特殊平行四边形
- 格式:doc
- 大小:240.50 KB
- 文档页数:8
【本讲教育信息】一. 教学内容:几种特殊的平行四边形:矩形、菱形、正方形[目标]1. 理解矩形、菱形的定义与性质。
2. 掌握矩形、菱形的判定方法。
二. 重点、难点:1. 矩形、菱形性质的综合应用。
特别是菱形性质和直角三角形的知识的综合应用。
2. 矩形、菱形的判定方法的综合应用。
三. 知识要点:1. 矩形(1)矩形的概念有一个角是直角的平行四边形叫矩形。
(2)矩形的特殊性质①矩形的对角线相等②矩形四个角都是直角(3)矩形性质的应用①矩形的一条对角线将矩形分成2个全等的直角三角形;②矩形的2条对角线将矩形分成4个等腰三角形;③有关矩形的问题往往可以化为直角三角形或等腰三角形的问题来解决;④矩形的面积计算公式:(4)矩形的判定条件①有三个角是直角的四边形是矩形②对角线相等的平行四边形是矩形注意:1)在判定四边形是矩形的条件中,平行四边形的概念是最基本的条件,其他的判定条件都是以它为基础的。
2)四边形只要有3个角是直角,那么根据多边形内角和性质,第四个角也一定是直角。
(在判定四边形是矩形的条件中,给出“有3个角是直角”的条件,是因为数学结论的表述中一般不给出多余条件。
)3)将两个判定条件比较,后者的条件中,除了“有3个角是直角”的条件外,只要求是“四边形”,而前者的条件却包括“平行四边形”和“两条对角线相等”两个方面。
4)矩形的判定与性质的区别2. 菱形(1)菱形的概念有一组邻边相等的平行四边形叫菱形。
(2)菱形的特殊性质①菱形的四条边都相等②菱形的对角线相互垂直,且每一条对角线平分一组对角(3)菱形性质的应用由于菱形的对角线互相垂直平分,菱形的2条对角线就将菱形分成了四个全等的直角三角形,结合图形向学生介绍菱形的一个面积计算公式。
的一半思考归纳:计算菱形的面积有哪些方法?(4)菱形的判定条件①四边都相等的四边形是菱形;②对角线互相垂直的平行四边形是菱形(5)四边形、平行四边形、菱形之间的关系如图:【典型例题】例1. 等边三角形、矩形、菱形和圆中,既是轴对称图形又是中心对称图形的是()A. 等边三角形和圆B. 等边三角形、矩形、菱形C. 菱形、矩形和圆D. 等边三角形、菱形、矩形和圆分析:因为等边三角形是轴对称图形而不是中心对称图形,明确了这一点,就很容易排除A、B、D,只选C了解:菱形、矩形、圆这三种图形,都是轴对称图形,且又都是中心对称图形,故选C。
第一章特殊的平行四边形考点回顾:1、矩形的性质和判定性质:(1)矩形具有平行四边形的所有性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;(4)矩形既是轴对称图形,也是中心对称图形.判定:(2)有一个是直角的平行四边形叫矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2、菱形的性质与判定性质:(1)菱形具有平行四边形的所有性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直,且每一条对角线平分一组对角;(4)菱形是轴对称图形,也是中心对称图形.判定:(1)一组邻边相等的平行四边形叫菱形;(2)对角线互相垂直平分的四边形是菱形;(3)四边相等的四边形是菱形.3、正方形有一组邻边相等的矩形是正方形,或有一个角为直角的菱形是正方形.考点精讲精练:例1、如图,在△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB和DE是否相等?并证明你的结论.证明:(1)∵AE、AD分别平分∠BAF,∠BAC,,∴AD⊥AE.(2)答:AB=DE.∵AB=AC,AD平分∠BAC,∴AD⊥BC.∠BDA=90°.又∵∠BEA、∠DAE都为直角,∴四边形ADBE为矩形.∴AB=DE.变式练习1、如图,将□ABCD的边DC延长到点E,使CE=DC,连AE,交BC于F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连AC,BE,求证:四边形ABEC为矩形.证明:(1)∵四边形ABCD为平行四边形,∴AB CD.又∵CE=CD,∴AB EC,∴四边形ABEC为平行四边形,∴ AF=EF,BF=CF,又∠AFB=∠EFC,∴△ABF≌△ECF.(2)在□ABCD中,∠ABC=∠D.∵∠AFC=2∠D=2∠ABC=∠ABC+∠BAF,∴∠ABF=∠BAF,∴FA=FB,∵FA=FE,FB=FC,∴FA=FB=FE=FC.∴BC=EA,∴四边形ABEC为矩形.例2、在菱形ABCD中,对角线AC与BD交于点O,AB=5,AC=6,过D点作DE∥AC,交BC的延长线于点E,如图所示.(1)求△BDE的周长;(2)点P为线段BC上的点,连PO并延长交AD于点Q,求证:BP=DQ.解:(1)在菱形ABCD中,AC⊥BD,且OB=OD.∵AB=5,AC=6,∴OA=3..∴BD=8.∵AD∥BC,∴AD∥CE,∴四边形ACED为平行四边形.∴DE=AC=6.BE=2BC=2AB=10.∴△BDE的周长为8+6+10=24.(2)证明:在菱形ABCD中,DA∥BC,∴∠ODQ=∠OBP,∠OQD=∠OPB.又OD=OB,∴△BPO≌△DQO.∴BP=DQ.变式练习2、如图,DE为□ABCD的∠ADC的平分线,EF∥AD交DC于F.(1)求证:四边形AEFD为菱形;(2)若∠A=60°,AD=5,求菱形AEFD的面积.证明:(1)∵DF∥AE,AD∥EF,∴四边形AEFD为平行四边形.∴∠FDE=∠AED.∵DE为∠ADC的平分线,∴∠ADE=∠FDE,∴∠ADE=∠AED,∴□ABCD为菱形.(2)∠A=60°,AD=AE,∴△ADE为等边三角形.例3、如图,在△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明结论;(3)在(2)的条件下,△ABC满足什么条件时,四边形AECF为正方形?证明你的结论.解:(1)∵EF∥BC,∴∠OEC=∠ECB,∵CE平分∠ACB,∴∠OCE=∠BCE,∴∠OEC=∠OCE,∴OE=OC,同理OF=OC,∴OE=OF.(2)当点O为AC的中点时,四边形AECF为矩形.∵OA=OC=OE=OF,∴四边形AECF为矩形.(3)当∠ACB=90°时,为正方形.∵当∠ACB=90°时,∵MN∥BC,∴∠AOE=90°,∴AC⊥EF.∴矩形AECF的对角线互相垂直,∴四边形AECF为正方形.变式练习3、已知,如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连AC交EF于点O,延长OC至点M,使OM=OA,连EM,FM,判断四边形AEMF是什么特殊四边形?证明你的结论.证明:(1)∵ AB=AD,∠B=∠D=90°,AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DE.(2)四边形AEMF为菱形,∵四边形ABCD为正方形,∴∠BCA=∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF.即CE=CF,∴OE=OF.∵OM=OA,∴四边形AEMF为平行四边形.∵AE=AF,∴□AEMF为菱形.备考模拟一、填空题1、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________.2、如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF 的面积为__________cm2.3、如图,四边形ABCD为矩形,点E在线段CB的延长线上,连DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为__________.4、如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以为__________.5、如图,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC =60°,则四边形ABCD的面积等于__________cm2.6、①如图,在四边形ABCD中,E、F、G、H分别为AB、BC、CD、AD边上的中点,则四边形EFGH 为__________.②若ABCD为平行四边形,则EFGH为__________.③若ABCD为矩形,则EFGH为__________.④若ABCD为菱形,则EFGH为__________.答案:1、135°2、3、4、15°;或165°5、6、①平行四边形;②平行四边形;③菱形;④矩形二、选择题7、如图,四边形ABCD是菱形,△AEF为正三角形,点E、F分别在边BC,CD上,且AB=AE,则∠B=().A.60°B.80°C.100°D.120°8、如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折叠为EF,若∠EFC′=125°,则∠ABE的度数为().A.15°B.20°C.25°D.30°9、如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别为边AB,BC的中点,点P在AC 上运动,在运动过程中,存在PE+PF的最小值,则这个最小值为().A.3 B.4 C.5 D.610、如图,菱形ABCD的周长为20cm,DE⊥AB于E,,则下列结论中正确的个数有().①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④.A.1个B.2个C.3个D.4个11、如图,矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交AD于E,则AE的长为().A.1.6 B.2.5 C.3 D.3.47-11 BBCCD三、综合题12、如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并证明理由.(2)若AB=6,BC=8,求S四边形OCED.解:(1)∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形.又∵矩形ABCD中,OC=OD,∴四边形OCED为菱形.(2)连OE.则四边形BCEO为平行四边形,∴OE=BC=8..13、如图,边长为4的正方形ABCD中,点P在AB上从A向B运动,连DP交AC于点Q.(1)试证明:无论P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积为正方形ABCD面积的?解:(1)∵AD=AB,∠DAQ=∠BAQ,AQ=AQ,∴△ADQ≌△ABQ.(2)△ADQ的面积恰好为正方形ABCD面积的时,过点Q作QE⊥AD于E,QF⊥AB 于F,则QE=QF,.由△DEQ∽△DAP得,解得AP=2.∴当AP=2时,△ADQ的面积是正方形ABCD面积的.14、如图,在Rt△ABC中,∠B=90°,,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点随之停止运动,设点D、E运动的时间为t秒,过点D作DF⊥BC于点F,连DE、EF.(1)求证:AE=DF;(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,说明理由.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.∴AC=2AB=10.∴AD=AC-DC=10-2t.若使□AEFD为菱形,则需AE=AD=10-2t,即. 即当时,四边形AEFD为菱形.。
特殊平行四边形的经典题型特殊平行四边形包括矩形、菱形和正方形,那这几种图形在各种经典题型里可是各有各的“戏码”呢。
矩形嘛,经常会在面积和对角线相关的题目里出现。
比如说,已知一个矩形的长是8,对角线长是10,让你求宽是多少。
这时候就可以用到勾股定理啦,因为矩形的对角线把矩形分成了两个直角三角形,对角线就是斜边,长和宽就是两条直角边。
根据勾股定理a² + b² = c²(这里的a和b就是长和宽,c就是对角线),已知a = 8,c = 10,那宽b就等于6。
这类型的题目就像是给你一把钥匙,只要你知道用勾股定理这个“开锁方法”,就能轻松解决。
菱形呢,它的对角线互相垂直且平分这个性质可是出题的热门点。
像有一道题说菱形的对角线分别是6和8,问菱形的面积是多少。
很多人可能会先求边长再用底乘高来算面积,其实完全不用这么麻烦,直接根据菱形面积等于对角线乘积的一半这个公式,就能得出面积是24啦。
还有就是菱形四边相等这个性质,有时候会在证明题里出现,比如证明四个点构成的四边形是菱形,就需要通过证明四条边相等来得出结论。
正方形就更有趣了,它是集矩形和菱形的性质于一身的特殊平行四边形。
有这样一道题,正方形ABCD中,E是AB的中点,连接CE,CE的垂直平分线交AD于F,让你证明AF = 1/4 AD。
这题就要用到正方形的性质,它的角是直角,边相等,再结合一些三角形全等的知识。
首先设正方形边长为a,通过相似三角形或者勾股定理求出AF的长度,最后就能得出AF = 1/4 AD的结论。
在做特殊平行四边形的经典题型时,还有一些小技巧。
如果是证明题,一定要仔细分析已知条件,看这些条件能推出什么性质或者结论,然后再往要证明的结论上靠。
如果是计算面积或者边长的题目,一定要牢记各种图形的面积公式和特殊性质。
而且啊,多画图绝对是个好办法,有时候看着图形,思路一下子就清晰了呢。
不要觉得这些题型很难,只要多做几道,就会发现其实它们都是有规律可循的。
特殊平行四边形有哪些图形
特殊的平行四边形如下:
1、菱形:在同一平面内,有一组邻边相等的平行四边形是菱形;四边都相等的四边形是菱形。
菱形的对角线互相垂直平分且平分每一组对角。
菱形是轴对称图形,对称轴有2条,即两条对角线所在的直线。
菱形是中心对称图形。
2、正方形:四条边都相等、四个角都是直角的四边形是正方形。
正方形的两组对边分别平行,四条边都相等;四个角都是90度;对角线互相垂直平分且相等,每条对角线都平分一组对角。
3、长方形:有一个角是直角的平行四边形叫做长方形;也定义为:四个角都是直角的平行四边形叫做长方形。
其中,正方形也是特殊的长方形和菱形;长方形和正方形都属于矩形。
1。
特殊的平行四边形的判定方法
平行四边形,这可是个有趣的几何图形啊!而特殊的平行四边形,那就更有意思啦!咱们先来聊聊矩形吧。
矩形啊,不就是四个角都是直角的平行四边形嘛!你想想,这就好像一个人站得笔直笔直的,特有精气神儿!那怎么判定它是不是矩形呢?如果一个平行四边形有一个角是直角,嘿,那它不就是矩形了嘛!这多简单直接呀!或者呢,对角线相等的平行四边形,那也肯定是矩形呀!这就好比识别一个人的特征一样,一下子就能把它给认出来。
再来说说菱形,菱形多漂亮啊,四边相等呢!这就好像是一群小伙伴,大家都一样高一样壮,多整齐呀!那怎么知道一个平行四边形是不是菱形呢?如果它的四条边都相等,那还用说嘛,肯定是菱形啦!或者它的对角线互相垂直,这也是菱形的重要标志呀!就好像是给这个图形贴上了一个独特的标签。
还有正方形呢,正方形那可是集矩形和菱形的特点于一身呀!它既有矩形的四个直角,又有菱形的四条边相等,多厉害呀!那要判定是不是正方形,那就得既满足矩形的判定条件,又满足菱形的判定条件,这就像是双重保险一样。
你说这些特殊的平行四边形是不是很神奇呀?它们在我们的生活中无处不在呢!建筑设计里、图案装饰中,到处都有它们的身影。
难道你没发现吗?我们身边的好多东西都是按照这些特殊的平行四边形来设计的呢!它们让我们的生活变得更加有规律,更加美好。
所以呀,了解和掌握特殊平行四边形的判定方法真的很重要呢!这能让我们更好地认识这个世界,更好地利用它们来创造美好的生活呀!。
特殊四边形的性质和判定
名称定义性质判别方法对称性
直角三角形有一个角是直角
的三角形是直角
三角形
①两个锐角互余
②勾股定理:如果直角三角形的两
直角边为a、b,斜边为c。
那么
2
2
2c
b
a=
+
③直角三角形中,30°的角所对的
直角边是斜边的一半,反之也成立
④直角三角形斜边的中线等于斜边
的一半
①有一个角是直角的三角形是直角三角形
②两个内角互余的三角形是直角三角形
③勾股定理逆定理:如果三角形的三边长a、b、c满足
2
2
2c
b
a=
+,那么这个三角形是直角三角形
④一边中线是这边一半的三角形是直角三角形
特殊四边形的关系。
特殊的平行四边形在生活中的应用特殊的平行四边形,在生活中有着广泛的应用。
平行四边形是指四条边两两平行的四边形,其中包括方形、长方形、菱形和正方形。
它们在我们的日常生活中发挥着重要的作用,不仅美化了我们的环境,还在各个领域中提供了指导和参考。
首先,平行四边形的应用在建筑和设计领域中非常常见。
长方形和方形的形状常被用作建筑物的基本设计,例如房屋和办公楼。
它们稳定的结构形状和较大的内部空间使其成为建筑设计中的理想选择。
而菱形则经常被运用在装饰和建筑立面的设计上,给建筑物增加了独特的美感和艺术性。
其次,在制图和工程领域中,平行四边形的应用也非常广泛。
平行四边形的属性使得它能够方便地进行测量和计算。
利用平行四边形的对角线相等和对边平行的性质,工程师和建筑设计师可以准确地测量和计算距离、面积和体积等参数。
这对于工程建设、道路规划和地图绘制等都具有重要的指导意义。
此外,平行四边形的应用还延伸到数学教育领域。
在数学教学中,平行四边形是学生学习平面几何的基础概念之一。
通过对平行四边形的研究和理解,学生不但能掌握几何形状的性质,还可以培养逻辑思维和解决问题的能力。
因此,在课堂中引入生活中实际的平行四边形例子,可以提高学生的学习兴趣和应用能力。
最后,平行四边形在家居装饰和家具设计中也有着重要的应用。
方形和长方形的形状是家具设计中常见的选择,例如桌子、书架和沙发等。
这些具有平行四边形形状的家具不仅能够为我们提供实用的功能,还能够与其他家居装饰相搭配,营造和谐的室内环境。
总的来说,特殊的平行四边形在生活中有着广泛的应用。
从建筑和设计到制图和工程,从数学教育到家居装饰,平行四边形都发挥着重要的作用。
通过理解和应用平行四边形的属性,我们可以提高效率、美化环境、培养学生的能力,并为我们的生活带来更多的便利和乐趣。
让我们一起在平行四边形的世界中探索、学习和创造!。
特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。
·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。
对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。
特殊的平行四边形一、平行四边形1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
相关结论:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)夹在两条平行线间的平行线段相等。
3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积:S平行四边形=底×高=ah二、矩形1、矩形的定义:有一个角是直角的平行四边形叫做矩形。
2、矩形的性质:(1)矩形的对边平行且相等;(2)矩形的四个角都是直角;(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定:(1)定义:有一个角是直角的平行四边形是矩形;(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab三、菱形1、菱形的定义:有一组邻边相等的平行四边形叫做菱形2、菱形的性质:(1)菱形的四条边相等,对边平行;(2)菱形的邻角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形四、正方形1、正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质:(1)正方形四条边都相等,对边平行;(2)正方形的四个角都是直角(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定 判定一个四边形是正方形的主要依据是定义,途径有两种:(1)先证它是矩形,再证它是菱形。
(2)先证它是菱形,再证它是矩形。
4、正方形的面积 设正方形边长为a ,对角线长为b S 正方形=222b a五、等腰梯形1、等腰梯形的定义:两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质:(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定 (1)定义:两腰相等的梯形是等腰梯形;(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形六、三角形中的中位线1、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
3、常用结论:任一个三角形都有三条中位线,由此有:(1):三条中位线组成一个三角形,其周长为原三角形周长的一半。
(2):三条中位线将原三角形分割成四个全等的三角形。
(3):三条中位线将原三角形划分出三个面积相等的平行四边形。
(4):三角形一条中线和与它相交的中位线互相平分。
(5):三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
七、有关四边形四边中点问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是菱形;(3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;【菱形】例1:已知:在菱形ABCD中,E、F分别为BC、CD的中点,求证:AE=AF。
分析:由菱形的性质可以知道AB=AD=BC=CD,又E、F分别为中点,则BE=DF。
另有∠B=∠D,这样通过全等三角形可以求证AE=AF例2:已知:矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F。
求证:四边形AFCE是菱形。
分析:由EF为AC的垂直平分线有AE=EC,AF=FC,若证AFCE为菱形,只须证AE=FC,通过已知ABCD为矩形,利用矩形的性质可以证明△AOE与△COF全等。
从而得到AE=CF。
例3:已知:如图在Rt△ABC中,∠BAC=90°,∠ABC的角平分线交AC于D,AH⊥BC于H,交BD于E,DF⊥BC于F。
求证:AEFD为菱形。
分析:利用角平分线的性质可以证明AD=DF。
由角平分线可得∠ADB=∠BEH,从而得到∠1=∠ADE,即AE=AD,又可证明AE∥DF,所以由“有一组邻边相等的平行四边形是菱形”可以证明结论.【同步达标练习】1. 已知:平行四边形ABCD中,AC和BD交于O,EF过O点交AD于E,交BC于F,HG过O点交AB于H,交CD于G。
如果EF平分∠AOD,HG平分∠AOB 。
求证:四边形EHFG为菱形。
2. 已知菱形ABCD的对角线AC长为16,BD长为12 。
求它的面积,边长AB及高。
3. 已知菱形对角线BD=4,∠BAD:∠ADC=1:2,求:菱形面积及对角线AC的长。
4. 如图,已知O是矩形ABCD的对角线的交点,DE∥AC,CE∥DB。
DE与CE相交于E 求证:四边形OCED为菱形。
5. 求证:菱形四边中点连线组成的图形为矩形6.求证:矩形四边中点连线组成的图形为菱形。
【矩形】【基础练习】1.矩形的对边且,对角线且,四个角都是。
2.矩形是面积的60,一边长为5,则它的一条对角线长等于。
3.如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是_________ 。
4.平行四边形没有而矩形具有的性质是()A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角相等5.下列叙述错误的是()A.平行四边形的对角线互相平分。
B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角时90º的平行四边形是矩形6.若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .7.矩形ABCD的对角线相交于点O,如果的周长比的周长大10cm,则AD的长是()A、5cmB、7.5cmC、10cmD、12.5cm8、下列图形中既是轴对称图形,又是中心对称图形的是()A、平行四边形B、等边三角形C、矩形D、直角三角形二、解答题1.如图,已知矩形ABCD的两条对角线相交于O,∠AOD =120º,AB=4cm,求此矩形的面积。
2、矩形ABCD中,M是BC的中点,MA⊥MD,若矩形的周长为48cm,则矩形的面积是多少?3.如图,□ABCD中,AE、BF、CG、DH分别是各内角的平分线,E、F、G、H为它们的交点,求证:四边形EFGH的矩形。
4.如图,已知在四边形ABCD中,交于O,E、F、G、H分别是四边的中点,求证:四边形EFGH是矩形.5.如图,矩形ABCD中,DE=AB,,求证:EF=EB。
【能力提高】1. 如图,矩形ABCD中,点E、F分别在AB、CD上,BF//DE,若AD=12cm,AB=7cm,且 AE:EB=5:2,求阴影部分。
2. 如图,矩形ABCD中,EF⊥EB,EF=EB。
矩形ABCD的周长为22cm,CE=3cm,求:DE的长。
3.如图,矩形ABCD中,对角线AC、BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO的面积。
4.矩形ABCD中,E是CD上一点,且AE=CE,F是AC上一点,FH⊥AE于H,FG⊥CD于G,求证:FH+FG=AD5.如图,过矩形ABCD的对角线BD上一点R分别作矩形两边的平行线MN与PQ,那么图中矩形AMRP的面积S1,与矩形QCNR的面积S2的大小关系是( ) A. S1>S2 B. S1=S2 C. S1<S2 D. 不能确定6.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C (0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为。
1.矩形,菱形,正方形都具有的性质是()A.对角线相等 B.对角线互相平分 C.对角线平分一组对角 D.对角线互相垂直2. ①平行四边形;②菱形;③矩形;④正方形.能够找到一点,使该点到各边的距离相等的为()A.①与②B.②与③C.②与④D.③与④3.正方形具有的性质中,菱形不一定具有的性质是()A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角线平分一组对角4. 如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面与正方形ABCD的面积比是()A.5:8B.3:4C.9:16D.1:2二、耐心填一填1.已知正方形ABCD的对角线AC长为2,则BD=______,AB=________,正方形ABCD的周长为_______,面积为________.2. 如图1,E是正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于点F,则∠E= _________ .3、已知如图2,正方形ABCD中,AC=10,P是AB上一点,PE⊥AC于E,PF⊥BD于F,则PE+PF=______________. 4.已知:如图3,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为。
三、细心做一做1、如图,E为正方形ABCD对角线对角线AC上一点且BC=CE,那么你能求出∠CBE和∠AEB的度数吗?2.如图,延长正方形ABCD的边AB到E,使BE=AC,(1)证明DE是∠BDC的角平分线(2)求出∠E的度数3. 如图,四边形ABCD和DEFG都是正方形,试说明AE=CG1、下列命题中,真命题是()A、两条对角线垂直的四边形是菱形B、对角线垂直且相等的四边形是正方形C、两条对角线相等的四边形是矩形D、两条对角线相等的平行四边形是矩形2、已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当AB=BC时,它是菱形B、当AC⊥BD时,它是菱形C、当∠ABC=90°时,它是矩形D、当AC=BD时,它是正方形3.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AO=CO,BO=DO,AB=BC4.用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A、(1)(2)(5)B、(2)(3)(5)C、(1)(4)(5)D、(1)(2)(3)二、耐心填一填1、要使一个菱形ABCD成为正方形,则需增加的条件是 _________ .(填一个正确的条件即可)2、在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,则△ABO的周长是 .3、如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点 F,连接EF给出下列五个结论:①AP =EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD= 2EC.其中正确结论的序号是.三、细心做一做1、已知RT△ABC中,∠C=90º,CD平分∠交AB于D,DF//BC,DE//AC,求证:四边形DECF为正方形。