初中平面几何证明题
- 格式:doc
- 大小:246.00 KB
- 文档页数:5
初中数学平面几何的证明题目平面几何是数学中非常重要的一个分支,它研究的是平面上的点、线、面及其之间的关系和性质。
证明题目是平面几何中常见的一种题型,它要求我们通过逻辑推理和几何知识的运用来验证或证明某个几何命题的正确性。
在初中数学学习中,我们会遇到一些基本的平面几何的证明题目,下面我将选取一些典型的例子进行阐述。
1. 证明等腰三角形底角相等等腰三角形是指两边长度相等的三角形。
我们要证明的是等腰三角形的底角相等。
证明:设等腰三角形ABC中,AB = AC,从点A作BD⊥AC于D,则BD = DC。
∵△ABD ≌△ACD(公共边AC, AB = AC,∠BDA = ∠CDA = 90°)∴∠BAD = ∠CAD2. 证明三角形内角和等于180°三角形是由三条线段构成的闭合图形,它有三个内角。
我们要证明的是任意三角形三个内角的和等于180°。
证明:设三角形ABC的三个内角分别为∠A、∠B、∠C。
∵直线AB,BC可延长,可得到直线AC。
∵在AB、BC同侧取点D、E∵∠ABD = ∠ECB(两边平行,对顶角相等)∵∠BAC + ∠ACB + ∠ABD + ∠ECB = 180°(直线AC上的内角和为180°)∵∠A + ∠B + ∠C = 180°3. 证明直角三角形斜边上的中线等于半斜边直角三角形是指一个内角为90°的三角形。
我们要证明的是直角三角形斜边上的中线等于半斜边。
证明:设△ABC为直角三角形,∠B = 90°,D为AC的中点。
则BD = DC(D为AC的中点)由△ABC的相似性可得:△BDA ∼△BAC∴ BD/BA = DA/AC∴ BD/BA = 1/2∴ BD = 1/2 BA4. 证明平行线的对应角相等平行线是在同一个平面内,方向相同或者相反且不相交的两条直线。
我们要证明的是平行线的对应角相等。
证明:设直线l1 ∥ l2,交直线m∵∠1 + ∠2 = 180°(同旁内角和为180°)∵∠1 + ∠3 = 180°(同旁内角和为180°)∴∠2 = ∠3通过以上几个例子,我们可以看出,平面几何的证明题目,需要运用基本的几何知识和推理方法,在观察、分析和运算等方面进行逻辑推理,严谨而准确地证明某个几何命题的正确性。
第一题、如图,F为。
0外一点,PA、PB分别切6于A、B, PCD为ST割线,CO 交CX)于另一点E, AC、EB交于点F,证明:CD平分匕ADF。
"证明方法一:如图,延长ED交CA于K,根据条件知四边形CADB为调和四边形,故ED、EC、EA、EB构成一组调和线束,进而知K、C、A、F构成一组调和点列。
而KD±CD, 故CD平分ZADFo 3证明方法二:如鼠连結OA、OE、AB、BC,因为ZAFB = ZACE-ZBEC =ZAOE-ZBOC ISCT-NAOC-NBOC 半,且PA = PB,故点P为TkABF的外心。
于是知ZPFA= ZPAC = ZPDA,所以P、A、D、F 四点共圆。
又PA= PF,故CD 平分Z A DF。
3第二题、如图,AB为©0直径,C、D为O。
上两点,且在AB同侧,。
在C、D两处的切城交于点E, BC、AD交于点F, EF交AB于证明:E、C、页、D四点共圆。
“证明:如图,延长白C、BD交于点K,则BC1AK, AD丄BK,从而知F^)AKAB的垂心。
又在圆内接六边形CCADDB中使用帕斯卡定理,知K、E、F三点共线,从而KM丄卽于価。
于是知匕CMF = ZCAF= ZCDE,所以E、C、页、D四点共圆。
K第三题、如图,AB为。
直径,C、D为伽上两点'且在AB同侧,O0在C. D两处的切线交于点E, BC、AD交于点F, EB交0。
于点G,证明;ZCEF = 2/AGF。
“证明:如图,根据条件知匕CF D =典牌=(脸-®;(i对-命)=Z CAB + / DBA = ZECF + ZEDF;且EC = ED;故点E 为△CED 外心。
于是知/EFC = ZECF = ZCAB = ZCGE,敌E、C、F、G四点共圆。
所以“ZCGF = ZCEF = 2(90° - ZECF)= 2(90° - ZCAB)= 2ZABC 二2ZAGC " 0lWZAGF = —=—,即得ZCEF = 2ZAGFo,2 2第四題、如图,AB为直径,P为AB延长线上一点,PC切于C,点C关于朋的对称点为点D, CE1AD于E, F为CE中点,AF交于K,求证:AP为ZXPCK外扬圆的切线。
平面几何的证明题压轴题1. 问题描述给定平行四边形ABCD,证明以下结论:2. 证明过程步骤 1:作AE ⊥ AD,BF ⊥ AB,连接CF。
作AE ⊥ AD,BF ⊥ AB,连接CF。
作AE ⊥AD,BF ⊥AB,从而得到四边形AEBF是一个矩形。
步骤 2:作CF的中线DG,连接AG,BG。
作CF的中线DG,连接AG,BG。
作CF的中线DG,连接AG,BG,从而得到DG平分CF,并且DG ⊥ CF。
步骤 3:将四边形AEBF分为三个三角形:△AED,△BEF和△AFB。
将四边形AEBF分为三个三角形:△AED,△BEF和△AFB。
根据步骤1,我们知道△AED和△BEF是直角三角形。
步骤 4:分别证明△AED和△BEF为全等三角形。
分别证明△AED和△BEF为全等三角形。
根据步骤2,DG ⊥CF,所以△DEG和△FBG是全等三角形。
又因为△DEA和△BFA是直角三角形,且对边相等(DE = BF),根据勾股定理,△DEA和△BFA是全等三角形。
因此,根据全等三角形的性质,△AED和△BEF也是全等三角形。
步骤 5:根据全等三角形的性质,得到对应的边相等。
根据全等三角形的性质,得到对应的边相等。
根据步骤4,△AED和△BEF是全等三角形,所以对应的边相等:AE = BF,AD = BE步骤 6:得出结论。
得出结论。
根据平行四边形的性质,平行四边形的对边相等。
因此,由步骤5得出的结论,可以证明平行四边形ABCD的对边相等:AB = CD,AD = BC3. 结论通过以上证明过程,我们可以得出平行四边形ABCD的对边相等的结论:AB = CD,AD = BC。
专题37平面解析几何解答题(第二部分)一、解答题1.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.2.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r r .证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.3.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P满足NP u u u v u u u v .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v .证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.5.如图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若1222PF PF ==(2)若1,PF PQ =求椭圆的离心率.e6.已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.7.已知椭圆2222:1(0)x y E a b a b +=>>过点,且离心率e =.(1)求椭圆E 的方程;(2)设直:1()l x my m R =-∈交椭圆E 于,A B 两点,判断点9(,0)4G -与以线段AB 为直径的圆的位置关系,并说明理由.8.如图,椭圆E :2222+1(0)x y a b a b =>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PA QB PB =恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.9.设椭圆E 的方程为()222210x y a b a b +=>>,点O 为坐标原点,点A 的坐标为 ()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足 2BM MA =,直线OM (Ⅰ)求E 的离心率e ; (Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为 72,求E 的方程.10.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,0FM FN ⋅=u u u u r u u u r ,求MFN △面积的最小值.11.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB V 面积的最大值.12.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.13.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.14.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.15.在直角坐标系xoy 中,曲线C :y=24x 与直线(),0y kx a a =+>交与M,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 16.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.17.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =u u u v u u u v ,求|AB |.18.设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.19.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.。
平面几何100题1.非等腰锐角三角形ABC 的外接圆为ω,H 为△ABC 的垂心,M 是AB 的中点。
在不含C 的圆弧AB 上取点P、Q,使得∠ACP=∠BCQ<∠ACQ,过H 分别作CQ、CP 的垂线,垂足为R、S。
证明:P,Q,R,S 共圆且点M 是该圆的圆心。
2.在△ABC 中,点M、N、K 分别在边BC、CA、AB 上且不与顶点重合,若∠BAC=∠KMN 且∠ABC=∠KNM,则称△MNK 为完美三角形。
证明:如果在△ABC 中有两个具有共同顶点且不重合的完美三角形,则△ABC 是直角三角形。
3.四边形ABCD 满足AD//BC,∠ABC>90⁰,M 是线段AB 上不同于A、B 的一点,设△MAD、△MBC 的外心分别为21,O O 。
△D MO 1的外接圆不同于M 的交点为N。
求证:点N 在直线21O O 上。
4.在凸四边形(非平行四边形)ABCD 的对角线上分别取点B′、C′,使得△ACB′、△BDC′都为正三角形,其中点B 和B′位于AC 的同侧,点C 和C′位于BD 的同侧,如果CD AB C B +='',求∠BAD+∠CDA 的值。
5.给定一个凸六边形ABCDEF,其中AB//DE,BC//EF,CD//FA。
设BD 和AE、AC 和DF、CE 和BF 的交点分别为M、N、K。
证明:过M、N、K 分别作AB、CD、EF 的垂线交于同一点。
6.圆内接四边形ABCD 的对角线交于点K,点M 和N 分别是对角线AC 和BD 的中点,△ADM 和△BCM 的外接圆交于点M、L,证明:K,L,M,N(这些点两两不重合)四点共圆。
7.圆内接四边形ABCD 的外接圆为圆Ω且AB=AD,在线段BC、CD 上分别取点M、N,使得MN=BM+DN。
直线AM 交圆Ω于点P (不同于A),直线AN 交圆Ω于点Q (不同于A)。
求证:△APQ 的垂心在MN 上。
8.给定四边形ABCD,其中∠B=∠D=90⁰,在线段AB 上取点M 使得AD=AM。
九年级几何证明题(含答案)1.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG求证:ABC AEG S S △△证明:∵S △ABC =1/2AB ×AC ×sin ∠BACS △AGE =1/2AG ×AE ×sin ∠GAE又∠GAE=180°-∠BAC∴sin ∠GAE=sin (180°-∠BAC )=sin ∠BAC又AB= AG ,AC= AE∴S △ABC = S △AGE2.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG 。
若O 为EG 的中点求证:BC=2AO证明:延长AO 至M ,使OM=AO ,则AM=2AO∵GO=EO∴AEMG 是平行四边形∴EM=AG=AB ,EM ∥AG∴∠EAG+∠AEM=180°又∵∠EAG+∠BAC=180°∴∠AEM=∠BAC又∵AE=AC∴△AEM ≌△CAB∴AM=BC∴BC=2AO3. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG ,若O 为EG 的中点,OA 的延长线交BC 于点H求证:AH ⊥BC证明:延长AO 至M ,使OM=AO ,则AM=2AO∵GO=EO∴AEMG 是平行四边形∴EM=AG=AB ,EM ∥AG∴∠EAG+∠AEM=180°又∵∠EAG+∠BAC=180°∴∠AEM=∠BAC又∵AE=AC∴△AEM ≌△CAB∴∠EAM=∠ACB又∵∠EAM+∠CAH=90°∴∠ACB+∠CAH=90°∴∠AHC=90°即AH ⊥BCO MMN O线交EG 于点O求证:O 为EG 的中点 证明:过点E 作EN ⊥AO 于N ,过点G 作GM 垂直AO 交延长线于M ∵AH ⊥BC ∴∠ACB+∠CAH=90°∵∠EAN+∠CAH=90°∴∠ACB=∠EAN∵∠ANE=∠CHA=90°,AE=AC∴△ANE ≌△CHA∴AH=EN同理可证△ABH ≌△GAM∴AH=GM∴EN=GM∵∠M=∠ENO ,∠GOM=∠EON∴△GOM ≌△EON∴GO=EO即O 为EG 的中点。
八年级数学下册几何证明题练习1.已知:△ABC 的两条高BD ,CE 交于点F ,点M ,N ,分别是AF ,BC 的中点,连接ED ,MN ; (1)证明:MN 垂直平分ED ; (2))若∠EBD=∠DCE=45°,判断以M ,E ,N ,D 为顶点的四边形的形状,并证明你的结论;2.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF=90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC ;(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及GCEC的值; (2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE=1,AB=2,当E ,F ,D 三点共线时,求DF 的长;3.已知,正方形ABCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的关系为-----------------------------------------------; (2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由; (3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.4.如图正方形ABCD ,点G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F ;(1)如图l ,写出线段AF 、BF 、EF 之间的数量关系:------------------------------;(不要求写证明过程)(2)如图2,若点G 是BC 的中点,求GFEF的比值; (3)如图3,若点O 是BD 的中点,连OE ,求EFOF的比值;5.在△ABC中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).(1)如图1,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四边形;(2)如图2,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:∠EMD=∠FND.6.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC 为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).7.菱形ABCD中,点E、F分别在BC、CD边上,且∠EAF=∠B;⑴如果∠B=60°,求证:AE=AF;⑵如果∠B=α(0°<α<90°),(1)中的结论:AE=AF是否依然成立,请说明理由;⑶如果AB长为5,菱形ABCD面积为20,BE=a,求AF的长;(用含a的式子表示)F EDC B A8.在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A ⇒B ⇒C 向终点C 运动,连接DM 交AC 于点N . (1)如图1,当点M 在AB 边上时,连接BN : ①求证:△ABN ≌△ADN ; ②若∠ABC=60°,AM=4,求点M 到AD 的距离; (2)如图2,若∠ABC=90°,记点M 运动所经过的路程为x (6≤x≤12).试问:x 为何值时,△ADN 为等腰三角形.9. 如图,矩形ABCD 中,AB=4cm ,BC=8cm ,动点M 从点D 出发,按折线DCBAD 方向以2cm/s 的速度运动,动点N 从点D 出发,按折线DABCD 方向以1cm/s 的速度运动. (1)若动点M 、N 同时出发,经过几秒钟两点相遇?(2)若点E 在线段BC 上,且BE=2cm ,若动点M 、N 同时出发,相遇时停止运动,经过几秒钟,点A 、E 、M 、N 组成平行四边形?10. 如图,矩形ABCD 中,AB=6 ,∠ABD=30°,动点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上运动,设点P 运动的时间是t 秒,以AP 为边作等边△APQ (使△APQ 和矩形ABCD 在射线AB 的同侧).(1)当t 为何值时,Q 点在线段BD 上?当t 为何值时,Q 点在线段DC 上?当t 为何值时,C 点在线段PQ 上?(2)设AB 的中点为N ,PQ 与线段BD 相交于点M ,是否存在△BMN 为等腰三角形?若存在,求出t 的值;若不存在,说明理由; ⑶(选做)设△APQ 与矩形ABCD 重叠部分的面积为s ,求s 与t 的函数关系式.。
初中数学练习题平面几何证明平面几何证明是数学学习中的一项重要内容,通过证明可以帮助我们理解和掌握几何形状和性质。
下面,我们将通过几个常见的初中数学练习题来进行平面几何证明。
1. 题目:已知三角形ABC中,AB=AC,D为BC中点,连接AD。
证明:AD⊥BC。
证明过程:首先,根据已知条件AB=AC,可以得出△ABC是等腰三角形,即∠B=∠C。
其次,连接AB和AC,分别延长两条线段,交与BC于E、F。
则△ABE与△ACF为等腰三角形,可得∠BAE=∠CAF。
再次,由于D为BC中点,根据中位线定理可得AD平分∠BAC,即∠BAD=∠CAD。
综合以上三个角的关系,我们可以得到∠B=∠C,∠BAE=∠CAF 和∠BAD=∠CAD。
通过上述几个角的对应关系,我们可以得出△ADE与△ABC全等(∠B=∠C,∠BAE=∠CAF和∠BAD=∠CAD),由全等三角形的性质可知,AD=AB=AC。
因此,△ABC中,AB=AC,AD=AB=AC,根据等边三角形的性质可得AD⊥BC。
2. 题目:已知四边形ABCD中,AC=BD,AC⊥BD,连接AD和BC,证明:AD=BC。
证明过程:根据题目已知条件AC=BD,AC⊥BD,我们可以得到△ABC和△ADC为等腰直角三角形。
首先,根据等腰三角形的性质,我们知道∠BAC=∠ACB和∠ACD=∠CAD。
其次,由于AC⊥BD,我们可以得到∠BAC+∠ACD=90°和∠ACB+∠CAD=90°。
综合以上的角关系,我们可以得到∠BAC+∠ACB+∠ACD+∠CAD=180°。
根据四边形内角和定理,我们知道四边形的内角和等于360°,即∠BAC+∠ACB+∠ACD+∠CAD=360°。
因此,∠BAC+∠ACB+∠ACD+∠CAD=180°和∠BAC+∠ACB+∠ACD+∠CAD=360°。
由此可得∠BAC+∠ACB+∠ACD+∠CAD=180°=360°,即∠BAC+∠ACB+∠ACD+∠CAD是一个平角。
初中几何证明练习题
1.如图,在△ABC 中,BF ⊥AC ,CG ⊥AD ,F 、G 是垂足,D 、E 分别是BC 、FG 的中点,求证:DE ⊥FG
证明:连接DG 、DF
∵∠BGC=90°,BD=CD
∴DG=
2
1BC 同理DF=21BC ∴DG=DF
又GE=FE
∴DE ⊥FG
2.如图,AE ∥BC,D 是BC 的中点,ED 交AC 于Q ,ED 的延长线交AB 的延长线于P ,求证:PD·QE=PE·QD
证明:∵AE ∥BC
∴△CDQ ∽△AEQ ∴AE
CD QE QD = ∵BD ∥AE
△PBD ∽△PAE ∴PE
PD AE BD = ∵BD=CD ∴PE PD AE CD = 3.如图,已知点P 是圆O 的直径AB 上任一点,∠APC=∠BPD ,其中C ,D 为圆上的点,求证:△PAC ∽△PDB
证明:过点D 作直径AB 的垂线交AB 于E ,交圆O 于F
连接PF 、BF ∵AB ⊥DF ∴⌒BD=⌒BF,DE=FE ∴BD=BF ∴PE PD QE QD = ∴PD·QE=PE·QD
即∠CPF=180° ∴C 、P 、F 三点共线 ∵C 、A 、F 、B 四点
共圆 ∴∠CAB=∠CFB
又∠CFB=∠PDB
又∠BED=∠BEF=90°
∴△BED ≌△BEF
∴∠DBE=∠FBE
又BD=BF,BP=BP
∴△PBD ≌△PBF
∴∠BPD=∠BPF ,∠PDB=∠PFB
∵∠APC=∠BPD
∴∠APC=∠BPF
∵∠APC+∠CPD+∠BPD=180°
∴∠BPF+∠CPD+∠BPD=180°
4.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG
求证:ABC AEG S S =△△ 证明:BAC sin AC AB 21ABC ∠⨯⨯=△S GAE sin AE AG 2
1AEG ∠⨯⨯=△S ABFG 和ACDE 都是正方形
∴∠BAG+∠CAE=180°,AB=AG ,AC=AE
∴∠BAC+∠GAE=180°
∴∠BAC=180°-∠GAE
Sin ∠BAC=sin (180°-∠GAE )=sin ∠GAE
∴ABC AEG S S =△△
5.已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .
求证:∠DEN =∠F .
证明:连接BD ,取BD 的中点G ,连接GM 、GN
∵DN=,DG=BG
∴NG ∥BF ,NG=12
BC ∴∠GNM=∠F ,
同理MG ∥AE ,MG=12
AD ∴∠GMN=∠DEN
又BC=AD
∴NG=MG
∴∠GNM=∠GMN
∴∠DEN=∠F
6.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 与D 、E ,直线EB 与CD 分别交MN 于P 、Q .
求证:AP =AQ .
G
证明:作点E 关于AG 的对称点F ,连接FC 、FA 、FQ
∵AG 是圆O 的对称轴
∴AE=AF ∴∠AFE=∠AEF
∵EF ⊥AG ,PQ ⊥AG
∴EF ∥PQ ∴∠AFE=∠FAP ∵C 、D 、E 、F 四点共圆
∴∠AEF+∠FCD=180°
又∠FAP+∠FAQ=180°
∴∠FCD=∠FAQ
∴A 、C 、F 、Q 四点共圆
∴∠ACQ=∠AFQ
又∠ACQ=∠BED
7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:
设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .
证明:过点O 作OF ⊥CD 于F ,过点O 作OG ⊥BE 于G
连接OP 、OA 、OQ 、AF 、AG
∵AM=AN ∴OA ⊥MN
又OF ⊥CD ∴A 、O 、F 、P 四点共圆
∴∠AFP=∠AOP
又∠OAQ=∠OGQ=90°
∴A 、O 、G 、Q 四点共圆
∴∠AGQ=∠AOQ 又∠D=∠B ,∠C=∠E
∴△ACD ∽△AEB ∴GB
FD GB 2FD 2EB CD AB AD === 又∠D=∠B
∴△AFD ∽△AGB
∴∠AFD=∠AGB
又∠AFD+∠AFP=180°
∠AGB+∠AGQ=180°
∴∠AFP=∠AGQ
∴∠AOP=∠AOQ
又OA=OA ,
∠OAP=∠OAQ
∴△AOP ≌△AOQ
∴AP=AQ
8如图,⊙O 中弦AC ,BD 交于F ,过F 点作EF ∥AB ,交DC 延 长线于E ,过E 点作⊙O 切线EG ,G 为切点,求证:EF=EG
证明:∵AB ∥EF
∴∠A=∠EFC
又∠A=∠D
∴∠AFQ=∠BED ∵AE=AF ,AG ⊥EF ∴∠EAG=∠FAG 又∠PAG=∠QAG
∴∠PAE=∠QAF 在△PAE 和△QAF 中 ∠PEA=∠QFA AE=AF ∠PAE=∠QAF ∴△PAE ≌△QAF ∴AP=AQ
O M ∴∠EFC=∠D
又∠CEF=∠FED
∴△CEF ∽△FED ∴EF EC ED EF = ∴ED EC EF 2⨯=
又EG 是⊙O 的切线
∴ED EC EG 2
⨯= ∴EF=EG
10. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接BE ,CG 求证:
(1)BE =CG
(2)BE ⊥CG
证明:∵ABFG 和ACDE 都是正方形
∴AB=AG ,AE=AC ,
∠BAG=∠CAE
∴∠BAG+∠BAC=∠CAE+∠BAC 即∠EAB=∠CAG
∴△ABE ≌△AGC ∴∠AGC=∠ABE ,BE=CG
∵∠AGC+∠AMG=90°
∴∠ABE+∠AMG=90°
又∠AMG=∠BMC
∴∠ABE+∠BMC=90°
∴∠BOM=90°
∴BE ⊥CG
11. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接CE ,BG 、GE
M 、N 、P 、Q 分别是EG 、GB 、BC 、CE 的中点
求证:四边形MNPQ 是正方形
证明:连接BE 、CG 相较于H ,CG 与AB 相交于O
∵ABFG 和ACDE 都是正方形
∴AB=AG ,AE=AC ,∠BAG=∠CAE=90°
∴∠BAG+∠BAC=∠CAE+∠BAC
即∠EAB=∠CAG
∴△ABE ≌△AGC
∴∠AGC=∠ABE ,BE=CG
∵∠AGC+∠AOG=90°
∴∠ABE+∠AOG=90° 又∠AOG=∠BOC O H I
J ∴MNPQ 是菱形 ∵MN ∥BE ,BE ⊥CG
∴MN ⊥CG
∴∠ABE+∠BMC=90° ∴∠BOM=90°∴BE ⊥CG ∵NG=NB ,PB=PC ∴PN ∥CG ,PN=12CG
同理MQ ∥CG ,MQ=12CG
MN ∥BE ,MN=12BE
PQ ∥BE ,PQ=12BE
又∵BE=CG
∴PN=MQ=MN=PQ。