KH==,故结论③正确;④∵点F在上运动,∴当点F与点P重合时,CF为最小,最小值为线段CP的长,∵OM⊥CB,OK⊥AB,∠ABM=∠ABC=90°,∴四边形OMBK为矩形,∴OM=BK=2,BM=OK=2,∴CM=BC+BM=4+2=6,在Rt△COM中,由勾股定理得:CO==,∴CP=CO﹣OP=,即CF的最小值是,故结论④正确,综上所述:正确的结论是①②③④.故选:D.二、填空题(每小题4分,共20分)11.解:3x2﹣18x+27,=3(x2﹣6x+9),=3(x﹣3)2.故答案为:3(x﹣3)2.12.解:∴P=,故答案为:.13.解:方程去分母得:3﹣(kx﹣1)=x﹣2解得:x=,①当x=2时分母为0,方程无解,即=2,∴k=2时方程无解;②当k+1=0即k=﹣1时,方程无解;故答案为:2或﹣1.14.解:由题意,,∴设∠E1AD=α,∠E1BD=β,则∠CAB=3α,∠CBD=3β,由三角形的外角的性质得:β=α+∠E 1,3β=3α+∠C ,,同理可求:, ……,,即,故答案为:.15.解:过D 作DE ⊥AB ,交AB 于点E ,,∴∠DEA =∠DEB =90°,∵∠C =90°,AC =4,CD =1,∴AD ==,∵∠DEA =90°,∠BAD =45°,∴AE =DE =AD •sin ∠EAD =,∵∠DEB =90°,∠C =90°,∴BE 2+DE 2=BD 2,AC 2+BC 2=AB 2,即BE 2+=BD 2①,(BD +1)2+16=(+BE )2②,①变形得,BE =③,②化简得,BD 2+2BD +17=+BE +BE 2④,将①、③代入④并化简得,15BD 2﹣34BD ﹣172=0,(BD >0)解得:BD =,∴BC =,∴S △ABC =AC •BC =,故答案为:.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.解:(1)原式=4﹣3+2×﹣1=4﹣3+﹣1=3﹣2;(2),解不等式①得x>﹣1,解不等式②得x≤5,所以不等式组的解集为﹣1<x≤5.17.解:原式=•=•=•=,∵x﹣2≠0且x+2≠0且x≠0且x+1≠0,∴x可以取1,当x=1时,原式==2.18.解:(1)此次调查共抽取的选手总人数为440÷55%=800(名);所以m=800×5%=40,所以n%==5%,即n=5;故答案为:800,40,5;(2)扇形统计图中,B等级所对应的扇形圆心角度数=360°×=126°;故答案为:126;(3)用A、B、C分别表示马拉松,半程马拉松和欢乐跑三个项目.画树状图为:共有6种等可能的结果,其中马拉松和欢乐跑冠军的结果数为2种,所以恰好抽到马拉松和欢乐跑冠军的概率==.19.解:(1)如图,CF、AF、CE为所作;(2)四边形AECF平行四边形.理由如下:∵AB∥CD,∴∠B=∠D,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,而AE∥CF,∴四边形AECF平行四边形.20.解:过点M作MN⊥AB,垂足为N.由题意知,四边形CMNB是矩形.∴CM=BN=1.5米,MN=CB=6米,AN=AB﹣BN=6.3﹣1.5=4.8(米).在Rt△DMN中,∵tan∠DMN=,∴DN=tan∠DMN•MN=tan30°×MN=×6=2(米).在Rt△AEF中,∵sin∠AEF=,∴AF=sin∠AEF•EF=sin45°×EF=×4=2(米).∵AF+DN=AN+DF,∴DF=2+2﹣4.8≈2×1.73+2×1.41﹣4.8=3.46+2.82﹣4.8=1.48≈1.5(米).答:中轴上DF的长度为1.5米.21.解:(1)将点A、B的坐标代入反比例函数表达式得:m=2×3=﹣2a,解得:a=﹣3,m=6,即反比例函数的表达式为:y=,点B(﹣3,﹣2),将点A、B的坐标代入一次函数表达式得:,解得:,则一次函数的表达式为:y=x+1;(2)设点C(x,0),由点A、B、C的坐标得,AB2=50,AC2=(x﹣2)2+9,BC2=(x+3)2+4,∵∠BCA=90°,则AB2=AC2+BC2,即50=(x﹣2)2+9+(x+3)2+4,解得:x=3或﹣4(舍去),即点C(3,0).22.解:(1)设A种柑橘礼盒每件的售价为x元,则B种柑橘礼盒每件的售价为(x+20)元,由题意得:25x+15(x+20)=3500,解得:x=80,∴x+20=100,答:A种柑橘礼盒每件的售价为80元,B种柑橘礼盒每件的售价为100元;(2)设销售A种柑橘礼盒为m盒,则销售B种柑橘礼盒为(1000﹣m)盒,由题意得:,解得:595≤m≤600,设收益为w元,由题意得:w=(80﹣50)m+(100﹣60)(1000﹣m)=﹣10m+40000,∵﹣10<0,∴w随m的增大而减小,∴当m=595时,w有最大值=﹣10×595+40000=34050,此时,1000﹣m=1000﹣595=405,答:使农户收益最大,应该安排销售A种柑橘礼盒为595盒,B种柑橘礼盒为405盒,农户在这次农产品展销活动中的最大收益为34050元.23.(1)证明:如图所示,连接OA,∵BD是⊙O的直径,∴∠BAD=90°,∴∠OAB+∠OAD=90°,∵OA=OB,∴∠OAB=∠OBA,∵∠DAF=∠ACD,∠OBA=∠ACD,∴∠DAF=∠OAB,∴∠DAF+∠OAD=∠OAB+∠OAD=90°,∴∠OAF=90°,∴OA⊥AF,又∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:如图所示,延长CD交AF于H,延长AO交BC于G,连接OC,∵BD是⊙O的直径,∴∠BCD=90°,即CH⊥BC,∵AB=AC,OB=OC,∴OA垂直平分BC,∴AG⊥BC,∴AG∥CH,∵∠OAF=90°,∵AE⊥BD,∴∠AEB=∠AHC=90°,又∵∠ABE=∠ACH,∴△ABE≌△ACH(AAS),∴AE=AH,BE=CH,∵AD=AD,∴Rt△ADE≌Rt△ADH(HL),∴DH=DE,设DH=DE=a,则CD=3a,∴BE=CH=DH+CD=4a,∴BD=BE+DE=5a,∴OA=OD=2.5a,∴OE=OD﹣DE=1.5a,∴∴,∴,∵AB=AC,∴∠ABC=∠ACB,∵∠ADE=∠ACB,∴∠ABC=∠ADE,∴.24.解:(1)由题意得:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+bx﹣3,解得:a=1,则抛物线的表达式为:y=x2+2x﹣3;(2)由抛物线的表达式知,点C(0,﹣3)、D(﹣1,﹣4),抛物线的对称轴为直线x=﹣1,过点D作直线DG∥AC交y轴于点G,在点C上方取点L使CL=2CG,过点L作直线BP∥AC 交抛物线于点P,则点P为所求点,由点A、C坐标得,直线AC的表达式为:y=﹣x﹣3,∵DG∥AC,则直线DG的表达式为:y=﹣(x+1)﹣4,则点G(0,﹣5),则CG=5﹣3=2,则CL=4,则点L(0,1),则直线LP的表达式为:y=﹣x+1,联立上式和抛物线的表达式得:x2+2x﹣3=﹣x+1,解得:x=1或﹣4,即点P(1,0)或(﹣4,5);(3)存在,理由:设点N(﹣1,m),由点A、C、N的坐标得,AC2=18,AN2=4+m2,CN2=1+(m+3)2,当AC=AN时,则18=4+m2,则点N(﹣1,±);当AC=CN或AN=CN时,则18=1+(m+3)2或4+m2=1+(m+3)2,解得:m=﹣3+或﹣1(不合题意的值已舍去),综上,N(﹣1,±)或(﹣1,﹣1)或(﹣1,﹣3+).25.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∴AB2=AO2+BO2,又∵AC=2AO,BD=2BO,∴,化简整理得AC2+BD2=4AB2,故答案为:AC2,BD2,4AB2;(2)AC2+BD2=2AB2+2AD2理由如下,如图,过点D作DE⊥AB于点E,过点C作CF⊥AB交AB的延长线于点F,∴∠DEA=∠DEB=∠CFB=90°,四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,∴∠DAE=∠CBF,在△DAE和△CBF中,∴△DAE≌△CBF(AAS),∴AE=BF,DE=CF,在Rt△DBE中,DB2=DE2+BE2=DE2+(AB﹣AE)2在Rt△CAF中,AC2=CF2+AF2=CF2+(AB+BF)2∴AC2+BD2=DE2+(AB﹣AE)2+CF2+(AB+BF)2=2DE2+AB2﹣2AB•AE+AE2+AB2+2AB•AE+AE2=2(DE2+AE2)+2AB2=2AD2+2AB2,∴AC2+BD2=2AB2+2AD2;(3)∵四边形ABCD是平行四边形,AB=8,BD=8,AC=12,∴由(2)可得AC2+BD2=2AB2+2AD2,∴122+82=2×82+2AD2,解得:(负值舍去),∵四边形ABCD是平行四边形,AC=12,BD=8,∴,OA=OC=6,,如图所示,过点E、O分别作BC的垂线,垂足分别为M、G,连接OF,∵F分别为BC的中点,∴,∵OG⊥BF,∴,∵F是BC的中点,∴,∴,∴,在Rt△OGC中,OG⊥BC,∴,∵E为AO的中点,∴,∵AO=OC,∴,∴,∵EM⊥BC,OG⊥BC,∴EM∥OG,∴,∵,∴,∵EM∥OG,∴△COG∽△CEM,∴,∴在Rt△EMF中,.故答案为:EF=.。
2023年四川省南充市中考数学试卷一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如果向东走10m 记作+10m ,那么向西走8m 记作( )A. ―10mB. +10mC. ―8mD. +8m2.如图,将△ABC 沿BC 向右平移得到△DEF ,若BC =5,BE =2,则CF 的长是( )A. 2B. 2.5C. 3D. 53. 某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是( )A. 22cmB. 22.5cmC. 23cmD. 23.5cm4.如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知∠BAC =α,则A ,C 两处相距( )A. x sin α米B. x cos α米C. x ⋅sinα米D. x ⋅cosα米5. 《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x 尺,则可列方程为( )A. 12(x +4.5)=x ―1B. 12(x +4.5)=x +1C. 12(x ―4.5)=x +1D. 12(x ―4.5)=x ―16. 如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为( )A. 6.4mB. 8mC. 9.6mD. 12.5m7. 若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )A. (m,n+1)B. (m+1,n)C. (m,n―1)D. (m―1,n)8.如图,在Rt△ABC中,∠C=90°,AC=6,AB=10.以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧在∠CAB的内部相交于点P,画射线AP与BC交于点D,DE⊥AB,垂足为E.则下列结论错误的是( )A. ∠CAD=∠BADB. CD=DEC. AD=53D. CD:BD=3:59. 关于x,y的方程组3x+y=2m―1,x―y=n的解满足x+y=1,则4m÷2n的值是( )A. 1B. 2C. 4D. 810. 抛物线y=―x2+kx+k―54与x轴的一个交点为A(m,0),若―2≤m≤1,则实数k的取值范围是( )A. ―214≤k≤1 B. k≤―214或k≥1C. ―5≤k≤98D. k≤―5或k≥98二、填空题(本大题共6小题,共24.0分)11. 若x+1x―2=0,则x的值为______ .12. 不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有______ 个.13.如图,AB 是⊙O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,AC =12,BC =5,则MD 的长是______ .14. 小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N 和0.6m ,当动力臂由1.5m 增加到2m 时,撬动这块石头可以节省______ N 的力.(杜杆原理:阻力×阻力臂=动力×动力臂)15.如图,直线y =kx ―2k +3(k 为常数,k <0)与x ,y 轴分别交于点A ,B ,则2OA +3OB的值是______ .16.如图,在等边△ABC 中,过点C 作射线CD ⊥BC ,点M ,N 分别在边AB ,BC 上,将△ABC 沿MN 折叠,使点B 落在射线CD 上的点B′处,连接AB′,已知AB =2.给出下列四个结论:①CN +NB′为定值;②当BN =2NC 时,四边形BMB′N 为菱形;③当点N 与C 重合时,∠AB′M =18°;④当AB′最短时,MN =72120.其中正确的结论是______ .(填写序号)三、解答题(本大题共9小题,共86.0分。
1 / 12四川省中考数学试题卷注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 考生使用答题卡作答.3. 在作答前,考生务必将自己的姓名、准考证号涂写在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚.5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.6.保持答题卡面清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.1. 8的立方根是( )(A )22 (B )±22 (C )2 (D )±22. 未来3到5年时间里,双流县将全力推进“四改六治理”各项工作. 预计将完成130万平方米老住宅小区综合整治工作.130万这个数用科学记数法可表示为( ) (A )1.3×105 (B )1.3×106 (C )13×105 (D )13×1063. 如图所示的几何体是由4个相同的小正方体组成.其俯视图为( )4. 下列运算正确的是( )(A )33=÷a a (B )3422)(b a b a =(C )22))((a b b a b a -=--- (D )222)(b a b a -=- 5.函数21-=x y 中自变量x 的取值范围是( ) (A )2>x (B )2<x (C )2-≠x (D )2≠x6.如图,在△ABC 中,点E ,F 分别在AB ,BC 上,且EF ∥AB .已知∠B =55°,∠AFE(A )(B )(C )(D )ABCE F2 / 12=50°,则∠A 的度数是( ) (A )75° (B )60° (C )55° (D )40°7.如图,在平面直角坐标系中有A ,B 两点,其中点A 的坐标是(-2,1),点B 的横坐标是2,连接AO ,BO .已知∠AOB =90°,则点B (A )25(B )4 (C )5 (D )28.如图,直线b ax y +=的图像大致如左图,则二次函数bx ax y +=2的图像大致为( )9. 已知关于x 的一元二次方程032=+-m x x 的一个实数根是23,则这个方程的另一个实数根为( )(A )-3 (B )3 (C )-6 (D )610.如图,AB 与⊙O 相切于点B ,OA =2,∠A =30°,经过点B 的弦BC ∥OA ,则劣弧BC ︵的弧长为( )(A )1 6 π(B )1 3 π(C )1 2 π(D )2 3π第Ⅱ卷(非选择题,共70分)AO C BOyxb ax y +O xy (A )O xy (B )O x y (C )O xy(D )xyABO3 / 12二、填空题:(每小题4分,共l6分)11. -3的相反数为_______.12.某中学为了解学生在周末进行课外阅读的情况,随机调查了若干名学生周末课外阅读的时间,统计数据如下表所示:阅读时间(单位:小时) 0 1 2 3 4 人数(单位:人)21519186则这些学生周末课外阅读时间的众数是_______小时,中位数是_______小时. 13.在一次函数23+=x y 中,当函数值3>y 时,自变量x 的取值范围是_______. 14. 如图,△ABC 中,AB =4,AC =3,AD 是∠BAC 平分线, AE 是BC 边上的中线,过点C 作CG ⊥AD 于F ,交AB 于G , 连接EF ,则线段EF 的长为_______.三、解答题:(本大题共6个小题,共54分)15. (本小题满分12分,每题6分)(1)计算:32)21()261(30tan 32-+-+---; (2)解方程组:⎩⎨⎧=+=-1243y x y x .16.(本小题满分6分)先化简,再求值:144)131(2+++÷+--x x x x x ,其中31=x .17.(本小题满分8分)如图,某校数学学习小组在点C 处测得一棵倾斜的大树AB 顶部点A 的仰角为45°.已知大树与地面的夹角是60°,B ,C 两点间距离为18米.请你求出大树的高AB 的值(结果保留根号).18.(本小题满分8分)某校为了庆祝“五·四” 青年节,调查了本校所有学生赞同采用哪种活动方式进行AG BE DF C AB C 45° 60°4 / 12庆祝,调查的结果如图所示.根据图中给出的信息,解答下列问题:(1)这所学校赞成举办演讲比赛的学生有 人.(2)小李与小菲都是该校的学生,请你利用树状图或列表法求出小李与小菲观点一致的概率为多少?19. (本小题满分10分)如图,已知一次函数y =kx +b 的图象交反比例函数y =4-2mx(x >0)图象于点A ,B ,交x 轴于点C .(1)求的m 的取值范围; (2)若点A 的坐标是(2,-4),且BCAB=13,求m 的值和一次函数的表达式.20.(本小题满分10分)如图,正方形ABCD 的边长是2,M 是AD 的中点,E 是AB 边上的一动点.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG ,FG .(1)求证:ME =MF ;(2)当AE =a (a 为常数)时,求△EGF 的面积;(3)若点E 从点A 出发一直运动到点B ,P 是MG 的中点.在此运动过程中,请求出点P 运动路线的长.A B C 人数(单位:人)160A :文化演出B :运动会C :演讲比赛 C AB40% 35% AOx yBCFD ABM P E5 / 12B 卷(共50分)一、填空题:(每小题4分,共20分)21.若关于x 的不等式1)1(->-a x a 的解集是1-<x ,则实数a 的取值范围是_______.22.口袋中有3个相同的小球,它们分别写有数字2,3,4,从口袋中随机的取出两个球,用所得的两个数a 和b 构成一个数对(a ,b ),则点(a ,b )在函数y =x +1图像上的概率等于_______.23.如图,弹性小球从点P (0,4)出发,沿所示方向 运动,每当小球碰到矩形OABC 的边时反弹,反弹时反 射角等于入射角,当小球第1次碰到矩形的边时的点为 P 1,第2次碰到矩形的边时的点为P 2,…,第n 次碰到 矩形的边时的点为P n ,则点P 3的坐标是 ;点P 202X 的坐标是_____.24.已知有一张矩形纸片ABCD 的长为4,宽为3,点P 是BC 边上的动点(与点B ,C 不重合),现将△P AB 沿 P A 翻折,得到△P AF ,再在CD 边上选取适当的点E , 将△PCE 沿PE 翻折,得到△PME ,使得直线PF ,PM 重合.若点F 落在矩形纸片ABCD 的内部(如图),则 CE 的最大值是_______.25.如图,点P (a ,b )和点Q (c ,d )是反比例函数y =x1在第一象限内图象上的两个动点(a <b ,a ≠c ),且OP =OQ .P 1是点P 关于y 轴 的对称点,Q 1是点Q 关于x 轴的对称点,连接P 1Q 1分别交OP ,OQ 于点M ,N .若四边形PQNM 的面积为58,则点P 的坐标为_______.二、解答题:(本大题共3个小题,共30分) 26.(本小题满分8分)某数学兴趣小组想用一张边长为20cm 的正方形纸片ABCD (如图),制作一个无盖长方体盒子,设剪去的小正方形的边长AE =xcm .(1)若长方体的侧面积为128cm 2,求x 的值;(2)若在O 处有一圆点与纸片边界AB ,AD 的距离分别 是4cm 和6cm ,要将这个圆点留在制作成的长方体盒子的底面 上(含底面的边界,不考虑圆点的大小),求制作成的长方体盒 子侧面积S 的最大值.OQP xyM N P 1Q 1 P 2P 1xO yP A BC 1 1A BCDEBPFM6 / 1227.(本小题满分10分)如图,在⊙O 中,直径所在的直线AP 垂直于弦BC 于点P ,连接AC ,并以AC 为直角边作等腰Rt △ACD ,连接BD 分别交AP 和⊙O 于E ,F 两点,连接FC .(1)求证:∠ACF =∠ADF ;(2)若点A 到BD 的距离为m ,BF +CF =n ,求线段CD 的长;(3)请直接写出DEAP的值.28.(本小题满分12分)如图,直线y =x -3与x 轴,y 轴分别相交于B ,C 两点,经过B ,C 两点的抛物线y=ax2+bx +c 与x 轴的另一交点为A ,顶点为D ,且对称轴是直线x =1.(1)求抛物线的函数表达式;(2)连接CD ,BD ,求cos ∠DBC 的值;(3)点P 是线段BC 上的动点,过点P 作x 轴的垂线,交折线C -D -B 于点E ,将△BCD 沿直线PE 向右翻折.若翻折后的图形与△BCD 重叠部分的面积为S ,请求出S 的最大值.D(备用图)7 / 12数学参考答案及评分标准A 卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案CBDCDABCAB二、填空题11.3; 12. 2,2; 13.31>x ; 14.1 2三、解答题15.(1)解:原式=3241333-++-⨯……4分 =353-+=5 ……6分(2)解:⎩⎨⎧=+=-1243y x y x①+②得: 523=+x x解得: 1=x ……3分 将1=x 代入①,得 43=-y解得: 1-=y ……5分∴方程组的解为:⎩⎨⎧-==11y x ……6分16.解:原式2)2(1131)1)(1(++⨯⎥⎦⎤⎢⎣⎡+-++-=x x x x x x 22)2(1131++⋅+--=x x x x 2)2(11)2)(2(++⋅+-+=x x x x x22+-=x x ……4分 将31=x 代入,得75373523123122-=-=+-=+-x x ……6分 17. 解:过点A 作AD ⊥BC 于点D ,设CD =x ,则BD =18-x①②ABC 45°60° D8 / 12在Rt △ADC 中,∠ADC =90°,∠ACB =45° ∴AD =CD =x ……2分在Rt △ADB 中,∠ADB =90°,∠ABD =60°∴tan ∠ABD =ADBD= 3即x18-x=3,解得x =27-9 3 ……6分 ∴AB =ADsin ∠ABD=ADsin60°=27-93sin60°=18(3-1)所以,大树的高AB 为18(3-1)米. ……8分 18. 解:(1)100. ……2分 (2)列表如下小李小菲A B C A (A ,A ) (B ,A ) (C ,A ) B (A ,B ) (B ,B ) (C ,B ) C(A ,C )(B ,C )(C ,C )由上表可以看出,小李与小菲的意见共有9种结果,其中观点一致的有3种结果.所以,小李与小菲观点一致的概率是3193==P . ……8分 19. 解:(1)∵反比例函数y =4-2mx(x >0)的图象在第四象限 ∴4-2m <0,∴m >2 ……3分(2)∵点A (2,-4)在反比例函数y =4-2mx的图象上∴-4= 4-2m2,解得m =6 ……5分∴反比例函数为y =-8x过点A 、B 分别作AM ⊥OC 于点M ,BN ⊥OC 于点N ∴∠BNC =∠AMC =90°又∵∠BCN =∠ACM ,∴△BCN ∽△ACM ∴BNAM=BCAC∵BCAB=1 3,∴BCAC = 1 4 ,即BNAM =1 4∵AM =4,∴BN =1 ∴点B 的纵坐标是-1∵点B 在反比例函数y =-8x的图象上,∴当y =-1时,x =8∴点B 的坐标是(8,-1)AOxyBC M N9 / 12∵一次函数y =kx +b 的图象过点A (2,-4)、B (8,-1)∴⎩⎪⎨⎪⎧2k +b =-48k +b =-1 解得⎩⎪⎨⎪⎧k =12b =-5∴一次函数的解析式是y =12x -5 ……10分20. 解:(1)在正方形ABCD 中,∠A =∠ADC =90°∴∠MDF =90°,∠A =∠MDF ∵M 是AD 的中点,∴AM =DM 又∵∠AME =∠DMF∴△AME ≌△DMF ,∴ME =MF ……3分 (2)当点E 与点A 重合时,a =0,S △EGF =21×2×2=2 当点E 与点A 不重合时,0<a≤2在Rt △AME 中,AE =a ,AM =1,ME =12+a∴EF =2ME =212+a过M 作MN ⊥BC ,垂足为N则∠MNG =90°,∠AMN =90°,MN =AB =AD =2AM ∴∠AME +∠EMN =90°∵∠EMG =90°,∴∠GMN +∠EMN =90° ∴∠AME =∠GMN ,∴Rt △AME ∽Rt △NMG ∴MEMG =AMNM =12,∴MG =2ME =212+a ∴S △EGF =21EFQ ·MG =21·212+a ·212+a =2a2+2 ∴S △EGF =2a2+2 ……7分 (3)过点P 作PP 1⊥MN 于点P 1,则点E 从点A 运动到点E 的过程中,点P 的运动路线为P 1P易证Rt △P 1MP ≌Rt △AME ∴PP 1=AE∴点E 从点A 运动到点B 的过程中, 点P 的运动路线P 1P =AB =2∴点P 运动路线的长为2 ……10分FDCA BMPEF DCABMP E P 110 / 12B 卷(共50分)一、填空题: 21.1>a ; 22. 31; 23.(12,4),(2,6); 24. 34; 25. (31,3) 二、解答题:26.解:解:(1)由题意可得:128)220(4=-x x解得21=x ,82=x所以,长方体的侧面积为128cm 2时,x 的值为2或8. ……3分 (2)由题意可得:x x S )220(4-=(40≤<x ) 整理得200)5(880822+--=+-=x x x S在这个S 关于x 的二次函数中,其函数图像的开口向下,对称轴为5=x 所以当5<x 时,S 的值随着x 的增大而增大 所以,当40≤<x 时,S 的最大值在4=x 时取得 所以,S 最大值=192200)54(82=+--所以,制作成的长方体盒子侧面积S 的最大值是192 cm 2. ……8分 27. 解:(1)证明:连接AB ,在⊙O 中,AP 是直径所在的直线,BC 是弦∵AP ⊥BC ,∴BP =CP ∴AB =AC又∵△ACD 是等腰直角三角形 ∴AC =AD ,∴AB =AD ∴∠AB D =∠ADB又∵∠ABD =∠ACF ,∴∠ACF =∠ADB ……3分 (2)过点A 作AM ⊥BD 于点M则AM =m ,∠AMB =90°,且BM =DM =12BD∵AC =AD ,∴∠ADC =∠ACD 又∵∠ACF =∠ADF∴∠FCD =∠FDC ,∴FC =FD又∵BF +CF =n ,∴ BF +DF =n ,即BD =n ∴DM =12 BD =n2∴在Rt △ADM 中,AD 2=AM 2+DM 2=m2+(n 2)2=m 2+n24PA BC EFDOM在Rt△ACD中,CD2=AC2+AD2=2AD2=2m2+n2 2∴CD=128m2+2n2……8分(3)DEAO的值是 2 ……10分28.解:(1)∵y=x-3,当y=0时,x=3;当x=0时,y=-3∴B(3,0),C(0,-3)∵抛物线的对称轴是直线x=1,∴A(-1,0)设抛物线的解析式为y=a(x+1)(x-3),把C(0,-3)代入得-3=a(0+1)(0-3),∴a=1∴抛物线的解析式为y=(x+1)(x-3),即y=x2-2x-3 ……3分(2)∵y=x2-2x-3=(x-1)2-4∴抛物线的顶点D的坐标为(1,-4)又∵B(3,0),C(0,-3)∴BC=32,CD=2,BD=2 5∴BC2+CD2=20=BD2∴△BCD是直角三角形,且∠BCD=90°,BD为斜边∴cos∠DBC=BCBD=3225=31010……7分(3)设点P的横坐标为x由B(3,0),D(1,-4)可得直线BD的解析式为y=2x-6 设翻折后点C的对应点为C1,连接CC1交PE于点F则CC1⊥PE,C1F=CF=x∵OB=OC=3,∴∠OCB=45°∵PE∥y轴,∴∠CPF=∠PCF=∠OCB=45°由(1)知∠BCD=90°,∴△PCE是等腰直角三角形∴PE=2x当点C1落在线段BD上时,点C1的纵坐标为-3把y=-3代入y=2x-6,得x=3 2∴C1F=CF=3 4①当0<x≤34时OA B xyCDx=1FPEC111 / 12S=12PE·C1F=12·2x·x=x2当x=34时,S有最大值916……9分②当34≤x≤1时,设C1P、C1E分别交BD于点G、H易证Rt△BPG∽Rt△BCD,∴BPPG=BCCD=322=3∴BP=3PG设C1G=t,∵BP=BC-PC=32-2x∴32-2x=3(2x-t),∴t=423x- 2∴S=S△PC1E-S△HC1K=x2-32(423x-2)2=-133x2+8x-3=-133(x-1213)2+913当x=1213时,S有最大值913……10分③当1≤x<3时,设C1P交BD于点K,作KH⊥PE于点H 则PH=KH,HE=2KH,∴PE=3KH易得直线BC的解析式为y=x-3∵点P的横坐标为x,∴P(x,x-3),E(x,2x-6)∴PE=x-3-(2x-6)=3-x,KH=13(3-x)∴S=S△PKE=12·(3-x)·13(3-x)=16(x-3)2当1≤x<3时,S随x的增大而减小,在x=1时,S有最大值23……11分∵916<23<913∴当x=1213时,S有最大值913……12分教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
乐山市2024年初中学业水平考试数学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10个小题,每小题3分,共30分.1. 不等式20x -<的解集是( )A. 2x <B. 2x >C. <2x -D. 2x >-2. 下列文物中,俯视图是四边形的是( )A. 带盖玉柱形器B. 白衣彩陶钵C. 镂空人面覆盆陶器D. 青铜大方鼎3. 2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A. 8410⨯B. 9410⨯C. 10410⨯D. 11410⨯4. 下列多边形中,内角和最小的是( )A. B. C. D.5. 为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为( )交通方式公交车自行车步行私家车其它人数(人)3051582A. 100B. 200C. 300D. 4006. 下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ,AB CD AD BC∥∥ B. ,AB CD AD BC ==C. ,OA OC OB OD== D. ,AB CD AD BC =∥7. 已知12x <<2x +-的结果为( )A. 1- B. 1 C. 23x - D. 32x-8. 若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A. 23- B. 23 C. 6- D. 69. 已知二次函数()2211y x x x t =--≤≤-,当=1x -时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A. 02t <≤B. 04t <≤C. 24t ≤≤D. 2t ≥10. 如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B点运动到C 点时,点M 的运动路径长为( )A.B.C. D.第Ⅱ卷(非选择题共120分)注意事项:1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11. 计算:2a a +=______.12. 一名交警在路口随机监测了5辆过往车辆的速度,分别是:66,57,71,69,58(单位:千米/时).那么这5辆车的速度的中位数是______.13. 如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠=______.14. 已知3a b -=,10ab =,则22a b +=______.15. 如图,在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,若13ABD BCD S S =△△,则AOD BOCS S =△△______.16. 定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数图象上存在“近轴点”的是______(填序号);①3y x =-+;②2y x=;③221y x x =-+-.(2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为______.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.的17. 计算:()03π2024-+-.18. 解方程组:4{25x y x y +=-=19. 知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20. 先化简,再求值:22142x x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.21. 乐山作为闻名世界的文化旅游胜地,吸引了大量游客.为更好地提升服务质量,某旅行社随机调查了部分游客对四种美食的喜好情况(每人限选一种),并将调查结果绘制成统计图,如图所示.根据以上信息,回答下列问题:(1)本次抽取的游客总人数为______人,扇形统计图中m 的值为______;(2)请补全条形统计图;(3)旅行社推出每人可免费品尝两种美食的活动,某游客从上述4种美食中随机选择两种,请用画树状图或列表的方法求选到“钵钵鸡和跷脚牛肉”的概率.22. 如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 值和一次函数的表达式;(2)连结AB ,求点C 到线段AB 的距离.23. 我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA的长度;的(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.24. 如图,O 是ABC 的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D ,点E 为 CB 上一点,且 AC CE=.(1)求证:DC AE ∥;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.25. 在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A .(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.26. 在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 在边BC 上,且45DAE =︒∠,3BD =,4CE =,求DE 长.解:如图2,将ABD △绕点A 逆时针旋转90︒得到ACD '△,连结ED '.的由旋转特征得BAD CAD '∠=∠,B ACD ∠=∠',AD AD =',BD CD '=.∵90BAC ∠=︒,45DAE =︒∠,∴45BAD EAC ∠+∠=︒.∵BAD CAD '∠=∠,∴45CAD EAC '∠+∠=︒,即45EAD '∠=︒.∴DAE D AE '∠=∠.在DAE 和D AE ' 中,AD AD =',DAE D AE '∠=∠,AE AE =,∴___①___.∴DE D E '=.又∵90ECD ECA ACD ECA B ''︒∠=∠+∠=∠+∠=,∴在Rt ECD '△中,___②___.∵3CD BD '==,4CE =,∴DE D E '==___③___.【问题解决】上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.知识迁移】如图3,在正方形ABCD 中,点E 、F 分别在边BC CD 、上,满足CEF △的周长等于正方形ABCD 的周长的一半,连结AE AF 、,分别与对角线BD 交于M 、N 两点.探究BM MN DN 、、的数量关的【系并证明.【拓展应用】如图4,在矩形ABCD 中,点E 、F 分别在边BC CD 、上,且45EAF CEF ∠=∠=︒.探究BE EF DF 、、的数量关系:______(直接写出结论,不必证明).【问题再探】如图5,在ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 、E 在边AC 上,且45DBE ∠=︒.设AD x =,CE y =,求y 与x 的函数关系式.乐山市2024年初中学业水平考试数学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10个小题,每小题3分,共30分.1. 不等式20x -<的解集是( )A. 2x <B. 2x >C. <2x -D. 2x >-【答案】A【解析】【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键.移项可得一元一次不等式的解集.【详解】解:20x -<,解得,2x <,故选:A .2. 下列文物中,俯视图是四边形的是( )A 带盖玉柱形器 B. 白衣彩陶钵C. 镂空人面覆盆陶器D. 青铜大方鼎【答案】D【解析】【分析】本题考查简单几何体的三视图,掌握简单几何体三视图的形状是正确判断的前提.得出各个选项中的几何体的俯视图即可.【详解】解:A .俯视图是圆形,因此选项A 不符合题意;.B .俯视图不是四边形,因此选项B 不符合题意;C .俯视图不是四边形,因此选项C 不符合题意;D .俯视图是正方形,因此选项D 符合题意;故选:D .3. 2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A. 8410⨯ B. 9410⨯ C. 10410⨯ D. 11410⨯【答案】C【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:40000000000大于1,用科学记数法表示为10n a ⨯,其中4a =,10n =, ∴40000000000用科学记数法表示为10410⨯,故选:C .4. 下列多边形中,内角和最小的是( )A.B. C. D. 【答案】A【解析】【分析】边数为n 的多边形的内角和()2180n =-⨯︒,分别求出三角形,四边形,五边形,六边形的内角和,即可得到.【详解】解:三角形的内角和等于180︒四边形的内角和等于360︒五边形的内角和等于()52180540-⨯︒=︒六边形的内角和等于()62180720-⨯︒=︒所以三角形的内角和最小故选:A .【点睛】本题考查了多边形的内角和,能熟记边数为n 的多边形的内角和()2180n =-⨯︒是解此题的关键.5. 为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为( )交通方式公交车自行车步行私家车其它人数(人)3051582A. 100B. 200C. 300D. 400【答案】D【解析】【分析】本题主要考查了用样本估计总体,用学校总人数乘样本中乘坐公交车上学的人数的比例,即可得出答案.【详解】解:估计该年级学生乘坐公交车上学的人数为:3080040060⨯=(人),故选:D .6. 下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ,AB CD AD BC∥∥ B. ,AB CD AD BC ==C. ,OA OC OB OD== D. ,AB CD AD BC=∥【答案】D【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A 、∵,AB CD AD BC ∥∥,∴四边形ABCD 是平行四边形,故此选项不合题意;B 、∵,AB CD AD BC ==,∴四边形ABCD 是平行四边形,故此选项不合题意;C 、∵,OA OC OB OD ==,∴四边形ABCD 平行四边形,故此选项不合题意;D 、∵,AB CD AD BC =∥,不能得出四边形ABCD 是平行四边形,故此选项符合题意;故选:D .【点睛】此题主要考查平行四边形的判定,解题的关键是熟知平行四边形的判定定理.7. 已知12x <<2x +-的结果为( )A. 1- B. 1 C. 23x - D. 32x -【答案】B 【解析】【分析】本题考查了二次根式的性质,去绝对值,熟练掌握知识点是解题的关键.a =化简二次根式,然后再根据12x <<去绝对值即可.212x x x +-=-+-, ∵12x <<,∴10,20x x ->-<,∴12121x x x x ----==++,21x +-=,故选:B .8. 若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A. 23- B. 23 C. 6- D. 6【答案】A【解析】【分析】本题考查了一元二次方程20(0)ax bx c a ++=≠根与系数的关系:若方程的两实数根为12,x x ,则1212,b x x x x a+=-⋅c a =.根据一元二次方程20(0)ax bx c a ++=≠根与系数的关系得到121222,1x x x x p +=-=-⋅=,然后通是分,11x +1221212x x x x x p+-==,从而得到关于p 的方程,解方程即可.【详解】解:121222,1x x x x p +=-=-⋅=Q ,121212112x x x x x x p+-∴+==,而12113x x +=,23p-∴=,23p ∴=-,故选:A .9. 已知二次函数()2211y x x x t =--≤≤-,当=1x -时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A. 02t <≤ B. 04t <≤ C. 24t ≤≤ D. 2t ≥【答案】C【解析】【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由()22211y x x x =-=--,可知图象开口向上,对称轴为直线1x =,顶点坐标为()11-,,当=1x -时,3y =,即()13-,关于对称轴对称的点坐标为()33,,由当=1x -时,函数取得最大值;当1x =时,函数取得最小值,可得113t ≤-≤,计算求解,然后作答即可.【详解】解:∵()22211y x x x =-=--,∴图象开口向上,对称轴为直线1x =,顶点坐标为()11-,,当=1x -时,3y =,∴()13-,关于对称轴对称的点坐标为()33,,∵当=1x -时,函数取得最大值;当1x =时,函数取得最小值,∴113t ≤-≤,解得,24t ≤≤,故选:C .10. 如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为( )A. B. C. D. 【答案】B【解析】【分析】该题主要考查了菱形的性质,垂直平分线的性质和判定,全等三角形的性质和判定等知识点,解题的关键是掌握以上点M 的运动路径.过点C 作CH AD ⊥交AD 于点H ,根据60ABC ∠=︒,四边形ABCD 是菱形,1AB =,算出1DH =,得出AH DH =,CH 垂直平分AD ,再证明PCM QCM V V ≌,得出PM MQ =,证明CM 垂直平分PQ ,点M 在CH 上运动,根据解直角三角形 tan 30CM BC '=⋅︒=.即可求解.【详解】解:过点C 作CH AD ⊥交AD 于点H ,∵60ABC ∠=︒,四边形ABCD 是菱形,1AB =,∴60ADC ∠=︒,1CD BC AB ===,∴30DCH ∠=︒,∴112DH CD ==,∴1AH AD DH =-=,∴AH DH =,∴CH 垂直平分AD ,∵点P 和点Q 关于点C 对称,∴PC QC =,∵90,PCM QCM CM CM ∠=∠=︒=,∴()PCM QCM SAS ≌,∴PM MQ =,∴CM 垂直平分PQ ,∴点M 在CH 上运动,当点P 与点B 重合时,点M 位于点M ',此时,∵60ABC ∠=︒,四边形ABCD 是菱形,1AB =,∴1302M BC ABC '∠=∠=︒,1BC =∴tan 30CM BC '=⋅︒=.故点M 的运动路径长为CM '=故选:B .第Ⅱ卷(非选择题共120分)注意事项:1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11. 计算:2a a +=______.【答案】3a【解析】【分析】直接利用合并同类项法则计算得出答案.【详解】23a a a +=.故答案为:3a .【点睛】本题主要考查了合并同类项,正确把握运算法则是解题关键.12. 一名交警在路口随机监测了5辆过往车辆的速度,分别是:66,57,71,69,58(单位:千米/时).那么这5辆车的速度的中位数是______.【答案】66【解析】【分析】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.先将数据从小到大重新排列,根据中位数的概念求解可得.【详解】解:将这组数据重新排列为57,58,66,69,71,所以这组数据的中位数为66.故答案为:66.13. 如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠=______.【答案】120︒##120度【解析】【分析】本题考查了直线平行的性质:两直线平行同位角相等.也考查了平角的定义.根据两直线平行同位角相等得到1360∠=∠=︒,再根据平角的定义得到23180∠+∠=︒,从而可计算出2∠.【详解】解:如图,a b ∥ ,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒-︒=︒,故答案:120︒.14. 已知3a b -=,10ab =,则22a b +=______.【答案】29【解析】【分析】本题考查了完全平方公式的变形.熟练掌握完全平方公式的变形是解题的关键.根据()2222a b a b ab +=-+,计算求解即可.【详解】解:由题意知,()22222321029a b a b ab +=-+=+⨯=,故答案为:29.15. 如图,在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,若13ABD BCD S S =△△,则AOD BOCS S =△△______.【答案】19【解析】【分析】本题考查了平行线间的距离,相似三角形的判定与性质等知识.熟练掌握平行线间的距离,相似三角形的判定与性质是解题的关键.为设AD BC ,的距离为d ,则112132ABDBCD AD d S S BC d ⋅==⋅△△,即13AD BC =,证明AOD COB ∽,则2AOD BOC S AD S BC ⎛⎫= ⎪⎝⎭△△,计算求解即可.【详解】解:设AD BC ,的距离为d ,∴112132ABD BCD AD d S S BC d ⋅==⋅△△,即13AD BC =,∵AD BC ∥,∴ADO CBO ∠=∠,DAO BCO ∠=∠,∴AOD COB ∽,∴221139AOD BOC S S AD BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V ,故答案为:19.16. 定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是______(填序号);①3y x =-+;②2y x=;③221y x x =-+-.(2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为______.【答案】①. ③ ②. 102m -≤<或102m <≤【解析】【分析】本题主要考查了新定义——“近轴点”.熟练掌握新定义,一次函数,反比例函数,二次函数图象上的点到坐标轴距特点,是解决问题的关键.(1)①3y x =-+中,取 1.5x y ==,不存在“近轴点”;②2y x=,由对称性,取x y ==,不存在“近轴点”;③()22211y x x x =-+-=--,取1x =时,0y =,得到()1,0是221y x x =-+-的“近轴点”;(2)()33y mx m m x =-=-图象恒过点()3,0,当直线过()1,1-时, 12m =,得到102m <≤;当直线过()1,1时,12m =-,得到102m -≤<.【详解】(1)①3y x =-+中,1.5x =时, 1.5y =,不存在“近轴点”;②2y x =,由对称性,当x y =时,x y ==,不存在“近轴点”;③()22211y x x x =-+-=--,1x =时,0y =,∴()1,0是221y x x =-+-的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)()33y mx m m x =-=-中,3x =时,0y =,∴图象恒过点()3,0,当直线过()1,1-时,()113m -=-,∴12m =,∴102m <≤;当直线过()1,1时,()113m =-,∴12m =-,∴102m -≤<;∴m 的取值范围为102m -≤<或102m <≤.故答案为:102m -≤<或102m <≤.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17. 计算:()03π2024-+-.【答案】1【解析】【分析】本题考查了绝对值,零指数幂,算术平方根.熟练掌握绝对值,零指数幂,算术平方根是解题的关键.先分别计算绝对值,零指数幂,算术平方根,然后进行加减运算即可.【详解】解:()03π2024-+--313=+-1=.18. 解方程组:4{25x y x y +=-=【答案】详见解析【解析】【分析】用加减消元法把二元一次方程转化成一元一次方程.【详解】解:①+②,得39x =.解得3x =.把3x =代入②,得1y =.∴原方程组的解是31x y =⎧⎨=⎩,.19. 知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.【答案】见解析【解析】【分析】利用SAS 证明CAB DAB ∆∆≌,即可证明C D ∠=∠.【详解】解:AB 平分CAD ∠,CAB DAB ∴∠=∠,在CAB ∆和DAB ∆中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()SAS CAB DAB ∴∆∆≌,C D ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握SAS 、AAS 、ASA 、SSS 等全等三角形的判定方法是解题的关键.20. 先化简,再求值:22142x x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.【答案】(1)③(2)12x +,15【解析】【分析】本题考查了分式的化简求值,异分母的分式减法运算,熟练掌握知识点是解题的关键.(1)第③步分子相减时,去括号变号不彻底;(2)先通分,再进行分子相减,化为最简分式后,再代入求值即可.【小问1详解】解:∵第③步分子相减时,去括号变号不彻底,应为:()()()()()()2222222222x x x x x x x x x x -----=+++-+;【小问2详解】解:()()2212142222x x x x x x x -=---+--()()()()222222x x x x x x +=-+-+-()()2222x x x x --=+-()()222x x x -=+-12x =+当3x =时,原式15=21. 乐山作为闻名世界的文化旅游胜地,吸引了大量游客.为更好地提升服务质量,某旅行社随机调查了部分游客对四种美食的喜好情况(每人限选一种),并将调查结果绘制成统计图,如图所示.根据以上信息,回答下列问题:(1)本次抽取的游客总人数为______人,扇形统计图中m 的值为______;(2)请补全条形统计图;(3)旅行社推出每人可免费品尝两种美食的活动,某游客从上述4种美食中随机选择两种,请用画树状图或列表的方法求选到“钵钵鸡和跷脚牛肉”的概率.【答案】(1)240,35(2)见详解(3)16【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考音了统计图.(1)根据:该项所占百分比=该项人数÷总人数.两图给出了“跷脚牛肉”的数据,代入即可算出抽取的游客总人数,然后再算出“钵钵鸡”的人数;(2)根据条形图中数据和调查总人数,先计算出喜欢“甜皮鸭”的人数,再补全条形图;(3)画树状图展示所有12种等可能的结果数,找出恰好同时抽到“钵钵鸡和跷脚牛肉”“钵钵鸡和跷脚牛肉”的结果数,然后根据概率公式求解.【小问1详解】解:本次抽取的游客总人数为7230%240÷=(人),84100%35%240m =⨯=,故答案为:240,35;【小问2详解】“甜皮鸭”对应的人数为240(487284)36-++=(人),补全图形如下:的【小问3详解】假设“麻辣烫”“跷脚牛肉”“钵钵鸡”“甜皮鸭”对应为“A 、B 、C 、D ”,画树状图如图所示,共有12种等可能的结果数,其中抽到“钵钵鸡和跷脚牛肉”题目的结果数为2,∴抽到“钵钵鸡和跷脚牛肉”的概率是21126=.22. 如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连结AB ,求点C 到线段AB 的距离.【答案】(1)3m =,3n =,21y x =+(2)点C 到线段AB 【解析】【分析】(1)根据点()1,A m 、(),1B n 在反比例函数3y x=图象上,代入即可求得m 、n 的值;根据一次函数y kx b =+过点()1,3A ,()0,1C ,代入求得k ,b ,即可得到表达式;(2)连结BC ,过点A 作AD BC ⊥,垂足为点D ,过点C 作CEAB ⊥,垂足为点E ,可推出 BC x ∥轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据1122ABC S BC AD AB CE =⋅=⋅ ,计算得CE 的长度,即为点C 到线段AB 的距离.【小问1详解】点()1,A m 、(),1B n 在反比例函数3y x =图象上∴3m =,3n =又 一次函数y kx b =+过点()1,3A ,()0,1C ∴31k b b +=⎧⎨=⎩解得:21k b =⎧⎨=⎩∴一次函数表达式为:21y x =+;【小问2详解】如图,连结BC ,过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E()0,1C ,()3,1B ∴BC x ∥轴,3BC = 点()1,3A ,()3,1B ,AD BC⊥∴点()1,1D ,2AD =,2DB =在Rt ADB 中,AB ==又 1122ABC S BC AD AB CE=⋅=⋅即113222CE⨯⨯=⨯∴CE =,即点C 到线段AB 【点睛】本题考查了求反比例函数值,待定系数法求一次函数表达式,勾股定理,与三角形高有关的计算,熟练掌握以上知识点并作出适当的辅助线是解题的关键.23. 我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.【答案】(1)秋千绳索的长度为14.5尺(2)能,cos cos h OA βα=-【解析】【分析】该题主要考查了勾股定理的应用以及解直角三角形的应用,解题的关键是掌握以上知识点.(1)如图,过点A '作A B OA '⊥,垂足为点B .设秋千绳索的长度为x 尺.由题可知,OA OA x '==,4AB =,10A B '=,得出4OB x =-.在Rt OA B '△中,由勾股定理解得14.5x =,即可求解;(2)由题可知,90OPA OQA '''∠=∠=︒,OA OA OA '''==.在Rt OA P '△中,得出cos OP OA α=⋅,同理,cos OQ OA β=⋅.再根据OQ OP h -=,列等式即可求出OA .【小问1详解】解:如图,过点A '作A B OA '⊥,垂足为点B .设秋千绳索的长度为x 尺.由题可知,OA OA x '==,4AB =,10A B '=,∴4OB OA AB x =-=-.在Rt OA B '△中,由勾股定理得:222A B OB OA ''+=∴()222104x x +-=.解得14.5x =.答:秋千绳索的长度为14.5尺.【小问2详解】能.由题可知,90OPA OQA '''∠=∠=︒,OA OA OA '''==.在Rt OA P '△中,cos cos OP OA OA αα'=⋅=⋅,同理,cos cos OQ OA OA ββ''=⋅=⋅.∵OQ OP h -=,∴cos cos OA OA h βα⋅-⋅=.∴cos cos h OA βα=-.24. 如图,O 是ABC 的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D ,点E 为 CB 上一点,且 AC CE=.(1)求证:DC AE ∥;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.【答案】(1)见解析(2)3π-【解析】【分析】(1)如图1,连结OC .则90OCD ∠=︒,即90DCA OCA ∠+∠=︒.由AB 为直径,可得90ACB ∠=︒,即190OCA ∠+∠=︒.则1DCA ∠=∠.由OC OB =,可得12∠=∠.由 AC CE=,可得23∠∠=.则3DCA ∠=∠.进而可证DC AE ∥.(2)如图2,连结OE BE 、.由EF 垂直平分OB ,可得OE BE =.则OEB 为等边三角形.60BOE ∠=︒,120AOE ∠=︒.由OA OE =,可得30OAE OEA ∠=∠=︒.由DC AE ∥,可得30D OAE ∠=∠=︒.60DOC ∠=︒.证明AOC 为等边三角形.则60OCA ∠=︒,OA OC AC ==.30DCA ∠=︒.则D DCA ∠=∠.3DA AC OA OC OE =====.sin 60EF OE =⋅︒.12OAE S AO EF =⋅△.2120π3360OAE S ⨯=扇形,根据OAE OAE S S S =-阴影扇形△,计算求解即可.【小问1详解】证明:如图1,连结OC .图1∵CD 为O 的切线,∴90OCD ∠=︒,即90DCA OCA ∠+∠=︒.又∵AB 为直径,∴90ACB ∠=︒,即190OCA ∠+∠=︒.∴1DCA ∠=∠.∵OC OB =,∴12∠=∠.∵ AC CE =,∴23∠∠=.∴3DCA ∠=∠.∴DC AE ∥.【小问2详解】解:如图2,连结OE BE 、.图2∵EF 垂直平分OB ,∴OE BE =.又∵OE OB =,∴OEB 为等边三角形.∴60BOE ∠=︒,120AOE ∠=︒.∵OA OE =,∴30OAE OEA ∠=∠=︒.∵DC AE ∥,∴30D OAE ∠=∠=︒.又∵90OCD ∠=︒,∴60DOC ∠=︒.∵OA OC =,∴AOC 为等边三角形.∴60OCA ∠=︒,OA OC AC ==.∴30DCA ∠=︒.∴D DCA ∠=∠.∴3DA AC OA OC OE =====.∴sin 60EF OE =⋅︒=∴12OAE S AO EF =⋅=△.又∵2120π33π360OAE S ⨯==扇形,∴3πOAE OAE S S S =-=阴影扇形△∴阴影部分的面积为3π-【点睛】本题考查了切线的性质,直径所对的圆周角为直角,同弧或等弧所对的圆周角相等,平行线的判定与性质,等边三角形的判定与性质,垂直平分线的性质,正弦,扇形面积等知识.熟练掌握切线的性质,直径所对的圆周角为直角,同弧或等弧所对的圆周角相等,平行线的判定与性质,等边三角形的判定与性质,垂直平分线的性质,正弦,扇形面积是解题的关键.25. 在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A .的(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.【答案】(1)()1,1(2)3522a ≤< (3)2152a <≤【解析】【分析】本题考查二次函数的图象与系数的关系,二次函数图象上点的特征.数形结合解题是解题的关键.(1)把1a =代入后再将抛物线化成顶点式为()222211y x x x =-+=-+,即可求顶点坐标;(2)根据整点个数的范围确定点A 纵坐标的范围;(3)结合图象确定有4个“完美点”时a 的最大和最小值,进而确定a 的范围.【小问1详解】解:当1a =时,抛物线()222211y x x x =-+=-+.∴顶点坐标()1,1.【小问2详解】令0x =,则2y a =,∴()0,2A a ,∵线段OA 上的“完美点”的个数大于3个且小于6个,∴“完美点”的个数为4个或5个.∵0a >,∴当“完美点”个数为4个时,分别为()0,0,()0,1,()0,2,()0,3;当“完美点”个数为5个时,分别为()0,0,()0,1,()0,2,()0,3,()0,4.∴325a ≤<.∴a 的取值范围是3522a ≤<.【小问3详解】根据()22221y ax ax a a x a =-+=-+,得抛物线的顶点坐标为()1,a ,过点()2,2P a ,()3,5Q a ,()4,10R a .∵抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,显然,“完美点”()1,1,()2,2,()3,3符合题意.下面讨论抛物线经过()2,1,()3,2的两种情况:①当抛物线经过()2,1时,解得12a =此时,()2,1P ,53,2Q ⎛⎫ ⎪⎝⎭,()4,5R .如图所示,满足题意的“完美点”有()1,1,()2,1,()2,2,()3,3,共4个.②当抛物线经过()3,2时,解得25a =此时,42,5P ⎛⎫ ⎪⎝⎭,()3,2Q ,()4,4R .如图所示,满足题意的“完美点”有()1,1,()2,1,()2,2,()3,2,()3,3,()4,4,共6个.∴a 的取值范围是2152a <≤.26. 在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 在边BC 上,且45DAE =︒∠,3BD =,4CE =,求DE 的长.。
中考四川省成都市中考数学试题A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯ B .5410⨯ C .6410⨯ D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=- C.()326x yx y = D .()235x x x -•=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 .13.已知54a b cb ==,且26a bc +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+. (2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭.16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长. (参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交于点G . (1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长.ADB 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .23.已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为 .25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =,2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式1224=+-+124=+94(2)解:原式()()11111x x x x x +-+-=⨯+()()111x x x x x+-=⨯+1x =- 16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+.原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD =∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD =∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为20.4海里.19.解:(1)一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴. 一次函数与反比例函数()0k y x x =>交于(),4B a .24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.B 卷 21.0.36 22.1213 23.1a a +- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴.当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==. 90ACB ∠=︒,//m AC ,'90A BC ∠=︒∴,cos ''2BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan PCB A ∠=∠=∴,32PB ==∴. tan tan 2Q PCA ∠=∠=,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小.min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =.法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=, ∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >,x =∴,967,48G ⎛⎫+- ⎪ ⎪⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+-⎪ ⎪⎝⎭. (3)由题意可得:1k m +=. 1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆∽,AM PN PM BN =∴,AM BN PN PM •=•∴,()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >,6163k -+==-+∴.。