《圆的标准方程》第一课时教学设计
- 格式:doc
- 大小:78.00 KB
- 文档页数:7
《圆的标准方程》第一课时教学设计稿华川中学李建军2007.10.16《圆的标准方程》第一课时教学设计稿一.教材分析圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.《圆的方程》安排在高中数学第二册(上)第七章第六节.是前面学习了直线方程、两条直线的位置关系、曲线和方程的基础上,让学生学会在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。
圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.本节课教材编者共安排了3个例题,例1是求圆的方程的问题,是直接运用所学知识的一个例题;例2是运用圆的标准方程的知识来解决数学问题——求圆的切线问题;例3是运用圆的标准方程的知识来解决实际问题的一个例题。
在作业安排上,安排了4个练习题和4个习题,它们分别是3个例题的补充。
二.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的. 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难,另外学生在探究问题的能力,合作交流的意识等方面有待加强.为了让学生掌握本节课内容,我将例1和例2作为第一课时内容,例3同补充的例题作为第二课时的内容。
由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,计划在同学生一道推导圆的标准方程,以便进一步了解坐标在解决实际问题中的运用。
推导出圆的标准方程后,增加圆的标准方程的直接运用的3个练习题,其中有一个是教材中的练习题第一题,通过这样的训练来达到让学生充分掌握圆的标准方程的形式。
例1我直接选用教材中的例1,没有做改动;在讲解例2时,我采取先用一个具体的问题来求出圆的切线方程后,从特殊的例子入手,为推导一般的圆的切线方程打下知识和方法的铺垫,体现了“从特殊到一般”的思想。
《圆的标准方程》教学设计一、教学目标1、知识与技能目标学生能够理解圆的标准方程的推导过程,掌握圆的标准方程的形式,并能根据圆的标准方程求出圆心坐标和半径。
2、过程与方法目标通过圆的标准方程的推导,培养学生的逻辑推理能力和数学运算能力。
3、情感态度与价值观目标让学生在数学学习中体验成功的喜悦,增强学习数学的兴趣和信心。
二、教学重难点1、教学重点圆的标准方程的形式及其应用。
2、教学难点圆的标准方程的推导过程。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示生活中常见的圆形物体,如车轮、圆盘等,引导学生思考圆的特征,从而引出本节课的主题——圆的标准方程。
2、知识讲解(1)回顾圆的定义:平面内到定点的距离等于定长的点的集合(轨迹)叫做圆。
定点称为圆心,定长称为半径。
(2)设圆的圆心坐标为$(a,b)$,半径为$r$,点$M(x,y)$为圆上任意一点。
根据两点间的距离公式可得:$\sqrt{(x a)^2 +(y b)^2} = r$,两边平方可得圆的标准方程:$(x a)^2 +(y b)^2 =r^2$。
3、例题讲解例 1:已知圆的圆心坐标为$(2,-3)$,半径为 5,求圆的标准方程。
解:根据圆的标准方程$(x a)^2 +(y b)^2 = r^2$,其中$a =2$,$b =-3$,$r = 5$,则圆的标准方程为$(x 2)^2 +(y + 3)^2 = 25$。
例 2:求圆心在原点,半径为 3 的圆的标准方程。
解:因为圆心在原点,即$(0,0)$,半径$r = 3$,所以圆的标准方程为$x^2 + y^2 = 9$。
4、课堂练习(1)已知圆的圆心坐标为$(-1,4)$,半径为 2,求圆的标准方程。
(2)求圆心在点$(3,-1)$,且过点$(1,1)$的圆的标准方程。
5、小组讨论让学生分组讨论以下问题:(1)如何根据圆的标准方程确定圆心和半径?(2)圆的标准方程与圆的一般方程有什么区别和联系?6、课堂总结(1)回顾圆的标准方程的推导过程和形式。
《圆的标准一般方程》教学设计一、教学目标1.目标:(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心、半径.掌握方程x2+y2+D x+E y+F=0表示圆的条件,通过对方程x2+y2+D x+E y+F=0表示圆的条件的探究,培养学生探索发现及分析、解决问题的能力.(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法和轨迹法求圆的方程.2.解析:圆的标准方程的优点在于明确直观地指出圆心坐标和半径的长.我们知道,圆心确定圆的位置,半径确定圆的大小,它有利于研究圆的有关性质和作图.而由圆的一般方程可以很容易判别一般的二元二次方程中,哪些是圆的方程,哪些不是圆的方程,它们各有自己的优点,在教学过程中,应当使学生熟练地掌握圆的标准方程与圆的一般方程的互化,尤其是由圆的一般方程通过配方化为圆的标准方程,从而求出圆心坐标和半径.要画出圆,就必须要将曲线方程通过配方化为圆的标准方程,然后才能画出曲线的形状.这充分说明了学生熟练地掌握这两种方程互化的重要性和必要性.二、预习导引1.圆的一般方程的定义当D2+E2-4F>0.时,二元二次方程称为圆的一般方程,此时圆心坐标,半径。
三、问题引领、探究新知问题1:前一章我们研究直线方程用的什么顺序和方法?问题2:这里我们研究圆的方程是否也能类比研究直线方程的顺序和方法呢?问题3:给出式子x2+y2+D x+E y+F=0,请你利用配方法化成不含x和y的一次项的式子.问题4:把式子(x -a )2+(y -b )2=r 2与x 2+y 2+D x +E y +F=0配方后的式子比较,得出x 2+y 2+D x +E y +F=0表示圆的条件.问题5:对圆的标准方程与圆的一般方程作一比较,看各自有什么特点? 师生活动:学生思考,回答。
教师总结后得出讨论结果:1.以前学习过直线,我们首先学习了直线方程的点斜式、斜截式、两点式、截距式,最后学习一般式.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就是通过把特殊的公式(点斜式、两点式、…)展开整理而得到的.2.我们想求圆的一般方程,可仿照直线方程试一试!我们已经学习了圆的标准方程,把标准形式展开,整理得到,也是从特殊到一般.3.把式子x 2+y 2+D x +E y +F=0配方得 (x +2D )2+(y +2E )2=4422FE D -+.4.(x -a )2+(y -b )2=r 2中,r >0时表示圆,r =0时表示点(a ,b ),r <0时不表示任何图形.因此式子 (x +2D )2+(y +2E )2=4422FE D -+.(ⅰ)当D 2+E 2-4F >0时,表示以(-2D,-2E )为圆心,21F E D 422-+为半径的圆;(ⅱ)当D 2+E 2-4F=0时,方程只有实数解x =-2D ,y =-2E,即只表示一个点(-2D ,-2E); (ⅲ)当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形. 综上所述,方程x 2+y 2+D x +E y +F=0表示的曲线不一定是圆,由此得到圆的方程都能写成x 2+y 2+D x +E y +F=0的形式,但方程x 2+y 2+D x +E y +F=0表示的曲线不一定是圆,只有当D 2+E 2-4F >0时,它表示的曲线才是圆.因此x 2+y 2+D x +E y +F=0表示圆的充要条件是D 2+E 2-4F >0.我们把形如x 2+y 2+D x +E y +F=0表示圆的方程称为圆的一般方程. 5.圆的一般方程形式上的特点:x 2和y 2的系数相同,不等于0.没有xy 这样的二次项.圆的一般方程中有三个待定的系数D 、E 、F,因此只要求出这三个系数,圆的方程就确定了.与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.练习内化例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x 2+4y 2-4x +12y +9=0; (2)4x 2+4y 2-4x +12y +11=0.解:(1)由4x 2+4y 2-4x +12y +9=0,得D=-1,E=3,F=49, 而D 2+E 2-4F=1+9-9=1>0,所以方程4x 2+4y 2-4x +12y +9=0表示圆的方程,其圆心坐标为(21,-23),半径为21; (2)由4x 2+4y 2-4x +12y +11=0,得 D=-1,E=3,F=411,D 2+E 2-4F=1+9-11=-1<0, 所以方程4x 2+4y 2-4x +12y +11=0不表示圆的方程.点评:对于形如A x 2+B y 2+D x +E y +F=0的方程判断其方程是否表示圆,要化为x 2+y 2+D x +E y +F=0的形式,再利用条件D 2+E 2-4F 与0的大小判断,不能直接套用.另外,直接配方也可以判断.变式训练:求下列圆的半径和圆心坐标: (1)x 2+y 2-8x +6y =0;(2)x 2+y 2+2by =0.(2)x 2+y 2+2by =0配方,得x 2+(y +b )2=b 2,所以圆心坐标为(0,-b ),半径为|b | 例2 :求过三点O(0,0)、M 1(1,1)、M 2(4,2)的圆的方程,并求圆的半径长和圆心坐标.解:方法一:设所求圆的方程为x 2+y 2+D x +E y +F=0,由O 、M 1、M 2在圆上,则有⎪⎩⎪⎨⎧=+++=+++=.02024,02.0F E D F E D F 解得D=-8,E=6,F=0,故所求圆的方程为x 2+y 2-8x +6y =0,即(x -4)2+(y +3)2=52. 所以圆心坐标为(4,-3),半径为5.方法二:先求出OM 1的中点E(21,21),M 1M 2的中点F(25,23), 再写出OM 1的垂直平分线PE 的直线方程 y -21=-(x -21), ①AB 的垂直平分线PF 的直线方程 y -23=-3(x -25), ②联立①②得⎩⎨⎧=+=+,93,1y x y x 得⎩⎨⎧-==.3,4y x则点P 的坐标为(4,-3),即为圆心.OP=5为半径.点评:请同学们比较,关于何时设圆的标准方程,何时设圆的一般方程.一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.小结①圆的标准方程.②点与圆的位置关系的判断方法. ③根据已知条件求圆的标准方程的方法. ④利用圆的平面几何的知识构建方程. ⑤直径端点是A(x 1,y 1)、B(x 2,y 2)的圆的方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.设计意图:回顾和总结本节课的主要内容。
1 y x 0B A 2.74xy 0r M(x,y)C 圆的方程(第1课时)——圆的标准方程1.教学目标(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;2.使学生加深对数形结合思想和待定系数法的理解;3.增强学生用数学的意识.(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣2.教学重点.难点(1)教学重点:圆的标准方程的求法及其应用.(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题.3.教学过程(一)创设情境(启迪思维)问题一:已知隧道的截面是半径为4m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m ,高为3m 的货车能不能驶入这个隧道?[引导] 画图建系[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习) 解:以某一截面半圆的圆心为坐标原点,半圆的直径AB 所在直线为x 轴,建立直角坐标系,则半圆的方程为x 2+y 2=16(y ≥0) 将x =2.7代入,得 38.712.716y 2<==-.即在离隧道中心线2.7m 处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知) 问题二:1.根据问题一的探究能不能得到圆心在原点,半径为r 的圆2的方程?答:x 2+y 2=r 22.如果圆心在),(b a ,半径为r 时又如何呢?[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法如图,设M (x,y )是圆上任意一点,根据定义点M 到圆心C 的距离等于r,所以圆C 就是集合P={M||MC|=r}由两点间的距离公式,点M 适合的条件可表示r b y a x =-+-22)()( ①把①式两边平方,得(x ―a)2+(y ―b)2=r 2方法二:图形变换法方法三:向量平移法(三)应用举例(巩固提高)I .直接应用(内化新知)问题三:1.写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在)4,3(C ,半径为5;(3)经过点)1,5(P ,圆心在点)3,8(-C .2.根据圆的方程写出圆心和半径(1)5)3()2(22=-+-y x ; (2)222)2()2(-=++y x .II .灵活应用(提升能力)问题四:1.求以)3,1(C 为圆心,并且和直线0743=--y x 相切的圆的方程.[教师引导]由问题三知:圆心与半径可以确定圆.2.已知圆的方程为2522=+y x ,求过圆上一点)3,4(-A 的切线方程.[学生活动]探究方法[教师预设]方法一:待定系数法(利用几何关系求斜率—垂直)方法二:待定系数法(利用代数关系求斜率—联立方程)方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示] 方法四:轨迹法(利用向量垂直列关系式)3.你能归纳出具有一般性的结论吗?已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是:200r y y x x =+.3III .实际应用(回归自然)问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m 需用一个支柱支撑,求支柱22P A 的长度(精确到0.01m ).[多媒体课件演示创设实际问题情境](四)反馈训练(形成方法)问题六:1.求以C (-1,-5)为圆心,并且和y 轴相切的圆的方程.2.已知点A (-4,-5),B (6,-1),求以AB 为直径的圆的方程.3.求圆x 2+y 2=13过点(-2,3)的切线方程.4.已知圆的方程为2522=+y x ,求过点)2,5(-B 的切线方程.(五)小结反思(拓展引申)1.课堂小结:(1)圆心为C(a,b),半径为r 的圆的标准方程为:222)()(r a y a x =-+-当圆心在原点时,圆的标准方程为:222r y x =+(2) 求圆的方程的方法:①找出圆心和半径;②待定系数法(3) 已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是:200r y y x x =+(4) 求解应用问题的一般方法2.分层作业:(A )巩固型作业:课本P81-82:(习题7.6)1.2.4(B )思维拓展型作业:试推导过圆222)()(r a y a x =-+-上一点),(00y x M 的切线方程.3.激发新疑:问题七:1.把圆的标准方程展开后是什么形式?2.方程:0208622=++-+y x y x 的曲线是什么图形?教学设计说明圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。
第1课时圆的标准方程课时教学设计(一)教学内容1.建立圆的标准方程;2.运用坐标法判断点与圆的位置关系;3.利用待定系数法及结合图形几何性质确定圆的标准方程.(二)教学目标1.通过掌握圆的标准方程及其推导过程,发展学生直观想象、数学抽象和数学逻辑推理的学科素养.2.通过掌握点与圆的位置关系的判定方法,进一步发展学生利用坐标法解决问题的能力,加深对数形结合思想的理解.3.通过求圆的标准方程并应用,发展学生数学建模和数学运算的学科素养. (三)教学重点及难点1.教学重点:圆的标准方程及其推导过程;2.教学难点:确定圆的标准方程.(四)教学过程设计问题1:在直线与方程的学习中,我们运用的研究方法是什么?在直线与方程的学习中,我们运用的研究方法是坐标法.追问1:建立直线的方程后,我们可以运用它研究多边形这些“直线形”图形,解决了哪些问题?解决边所在直线的平行或垂直、边与边的交点以及点到线段所在直线的距离等问题.追问2:多边形和圆是平面几何中的两类基本图形.那么类比直线方程的研究过程,我们如何研究圆的方程呢?类似地,为了研究圆的有关性质,解决与圆有关的问题,我们首先需要建立圆的方程.追问3:类比直线方程的研究过程,我们如何研究圆的方程呢?师生活动:教师层层设问,学生积极思考回答问题.设计意图:通过类比直线方程的建立,以及研究方法与研究思路,使学生明确本单元教学内容,对所学知识有整体性与连贯性.问题2:在平面直角坐标系中,如何确定一个圆呢?追问1:在初中,圆的定义是什么?圆是平面上到定点的距离等于定长的点的集合.追问2:确定圆需要几个要素?在平面直角坐标系中,需要圆心坐标和半径.师生活动:教师层层设问,学生积极思考回答问题.设计意图:通过回顾圆的定义,使学生明确确定圆的两个基本要素,对在平面直角坐标系中建立圆的标准方程做了铺垫.问题3:设圆心A的坐标是(a,b),半径为r,如何建立圆的方程?追问1:设M(x,y)为圆上任意一点,M满足的条件是什么?⊙A就是以下点的集合P={M||MA|=r}.根据两点间的距离公式,点M的坐标(x,y)满足的条件可以表示为√(x−a)2+(y−b)2=r,两边平方,得:(x−a)2+(y−b)2=r2.追问2:方程(x−a)2+(y−b)2=r2一定表示圆的方程吗?我们从哪个角度分析?若点M(x,y)在⊙A上,点M的坐标就满足方程;反过来,若点M的坐标(x,y)满足方程,就说明点M与圆心A间的距离为r,点M就在⊙A上.这时,我们就把方程称为圆心为A(a,b),半径为r的圆的标准方程.师生活动:学生以小组交流,讨论,师生共同研究,学生讲解,教师点拨.设计意图:通过设点M的坐标,利用两点间距离公式,写出M的坐标(x,y)满足的方程,进而写出圆的标准方程,培养学生的数学建模和数学运算的核心素养.问题4:与直线方程相比,圆的标准方程有什么特点?你能写出圆心在原点,半径为r的圆的标准方程是什么?直线方程圆的标准方程二元一次方程二元二次方程三个参数:定点坐标(a,b)和斜率k 三个参数:圆心(a,b)和半径r圆心在原点,半径为r的圆的标准方程x2+y2=r2.师生活动:学生以小组回答.设计意图:通过与直线方程的对比,使学生对于圆的标准方程形式更加明确,对于后续使用待定系数法确定圆的标准方程做好铺垫.例1.求圆心为A(2,-3),半径为5的圆的标准方程,并判断点M1(5,-7),M2(-2,-1)是否在这个圆上.分析:根据点的坐标与圆的方程的关系,只要判断一个点的坐标是否满足圆的方程,就可以得到这个点是否在圆上.解:圆心为A(2,-3),半径为5的圆的标准方程是(x−2)2+(y+3)2=25.把点M1(5,-7)的坐标代入方程(x−2)2+(y+3)2=25的左边,得(5-2)2+(-7+3)2=25,左右两边相等,点M1坐标满足圆的方程,所以点M1这个圆上.把点M2(-2-1)的坐标代人方程(x−2)2+(y+3)2=25的左边,得(一2-2)2+(-1+3)2=20,左右两边不相等,点M2的坐标不满足圆的方程,所以点M2不在这个圆上.探究:点M0(x0,y0)在圆x2+y2=r2内的条件是什么?在圆x2+y2=r2外的条件又是什么?如果点M。
第二章 直线和圆的方程2.4.1 圆的标准方程(1课时)【教学内容】圆的标准方程,圆的标准方程的特点,求圆的方程的三种方法(待定系数法、几何法和直接法), 点与圆的位置关系。
【教学目标】1.会用圆的定义推导圆的标准方程。
并掌握圆的标准方程的特征。
培养直观想象能力和逻辑推理能力。
2.能根据已知条件求圆的标准方程。
掌握待定系数法和几何法求圆的标准方程,培养数学运算素养、渗透方程思想。
3.能判断点与圆的位置关系并能解决相关问题.体会如何用代数方法去解决几何问题。
【教学重难点】教学重点:1.对圆的标准方程特征的理解;2.点与圆的位置关系的判断方法.3.求圆的标准方程的三种方法,数形结合思想.教学难点:1.掌握求圆的标准方程.但要注意方程 222()()m x a y b -+-=不一定表示圆,要注意参数m 的取值范围。
2.如何根据条件选择合理的方法(待定系数法,几何法,直接法)求圆的标准方程.【教学过程】(说明:本环节包括新授、小结、布置作业等)(一)圆的标准方程的推导初中我们学习过的圆的定义。
圆是平面上到定点的距离等于定长的点的集合。
在前几节课我们也学习了直线与直线的方程,我们从“方程”的角度研究了直线。
那么今天,在直角坐标系中,我们如何刻画圆呢?设点M(x,y)为圆A 上任意一点,|MA|= r ,注意,这里要强调一下r>0则圆上所有点的集合P = {M||MA|=r }根据两点距离的公式我们可以得到22()()x a y b r -+-=两边平方后得到方程(1)222()()x a y b r -+-=追问:方程(1)一定表示圆的方程吗?由上述过程可知,若点M(x,y)在圆A 上,点M 的坐标就满足方程(1);反过来,若点M 的坐标(x,y)满足方程(1) ,就说明点M 与圆心A 间的距离为r ,点M 就在圆A 上。
这时我们就把方程(1) 称为圆心为A(a,b),半径为r 的圆的标准方程。
这种一一对应反映了数量关系与空间形式之间的关系。
圆的标准方程【教学目标】(一)知识教学点1.掌握圆的标准方程,并能根据圆的方程写出圆心坐标和半径.2.会根据已知条件求圆的标准方程.3.进一步培养学生数形结合能力,综合应用知识解决问题的能力.(二)能力训练点通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.(三)学科渗透点圆基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;通过圆的标准方程,可解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时地进行爱国主义教育和辩证唯物主义思想教育.【教学重点】圆的标准方程,根据已知条件求圆的标准方程.【教学难点】(1)圆的标准方程的推导.(2)运用圆的标准方程解决一些简单的实际问题.【教法学法】1、教法:①“学生为主体,教师为主导”的探究性学习模式;②采用讲练结合的方法;③启发式教学模式。
2、学法:①数学学习不但重视结论,更重视经历产生知识的过程和形成数学思想与方法;②在解析几何的学习过程中,要注重数与形的内在联系,切实做到数形结合,获取不同的研究途径。
【教学过程】一、引入新课:1.提问以激发学生的学习兴趣:圆是生活中常见的图形,许多物体都给我们以圆的形象。
在日常生活中你见过哪些物体的形状是圆形呢?你能举出多少种?2.复习提问引出圆的定义:在初中时已学过的圆几何知识,那你知道圆是怎样形成的呢?二、新课讲授:1、推导圆的标准方程:如何求以C(a,b)为圆心,以r为半径的圆的方程?设M(x,y)是所求圆上任一点,点M在圆C上的充要条件是|CM|=r.由距离公式,得(x-a)2+(y-b)2=r,两边平方,得(x-a)2+(y-b)2=r2.12 2、得出新概念:以C (a ,b )为圆心,r 为半径的圆的标准方程为:(x -a )2+(y -b )2=r 2特别地,若圆心为O (0,0),则圆的方程为:222r y x =+练习一说出下列圆的方程:(1)以C (1,- 2)为圆心,半径为3的圆的方程;(2)圆心在(-3、- 4), 半径为5(3)以原点为圆心,半径为3的圆的方程. 点评: 知道圆心与半径会写圆的标准方程练习二说出下列圆的圆心及半径:(1)x 2+y 2=1; (2)(x -3)2+(y +2)2=16;(3)(x +1)2+(y +1)2=2; (4)(x + a)2 + y 2 = a 2 (a ≠0). 点评: 会根据圆的标准方程求出圆心与半径。
4.1.1圆的标准方程教学目标1.掌握圆的定义及标准方程.2.能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标准方程.知识梳理知识点一圆的标准方程(1)条件:圆心为C(a,b),半径长为r.(2)方程:(x-a)2+(y-b)2=r2.(3)特例:圆心为坐标原点,半径长为r的圆的方程是x2+y2=r2.知识点二点与圆的位置关系点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2的位置关系及判断方法教学案例题型一求圆的标准方程例1(1)圆心在原点,半径长是5的圆的标准方程为________________.(2)圆心在点C(2,1),半径长是3的圆的标准方程为________________.(3)经过点P(5,1),圆心在点C(8,-3)的圆的标准方程为________________.【答案】(1)x2+y2=25(2)(x-2)2+(y-1)2=3(3)(x-8)2+(y+3)2=25反思感悟(1)确定圆的标准方程只需确定圆心坐标和半径,因此用直接法求圆的标准方程时,要首先求出圆心坐标和半径,然后直接写出圆的标准方程.(2)确定圆心和半径时,常用到中点坐标公式、两点间距离公式,有时还用到平面几何知识,如“弦的中垂线必过圆心”“两条弦的中垂线的交点必为圆心”等.跟踪训练1(1)与y轴相切,且圆心坐标为(-5,-3)的圆的标准方程为________________.【答案】(x+5)2+(y+3)2=25【解析】∵圆心坐标为(-5,-3),又与y轴相切,∴该圆的半径为5,∴该圆的标准方程为(x +5)2+(y +3)2=25.(2)以两点A (-3,-1)和B (5,5)为直径端点的圆的方程是( )A.(x +1)2+(y +2)2=100B.(x -1)2+(y -2)2=100C.(x +1)2+(y +2)2=25D.(x -1)2+(y -2)2=25【答案】D【解析】∵AB 为直径,∴AB 的中点(1,2)为圆心,12|AB |=12(5+3)2+(5+1)2=5为半径, ∴该圆的标准方程为(x -1)2+(y -2)2=25.题型二 点与圆的位置关系例2 (1)点P (m 2,5)与圆x 2+y 2=24的位置关系是( )A.点P 在圆内B.点P 在圆外C.点P 在圆上D.不确定【答案】B【解析】由(m 2)2+52=m 4+25>24,得点P 在圆外. (2)已知点M (5a +1,a )在圆(x -1)2+y 2=26的内部,则a 的取值范围为________________.【答案】[0,1)【解析】由题意知⎩⎨⎧ a ≥0,(5a +1-1)2+(a )2<26,即⎩⎪⎨⎪⎧a ≥0,26a <26,解得0≤a <1. 反思感悟 (1)判断点与圆的位置关系的方法①只需计算该点与圆的圆心之间的距离,与半径作比较即可.②把点的坐标代入圆的标准方程,判断式子两边的大小,并作出判断.(2)灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.跟踪训练2 已知点(1,1)在圆(x -a )2+(y +a )2=4的外部,则a 的取值范围为____________.【答案】(-∞,-1)∪(1,+∞)【解析】由题意知,(1-a )2+(1+a )2>4,2a 2-2>0,即a <-1或a >1.待定系数法与几何法求圆的标准方程典例 求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的标准方程. 解 方法一 (待定系数法)设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧ a 2+b 2=r 2,(1-a )2+(1-b )2=r 2,2a +3b +1=0,解得⎩⎪⎨⎪⎧ a =4,b =-3,r =5.∴圆的标准方程是(x -4)2+(y +3)2=25.方法二 (几何法)由题意知OP 是圆的弦,其垂直平分线为x +y -1=0.∵弦的垂直平分线过圆心,∴由⎩⎪⎨⎪⎧ 2x +3y +1=0,x +y -1=0, 得⎩⎪⎨⎪⎧x =4,y =-3, 即圆心坐标为(4,-3),半径为r =42+(-3)2=5.∴圆的标准方程是(x -4)2+(y +3)2=25.[素养评析] (1)待定系数法求圆的标准方程的一般步骤(2)几何法即是利用平面几何知识,求出圆心和半径,然后写出圆的标准方程.(3)像本例,理解运算对象,探究运算思路,求得运算结果.充分体现数学运算的数学核心素养.课堂小结1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另外依据题意适时运用圆的几何性质解题可以化繁为简,提高解题效率.2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、快捷.达标检测1.若某圆的标准方程为(x-1)2+(y+5)2=3,则此圆的圆心和半径长分别为()A.(-1,5), 3B.(1,-5),3C.(-1,5),3D.(1,-5),3【答案】B2.点P(1,3)与圆x2+y2=24的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定【答案】B3.圆心在y轴上,半径为1,且过点(1,2)的圆的标准方程是()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1【答案】A【解析】方法一(直接法)设圆的圆心为C(0,b),则(0-1)2+(b-2)2=1,∴b=2,∴圆的标准方程是x2+(y-2)2=1.方法二(数形结合法)作图(如图),根据点(1,2)到圆心的距离为1易知,圆心为(0,2),故圆的标准方程是x2+(y-2)2=1.4.经过原点,圆心在x 轴的负半轴上,半径为2的圆的标准方程是________________.【答案】(x +2)2+y 2=4【解析】设圆心为(a ,0)(a <0),则|a |=2,即a =-2,∴(x +2)2+y 2=4.5.求过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的标准方程. 解 方法一 设圆的标准方程为(x -a )2+(y -b )2=r 2,根据已知条件可得⎩⎪⎨⎪⎧ (1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解此方程组得⎩⎪⎨⎪⎧ a =1,b =1,r =2,所以所求圆的标准方程为(x -1)2+(y -1)2=4.方法二 设C 为圆心,∵点C 在直线x +y -2=0上,∴可设点C 的坐标为(a ,2-a ),又∵该圆经过A ,B 两点,∴|CA |=|CB |, ∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2∴a =1,∴圆心坐标为C (1,1),半径长r =|CA |=2,故所求圆的标准方程为(x -1)2+(y -1)2=4.。
4.1.1《圆的标准方程(第1课时)》教学设计教材分析:圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,在学习中使学生进一步体会数形结合的思想,形成用代数方法解决几何问题的能力,是进一步学习圆锥曲线的基础。
对于知识的后续学习,具有相当重要的意义。
学情分析:圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,本节之前又学习了建立直角坐标系求直线方程的方法,这些都为本节课的学习奠定的必要的基础。
再者,经过必修一、必修二的学习,高一学生对高中数学学习的基本方法也有了一定的体验和了解,具备了初步的观察、类比、归纳、概括、表达能力。
通过五种直线方程的学习,对坐标系下建立方程进行了反复训练,这些都为本节课的学习做了能力和方法上的准备。
教法分析为了充分调动学生学习的积极性,本节课采用“问题-探究”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.启发学生思考问题,理解问题,解决问题。
教学目标:1.知识与技能(1)会推导圆的标准方程,掌握圆的标准方程;(2)能根据圆心坐标、半径熟练地写出圆的标准方程;2.过程与方法进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。
3.情感态度与价值观通过利用已学知识学会分析、解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,并激发学生学习数学的自信心。
教学重点与难点:1.重点:圆的标准方程的推导过程和圆标准方程特征的理解与掌握。
2.难点: (1)由已知条件求圆的标准方程(2)判定点和圆的位置关系教学过程(一) 创设情景,引入新课用多媒体播放实际生活中圆的模型,引导学生从中抽象出圆的几何图形 “ 圆在我们的生活中无处不在,日出东方,车行天下,这些都是圆的具体表现形式。
《圆的标准方程》第一课时教学设计稿华川中学李建军2007.10.16《圆的标准方程》第一课时教学设计稿一.教材分析圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.《圆的方程》安排在高中数学第二册(上)第七章第六节.是前面学习了直线方程、两条直线的位置关系、曲线和方程的基础上,让学生学会在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。
圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.本节课教材编者共安排了3个例题,例1是求圆的方程的问题,是直接运用所学知识的一个例题;例2是运用圆的标准方程的知识来解决数学问题——求圆的切线问题;例3是运用圆的标准方程的知识来解决实际问题的一个例题。
在作业安排上,安排了4个练习题和4个习题,它们分别是3个例题的补充。
二.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的. 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难,另外学生在探究问题的能力,合作交流的意识等方面有待加强.为了让学生掌握本节课内容,我将例1和例2作为第一课时内容,例3同补充的例题作为第二课时的内容。
由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,计划在同学生一道推导圆的标准方程,以便进一步了解坐标在解决实际问题中的运用。
推导出圆的标准方程后,增加圆的标准方程的直接运用的3个练习题,其中有一个是教材中的练习题第一题,通过这样的训练来达到让学生充分掌握圆的标准方程的形式。
例1我直接选用教材中的例1,没有做改动;在讲解例2时,我采取先用一个具体的问题来求出圆的切线方程后,从特殊的例子入手,为推导一般的圆的切线方程打下知识和方法的铺垫,体现了“从特殊到一般”的思想。
为了让不同层次的学生都有提高,我在课外还布置了3个思考题,以扩充学生的知识面。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:三.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③会用圆的相关知识解决切线问题。
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③培养学生观察、比较、分析、概括的思维能力。
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:四. 教学重点与难点(1)重点:圆的标准方程的推导过程和圆的标准方程特点的明确。
(2)难点:①会根据不同的已知条件求圆的标准方程;②应用圆有关的性质求出圆在不同情况下的切线方程.五、教学过程与设计教师活动设计学生活动设计1.复习提问、引入课题师:前面我们学习了曲线和方程的关系及求曲线方程的方法。
请同学们回忆一下:如何求适合某种条件的点的轨迹?师:要求曲线(图形)的方程都是按照“建系设点、列式、代换、化简、证明”五步“十二字方针”进行的。
通过这五步我们可以求适合某种条件的任何曲线(图形)的方程,今天开始研究又一基本图形——圆的方程。
师:圆的轨迹定义是什么?师:请用求轨迹方程的方法来求以下两个圆的方程:①圆心在原点,半径为r;②圆心为C(a,b),半径为r。
Ⅱ.讲授新课、尝试练习师:由方程(x-a)2+(y-b)2= r2可以迅速地知道圆的圆心坐标和半径,因此这个方程叫做圆的标准方程.......特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.师:圆的标准方程由哪些量决定?师:很好!实际上圆心和半径分别决定圆的位置和大小。
由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。
[多媒体演示练习]1、判断下列命题是否正确:(1)圆(x-1)2+(y-2)2= 3的圆心坐标是(-1,-2),半径为3;学生回忆。
学生思考,并抽学生回答。
学生在课堂练习本上推导出圆的方程。
学生组内交流,并抽学生回答。
学生在练习本上完成(2)圆(2x -2)2+(2y+4)2 = 2的圆心坐标是(2,-4),半径为2; (3)圆(x +1)2+(y +2)2= m 2的圆心坐标是(-1,-2),半径为m 。
2、写出下列各圆的标准方程:(教材P84练习1) (1) 圆心在原点,半径是3 :________________________ (2) 圆心在点C (3,4),半径是5 :_________________ (3) 经过点P (5,1),圆心在点C (8,-3):___________ 3、圆(x -1)2+(y -1)2= 2的周长是______________,面积是______________。
Ⅲ.例题分析、巩固应用 师:下面我们通过例题来看看圆的标准方程的应用. [例1]求以C (1,3)为圆心,并且和直线3x -4y -7=0相切的圆的标准方程。
解:∵圆C 的半径等于圆心C 到直线3x -4y -7=0的距离,根据点到直线的距离公式,得圆C 的半径r =2243|73413|+-⨯-⨯=516。
∴所求圆的方程是: (x -1)2 + (y -3)2 = 25256 练习:已知一个圆的圆心在原点,并与直线4x+3y -70=0相切,求圆的标准方程。
(教材P84练习1) [例2]已知圆的方程是 x 2+y 2=25,求经过圆上一点P (3,4)的切线的方程。
师:你打算怎样求过P 点的切线方程? 师: 斜率怎样求? 师:已知条件有哪些?能利用吗?不妨结合图形来看看(如图) 此练习后并集体订正。
学生独立思考后,在课堂练习本上完成此例。
学生在课堂练习本上完成此练习。
学生独立思考,抽一名学生回答。
学生在课堂解:切线与过切点的半径垂直,故斜率互为负倒数半径OP 的斜率 k 1=34, 所以切线的斜率 k =-11k =-43 所以所求切线方程:y -4= -43 (x -3) 即:3x + 4y=25 (教师板书) 师:对照圆的方程x 2+y 2=25和经过点P (3,4)的切线方程3x + 4y=25 ,你能作出怎样的猜想? 师:由x 2+y 2=25怎样写出经过点P (3,4)的切线方程3x + 4y=25 ,与已知点P (3,4)有何关系? 师:若将已知条件中圆半径改为r ,点改为圆上任一点(x o ,y o ),则结论将会发生怎样的变化?大胆地猜一猜! 师:这个猜想对不对?若对,可否给出证明?这就是我们要学习的例3。
[例3]已知圆的方程是 x 2+y 2=r 2,求经过圆上一点P (x o ,y o )的切线的方程。
解:如图,因为切线与过切点的半径垂直,故当半径OP 的斜率存在时它的斜率与切线的斜率互为负倒数 ∵半径OP 的斜率 k 1=00x y ,∴切线的斜率 k =-11k =-00y x ∴所求切线方程:y -y o = -00y x (x-x o ) 练习本上完成。
学生对照方程,独立思考,组内交流,抽学生回答:分别用切点的横坐标和纵坐标代替圆方程中的一个x 和一个y ,便得到了切线方程。
学生结合方程大胆地猜想。
学生在课堂练习本上完成证明后,对照教材学习。
六、教学后记圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.本课时是《圆的方程》的第一课时,是前面学习了直线方程、两条直线的位置关系、曲线和方程的基础知识后的一节课。
由于学生是在初中学习的圆的相关知识,知识的遗忘较多,再加上学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,因此在教学设计时,我选择由“特殊到一般”、由“具体到抽象”的设计模式,在学生学习了一个新知识后立即进行练习,从而来达到让学生牢固掌握所学知识并能用所学知识来解决一些实际问题。
具体的讲,在学生推导出圆的标准方程,引导学生分析圆的标准方程的结构特征后,选择了3道直接运用圆的标准方程的练习题,目的是让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,这些练习题都采取从易到难的梯度进行的,通过这样的训练来达到让学生充分掌握圆的标准方程的形式。
例1我直接选用教材中的例1,没有做改动。
在学生自主交流合作学习了例1后,立即对教材后配的练习题进行练习,从而巩固所学的知识和运用探究出的求法;在讲解例2时,我采取先用一个具体的问题来求出圆的切线方程后,从特殊的例子入手,为推导一般的圆的切线方程打下知识和方法的铺垫,体现了“从特殊到一般”的思想。
并且为了让不同层次的学生都有提高,我布置了3个课外思考题,以扩充学生的知识面。
由于平时所教学的班级和授课的班级在学生层次和学习方法上存在差异,在授课时就难免带有平时上课的风格:要求学生做到书写规范,步步有理,做数学题不能只有式子,而没有必要的文字叙述。
尽管在授课时注重学生的矫正和反馈,但在引导学生深入方面做得不够好,譬如:在教学例2求过具体的圆上一点作圆的切线方程时,学生的思想和方法、解决方式的多样性方面没有留足够的时间进行深入展开,从而失去了一次训练学生的发散思维的机会。
在纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,训练学生的有效思维量方面还做得不够好。
我这节课我认为的不足之处就在于:1、没有从生活实际出发创设问题情境,让学生感受到问题来源于实际,并能应用于实际,从而激发学生的学习兴趣和学习欲望,我个人认为通过这样学生获取的知识,易于保持,易于迁移;2、没有随时让学生对所学知识和方法产生有意注意,也就是对学生的引导方面还做得不够;3、在要求学生分组讨论,合作交流,只是表面上,没有充分运用,为学生设立探究空间的还不够充分,对学生的帮助还不是完全到位,没有让学生在交流成果的过程中,体验到科学研究和真理发现的复杂与艰辛。
所有这些就要求我在以后的教学中要多加强学习和研究.。