2011秋第三次月考九年级数学试题
- 格式:doc
- 大小:181.00 KB
- 文档页数:5
九年级上第三次月考数学试卷2011-12-4一、填空题(每小题2分,共20分)1.81= .2.使3+x 有意义的x3.一元二次方程52x -2x =0的解为 .4.某次电视娱乐节目的现场观众分成红、黄、蓝三个队,其中红队人8人,黄队有10人,蓝队有12人.从这三个队中随机选取一人作为幸运者,这位幸运者恰好是黄队观众的概率为 .5.某厂1月份生产的机床2000台,3月份生产的机床达到2880台,则这两个月产量的平均增长率是.6.已知⊙O 1和⊙O 2相切,两圆的圆心距为9㎝,⊙O 1的半径为4㎝,则⊙O 2的的半径为 .7.如图,⊙O 是△ABC 的外接圆,已知∠ABO=25°,则∠ACB= 度. 8.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC=50°.动点P 在弦BC 上,(不与点B 重合)则∠PAB 可能为 度写出一个符合条件的度数即可。
.9.如图,把Rt △ABC 的斜边AB 放在定直线l 上,按顺时针方向旋转△A ′BC ′的位置,设BC=1,∠A=30°,则顶点A 运动到A ′的位置时,点A 经过的路线长是 .(结果保留π)10.小刚用一张半径为24㎝的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10㎝,那么这张扇形纸板的面积是 ㎝2(结果保留π).二、单项选择题(每小题3分,共18分)11.下列图形中,既是轴对称图形又是中心对称图形的是 ( )12.下列计算不正确的是 ( ) A.2×63=B.5315=÷ C.2332=- D.()2288=13.向如图所示的圆盘中随机抛掷一枚骰子,骰子落在阴影区域的概率是(圆盘被等分成12份,不考虑骰子落在线上情形) ( )A.61 B.41 C.31 D.3214.已知关于x 的一元二次方程()01122=-++-a x x a 有一个解是0,则a 的值为 ( ) A. 1 B .-1 C.1或-1 D. 21CCB/C/B A 7题图 9题图10题图A B C D15.如图,△ABC 绕点C 旋转60 °得到△A ′B ′C ,已知AC=6,BC=4,则线段AB 扫过的图形面积为 ( )A.23π B.38π C.6π D.310π16.如图,点A 、B 在⊙O 上,且∠AOB=100 °.若点M 是⊙O 上的动点,要使△ABM 为等腰三角形,则所有符合条件的点M 有 ( ) A. 1个 B. 2个 C. 3个 D.4个三、解答题(每小题5分,共20分) 17.计算:18812++.18.如图,AB 、CD 、EF 都是⊙O 的直径,且∠1=∠2=∠3.求证:AC=BE=DF.19.解方程:2x +8x -2=020.当m 满足什么条件时,关于x 的方程2x -4x +m -21=0有两个不相等的实数根.四、解答题(每小题6分,共12分)21.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10㎜,测得钢珠顶端离零件表面的距离为8㎜,如图所示,求这个小孔的直径AB 的长.22.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别 有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为41.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色的概率.13题图 16题图 B A18题图21题图五、解答题(每小题7分,共14分)23.如图,甲、乙两人分别从长正方形广场ABCD 的顶点B 、C 同时出发,甲油C 点向D 点运动,乙由B 点向C 点运动,甲的速度1米/秒;乙的速度为2米/秒,若正方形的周长为400米,问几秒后,两人第一次相距2010米?24.如图,点A 、B 、D 、在⊙O 上,弦AE 、BD 的延长线相交于点C.。
沪科版九年级上册数学第三次月考试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.如果α是锐角,且cosα=45,那么sinα的值是()A .925B .45C .35D .2.下列判断正确的是()A .不全等的三角形一定不是相似三角形B .不相似的三角形一定不是全等三角形C .相似三角形一定不是全等三角形D .全等三角形不一定是相似三角形3.如图,点D 在ABC 的边AC 上,添加下列一个条件仍不能判断ADB △与ABC 相似的是()A .ABD C ∠=∠B .ADB ABC ∠=∠C .2AB AD AC=⋅D .2BC CD AC=⋅4.若x 1,x 2(x 1<x 2)是方程(x-a )(x-b )=1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为()A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 25.已知在△ABC 中,∠C =90°,设sin B =n ,当∠B 是最小的内角时,n 的取值范围是().A .0<n <22B .0<n <12C .0<n <33D .0<n <326.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx ﹣c 在同一坐标系内的图象大致是()A .B .C .D .7.如图,在平行四边形ABCD 中,E 为CD 上一点,DE :CE =2:3,连结AE ,BD 交于点F ,则S △DEF :S △ADF :S △ABF 等于()A .2:3:5B .4:9:25C .4:10:25D .2:5:258.如图,在ABC 中,CD 平分ACB ∠,过D 作BC 的平行线交AC 于M ,若BC m =,AC n =,则DM =()A .m m n+B .mn m n+C .n m n+D .m nn m +9.(2016湖南省娄底市)如图,已知在Rt △ABC 中,∠ABC =90°,点D 沿BC 自B 向C 运动(点D 与点B 、C 不重合),作BE ⊥AD 于E ,CF ⊥AD 于F ,则BE +CF 的值()A .不变B .增大C .减小D .先变大再变小10.如图,在梯形ABCD 中,AB =BC =10cm ,CD =6cm ,∠C =∠D =90°,动点P 、Q 同时以每秒1cm 的速度从点B 出发,点P 沿BA 、AD 、DC 运动,点Q 沿BC 、CD 运动,P 点与Q 点相遇时停止,设P 、Q 同时从点B 出发x 秒时,P 、Q 经过的路径与线段PQ 围成的图形的面积为y (cm 2),则y 与x 之间的函数关系的大致图象为()A .B .C .D .二、填空题11.若点A (2,m )在函数y=x 2-1的图象上,则A 点的坐标是______.12.在△ABC 中,若∠A =30°,∠B =45°,AC =22,则BC =_______.13.如图所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设m AB x ,长方形的面积为2m y ,要使长方形的面积最大,其边长x 应为______.14.如图,在矩形ABCD 中,6AB =,12AD =,点E 在边AD 上,8AE =,点F 在边DC 上,则当EF =________时,ABE △与DEF 相似.15.二次函数y=ax 2+bx+c (a≠0)图象如图,下列结论:①a ﹣b+c >0;②2a+b=0;③当m≠1时,a+b >am 2+bm ;④若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2.其中正确的结论的序号是______.16.如图,直线y =x +2与反比例函数y =kx的图象在第一象限交于点P .若OP 10,则k 的值为________.三、解答题17.计算:22cos 30cos 60tan 60tan 30+⋅+sin45°.18.已知线段a 、b 、c 满足a :b :c =3:2:6,且a +2b +c =26.(1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值.19.如图,Rt △ABC 中,斜边AB 上一点M ,MN ⊥AB 交AC 于N ,若AM =3cm ,AB :AC =5:4,求MN 的长.20.如图,在矩形ABCD 中,E 是AD 边上的一点,BE AC ⊥,垂足为点F .求证:AEF CAB △∽△.21.如图,两幢建筑物AB 和CD ,AB ⊥BD ,CD ⊥BD ,AB=15cm ,CD=20cm ,AB 和CD 之间有一景观池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B 、E 、D 在同一直线上),求两幢建筑物之间的距离BD (结果精确到0.1m ).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)22.如图所示,已知平行四边形ABCD 的周长为8cm ,30B ∠=,若边长()AB x cm =.()1写出ABCD的面积()2y cm与x的函数关系式,并求自变量x的取值范围.()2当x取什么值时,y的值最大?并求最大值.23.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.24.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.25.问题提出:数学课本上有这样一道题目:如图①,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?初步思考:(1)试计算出正方形零件的边长;深入探究:(2)李华同学通过探究发现如果要把△ABC按照图②加工成三个相同大小的正方形零件,△ABC的边BC与高AD需要满足一定的数量关系.则这一数量关系是:.(直接写出结论,不用说明理由);(3)若△ABC可以按照图③加工成四个大小相同的正方形,且∠B=30°,求证:AB=BC.参考答案1.C2.B3.D4.C5.A6.C7.C8.B9.C 10.C 11.(2,3)12.1213.5m 214.5或20315.②③④16.317.222+18.(1)a =6,b =4,c =12;(2)x 的值为19.9420.见解析21.36.7m .22.(1)212(04)2y x x x =-+<<;(2)当2x =时,y 有最大值,其最大值为2.23.1324.(1)y=x 2﹣3x .(2)点B 的坐标为:(4,4).(3)存在;理由见解析;25.(1)正方形零件的边长为48mm .(2)AD=BC ,(3)证明见解析.。
九年数学第三次月考试题一.填空题(每小题3分,共30分)1.如图,AB是⊙O的直径,若AB=4㎝,∠D=30°,则AC= ㎝.2.已知⊙O的直径AB为2cm,那么以AB为底,第三个顶点在圆周上的三角形中,面积最大的三角形的面积等于㎝2.3. 如图,ΔABC是⊙O的内接三角形,BC=4cm, ∠A=30°,则ΔOBC的面积为 cm2.4.已知矩形ABCD中,AB=6cm,AD=8cm,若以A为圆心作圆,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是 .5.如图,已知∠AOB=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M. 若点M在OB边上运动,则当OM= cm时,⊙M与OA相切.6.两圆相切,圆心距为5,其中一个圆的半径为4,则另一个圆的半径为 .7.在半径为10 cm的圆中,72°的圆心角所对的弧长为 cm.8. 将一个弧长为12cm, 半径为10cm的扇形铁皮围成一个圆锥形容器(不计接缝), 那么这个圆锥形容器的高为_____cm.9.若圆锥侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆心角是 .10.如图,已知圆柱体底面圆的半径为,高为2,AB、CD分别是两底面的直径,AD、BC 是母线,若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短的路线的长度是 (结果保留根式).二.选择题(每小题3分,共30分)11.已知⊙O的半径为2cm, 弦AB的长为2,则这条弦的中点到弦所对优弧的中点的距离为()A.1cmB.3cmC.(2+)cmD.(2+ )cm12.如图,已知A、B、C、D、E均在⊙O上,且AC为直径,则∠A+∠B+∠C=()度.A.30 B.45 C.60 D.9013.⊿ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径,则点C与⊙A的位置关系为()A.点C在⊙A内B.点C在⊙A上C.点C在⊙A外D.点C在⊙A上或点C在⊙A外14.设⊙O的半径为r,圆心O到直线L的距离为d,若直线L与⊙O有交点,则d与r的关系为()A.d=rB.d<rC.d>rD.d≤r15.以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,则r应满足()A. r=2或B. r=2C. r =D. 2≤r ≤16.如图中的正方形的边长都相等,其中阴影部分面积相等的图形的个数是()A.1个 B.2个 C.3个 D.4个17.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A. B. C.4 D.2+18、如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A 6.5米B 9米C 13米D 15米19.现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm20.两个等圆⊙O1和⊙O2相交于A,B两点,且⊙O1经过点O2,则四边形O1A O2B是()A、两个邻边不相等的平行四边形B、菱形C、矩形D、正方形三、解答题(共40分)21.(8分)如图,⊙O是△ABC的外接圆,AB为直径,AC=CF,CD⊥AB于D,且交⊙O于G,AF交CD于E.(1)求∠ACB的度数;(2)求证:AE=CE;22(6分)如图,点A是一个半径为300m的圆形森林公园的中心,在森林公园附近有B,C 两个村庄,现要在B,C两村庄之间修一条长为1000m的笔直公路将两村连通,现测得∠ABC=45°,∠ACB=30°,问此公路是否会穿过该森林公园?并通过计算进行说明.23.下面是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,你认为配成紫色与配不成紫色的概率相同吗?(用列表或树形图表示)(6分)24. (6分)如图,已知扇形AOB的半径为12,OA⊥OB,C为OB上一点,以OA为直径的半圆O1与以BC为直径的半圆O2相切于点D.求图中阴影部分面积.25. (6分)如图,从点P向⊙O引两条切线PA,PB,切点为A,B,AC为弦,BC为⊙O•的直径,若∠P=60°,PB=2cm,求AC的长.26.(8分)集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1-20号),另外袋中还有1只红球,而且这21只球除颜色外其余完全相同。
九年级第一学期第三次月考数学试卷(附带有答案)本试题分选择题和非选择题两部分。
本试题共6页,满分为150分,考试时间为120分钟。
注意事项:第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-x=0的根是()A.x1=0,x2=1B.x1=0,x2=-1C.x=-1D.x=02.下列几何体的左视图为()A. B. C. D.3.已知反比例函数y=﹣2x,下列各点中,在此函数图象上的点的是()A.(一1,1)B.(2,-1)C.(1,2)D.(2,2)4.在一个不透明的盒子中装有n个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n的值大约为()A.16B.18C.20D.245.若两个相似三角形的对应中线比是1:3,则它们的周长比是()A.1:2B.1:3C.1:6D.1:96.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相平分C.邻边相等D.对角线互相垂直7.如图,在Rt△ABC中,AC=4,BC=3,∠C=90°,则cosA的值为( )A.34B.54C.35D.45(第7题图)(第8题图)8.如图,在平面直角坐标系中,一块污渍遮挡了横轴的位置,只有部分纵轴和部分矩形网格,已知每个小正方形的边长都是1个单位长度,反比例函数y=k x (k ≠0,x >0)的图象恰好经过2个格点A 、B ,则k 的值是( )A.3B.4C.6D.89.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC=2,则sinB 的值是( )A.23B.32C.34D.43(第9题图) (第10题图)10.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c<0;②abc>0:③a -b+c>1:④4a -2b+c<0.正确结论的个数是( )A.1B.2C.3D.4第II 卷(非选择题 共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.若a b =53,则aa -b = .12.若反比例函数y=m -1x 的图象在一、三象限,则m 的取值范围为 .13.将抛物线y=x 2+3x -2向右平移3个单位后,再向上平移4个单位,得到新的抛物线 的解析式为 .14.如图,△ABC 与△A'B'C'是位似图形,则△ABC 与△A'B'C'的位似比为 .(第14题图) (第15题图) (第16题图)15.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.16.如图,已知正方形ABCD的边长为12,BE=EC,将正方形CD边沿DE折叠到DF,延长EF 交AB于G,连接DG、BF,现有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =725,在以上结论中,正确的是.(填写序号)三.解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:√3tan60°-2cos30°+4sin30°.18.(本小题满分6分)解方程:x2-5x+6=0.19.(本小题满分6分)如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.(本小题满分8分)一个不透明的口袋中有3个质地和大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球。
2024年人教版(2024)九年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共9题,共18分)1、已知线段AB=6cm,点O是直线AB上任意一点,那么线段AO与线段BO的和的最小值及差的绝对值的最大值分别为()A. 0cm,6cmB. 3cm,6cmC. 3cm,3cmD. 6cm,6cm2、投掷两颗普通的正方体骰子,则点数之和为“3的倍数”的概率是()A.B.C.D.3、抛物线的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为则b,c的值为()A. b=2,c=0B. b=2,c=-6C. b=-6,c=8D. b=-6,c=24、【题文】关于x的不等式组只有6个整数解,则a的取值范围是()A. -≤a≤-4B. -<a≤-4C. -≤a<-4D. -<a<-45、如图绕轴转一周,可以得到下列哪个图形()A.B.C.D.6、如果老师要求你作一个“去年北京市冬季气温统计表”,为了收集数据,你应该()A. 实地测量B. 询问北京的朋友C. 查找资料D. 等老师介绍7、已知点M(4,3)和N(1,-2),点P在y轴上,且PM+PN最短,则点P的坐标是()A. (0,0)B. (0,1)C. (0,-1)D. (-1,0)8、已知:如图,DE∥BC,且那么△ADE与△ABC的面积比S△ADE:S△ABC=()A. 2:5B. 2:3C. 4:9D. 4:259、计算(2sin60°+1)+(-0.125)2006×82006的结果是()A.B. +1C. +2D. 0评卷人得分二、填空题(共5题,共10分)10、(2015•临清市一模)如图,已知菱形ABCD的对角线AC=2,∠BAD=60°,BD边上有2013个不同的点p1,p2,,p2013,过p i(i=1,2,,2013)作P i E i⊥AB于E i,P i F i⊥AD于F i,则P1E1+P1F1+P2E2+P2F2+ P2013E2013+P2013F2013的值为____.11、已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系为____.12、(2014•武汉模拟)如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形PAOB的面积为____.13、(2013年四川绵阳4分)对正方形ABCD进行分割,如图1,其中E、F分别是BC、CD的中点,M、N、G 分别是OB、OD、EF的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”.若△GOM的面积为1,则“飞机”的面积为____________.14、【题文】方程化为一元二次方程的一般形式是____评卷人得分三、判断题(共8题,共16分)15、周长相等的三角形是全等三角形.()16、把一袋糖果分给小朋友,每人分得这袋糖果的.____.(判断对错)17、按四舍五入法取近似值:40.649≈3.6____(精确到十分位).18、判断题(对的打“∨”;错的打“×”)(1)(-1)0=-10=-1;____(2)(-3)-2=-;____(3)-(-2)-1=-(-2-1);____(4)5x-2=.____.19、a2b+ab2=ab(a+b)____.(判断对错)20、____.(判断对错)21、判断:一条线段有无数条垂线. ()评卷人得分四、证明题(共4题,共16分)22、已知,如图,AB,CD是半径为4的⊙O的两条直径,CD⊥AB,点P是上的一个动点;连接BP,交半径OC于点E,过点P的直线PH与OC延长线交于点H(1)当PH=EH时;求证:直线PH是⊙O的切线;(2)当E为OC中点时,求PC的长.23、已知a,b,c,d四个数成比例,且a,d为外项.求证:点(a,b),(c,d)和坐标原点O在同一直线上.24、如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,求证:EG⊥FG.25、如图,不等边△ABC内接于⊙O,I是其内心,且AI⊥OI.若AC=9,BC=7,则AB=____.评卷人得分五、计算题(共1题,共10分)26、(2014•义乌市)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是____.参考答案一、选择题(共9题,共18分)1、D【分析】【分析】先想象有几种可能,求出符合题意的情况,根据AB=6cm求出最小值和最大值即可.【解析】【解答】解:当O在线段AB上时;AO+BO的值最小,是AB,即线段AO与线段BO的和的最小值是6cm;当O在AB的延长线或在BA的延长线上时;|AO-BO|的值最大,是AB,即可线段AO与线段BO 的差的绝对值的最大值是6cm;故选D.2、B【分析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与点数之和为“3的倍数”的情况,再利用概率公式求解即可求得答案.【解析】【解答】解:列表得:。
北君平中学九年级〔上〕数学第三次月考试卷制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日A 卷( 100分) 班____姓名_______一、选择题:( 30分 )1.一元二次方程0342=+-x x 的解是〔 〕.A .1=xB .3121-=-=x x ,C .3=xD .3121==x x , 2.以下说法正确的选项是〔 〕A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,那么第2021次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖 C .天气预报说明天下雨的概率是50%.所以明天将有一半时间是在下雨 D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等3. 一个不透明的口袋中装有假设干个颜色不同其余都一样的球,假如口袋中有4个红球且摸到红球的概率是31。
那么口袋中球总数〔 〕 A 12个 B 9个 C 6个 D 3个4. 在Rt △ABC 中,∠C=90°,a =4,b =3,那么cosA 的值是〔 〕A .45 B .35C .43 D .54 5. 在同一直角坐标系中,函数y =kx -k 与ky x=(k ≠0)的图象大致是〔 〕yxO AyxO Byx O CyxO D6. 如下图的三视图对应的几何体是( ) A .三棱柱 B .圆柱 C .长方体 D .圆锥7. 方程0cos 4222=+-αx x 有两个相等的实数根,那么锐角α是〔 〕 A.30ºB.45º C.60ºD.以上都不对 8. 在函数12y x=-的图象上有三点111(,)A x y 、222(,)A x y 、 333(,)A x y , 假设1230x x x <<< , 那么以下正确的选项是〔 〕 A 、 1230y y y <<< B 、 2310y y y <<< C 、 2310y y y <<< D 、 2130y y y <<<9. 以下图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是〔 〕10. 正比例函数)0(11≠=k x k y 与反比例函数)0(22≠=k xk y 的图象有一个交点的坐标为 ( -2, -1 ), 那么它们的另一个交点的坐标是 ( ) A.( 2 ,1 ) B. ( -2 ,-1 ) C. ( -2 , 1 ) D.( 2 , -1 ) : ( 15分 )1. 从-1,1,2三个数中任取一个,作为一次函数y =k x +3的k 值,那么所得一次函数中y随x 的增大而增大的概率是 。
北师大版九年级上册数学第三次月考试卷一、选择题。
(每小题只有一个正确答案)1.若34yx=,则x yx+的值为()A.1B.47C.54D.742.下列函数中,反比例函数是()A.x(y+1)=1B.11yx=+C.21yx=D.13yx=3.若函数y=4x2+1的函数值为5,则自变量x的值应为()A.1B.-1C.±1D.32 24.在同一坐标系中,抛物线y=4x2,y=14x2,y=-14x2的共同特点是()A.关于y轴对称,开口向上B.关于y轴对称,y随x的增大而增大C.关于y轴对称,y随x的增大而减小D.关于y轴对称,顶点是原点5.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.36.下列各问题中,两个变量之间的关系不是反比例函数的是A.小明完成100m赛跑时,时间t(s)与跑步的平均速度v(m/s)之间的关系.B.菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系.C.一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系. D.压力为600N时,压强p与受力面积S之间的关系.7.如图,AB、CD相交于点O,AD∥CB,若AO=2,BO=3,CD=6,则CO等于()A.2.4B.3C.3.6D.48.如图,平面直角坐标系中,点M是直线2y=与x轴之间的一个动点,且点M是抛物线212y x bx c =++的顶点,则方程2112x bx c ++=的解的个数是()A .0或2B .0或1C .1或2D .0,1或29.如图,已知点C 是线段AB 的黄金分割点(其中AC >BC ),则下列结论正确的是()A .512BC AC -=B .512AC BC -=C .AB 2=AC 2+BC 2D .BC 2=AC•BA10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为()A .2B .4C .D .二、填空题11.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm ,则甲、乙两地间的实际距离是_____km.12.如图,圆O 的半径为2.C 1是函数y=x 2的图象,C 2是函数y=−x 2的图象,则阴影部分的面积是___.13.已知实数x ,y ,z 满足x +y +z =0,3x ﹣y ﹣2z =0,则x :y :z =_____.14.如图,在正方形ABCD 中, BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H .给出以下结论:①AF =DE ;②∠ADP =15°;③13PF PC =;④PD 2=PH •PB ,其中正确的是_____.(填写正确结论的序号)三、解答题15.已知a 、b 、c 为三角形ABC 的三边长,且36a b c ++=,345a b c==,求三角形ABC 三边的长.16.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.17.新冠疫情暴发后,口罩的需求量增大.某口罩加工厂承揽生产1600万个口罩的任务,计划用t 天完成.(1)写出每天生产口罩w (万个)与生产时间t (天)(t >4)之间的函数表达式;(2)由于国外的疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做多少万个口罩才能完成任务?(用含t 的代数式表示)18.如图,D 、E 分别是 ABC 的边AB 、BC 上的点,DE ∥AC ,若:BDE CDE S S △△=1:3,求DOE AOC S S △△:的值.19.抛物线y =mx 2﹣4m (m >0)与x 轴交于A ,B 两点(A 点在B 点左边),与y 轴交于C 点,已知OC =2OA .求:(1)A ,B 两点的坐标;(2)抛物线的解析式.20.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB的延长线于点E.求证:(1) APB≌ APD;(2)PD2=PE•PF.21.如图,在平面直角坐标系中有抛物线c:y=x2+m和直线l:y=﹣2x﹣2,直线l与x轴的交点为B,与y轴的交点为A.(1)求m取何值时,抛物线c与直线l没有公共点;(2)向下平移抛物线c,当抛物线c的顶点与点A重合时,试判断点B是否在平移后的抛物线上.22.反比例函数y=kx(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.(1)求k的值;(2)在y轴上确定一点M,使点M到A,B两点距离之和d=MA+MB最小,求点M的坐标.23.在 ABC中,∠C=90°,AC=BC,点M,N分别在AC,BC上,将 ABC沿MN折叠,顶点C恰好落在斜边的P点上.(1)如图1,若点N为BC中点时,求证:MN∥AB;(2)如图2,当MN与AB不平行时,求证:PA CM PB CN=;(3)如图3,当AC≠BC且MN与AB不平行时,(2)中的等式还成立吗?请直接写出结论.参考答案与详解1.D【详解】∵34 yx=,∴x yx+=434+=74,故选D2.D【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=kx(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).【详解】解:A、不是反比例函数,故A选项不合题意;B、不是反比例函数,故B选项不合题意;C、不是反比例函数,故C选项不合题意;D、是反比例函数,故D选项符合题意.故选:D.【点睛】此题主要考查了反比例函数的定义,解题的关键是牢记反比例函数的形式然后判断.3.C【分析】根据题意,把函数的值代入函数表达式,然后解方程即可.【详解】解:根据题意,得4x2+1=5,x2=1,解得x=-1或1.故选C.【点睛】本题考查给出二次函数的值去求函数自变量的值.代入转化为求一元二次方程的解.4.D【详解】解:因为抛物线y=4x2,y=14x2,y=-14x2都符合抛物线的最简形式y=ax2,其对称轴是y轴,顶点是原点.故选D.【点睛】本题考查二次函数的图象性质.5.D【详解】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,则对称轴所在的位置为0<h<4故选:D【点睛】本题考查二次函数的性质,利用数形结合思想解题是关键.6.C此题可先对各选项列出函数关系式,再根据反比例函数的定义进行判断.【详解】A、根据速度和时间的关系式得,t=100 v;B、因为菱形的对角线互相垂直平分,所以12xy=48,即y=96x;C、根据题意得,m=ρV;D、根据压强公式,p=600s;可见,m=ρV中,m和V不是反比例关系.故选C.【点睛】本题主要考查了反比例函数的定义,正确表示出各量之间的函数关系是解决本题的关键.7.C【分析】由平行线分线段成比例定理,得到CO BODO AO=;利用AO、BO、CD的长度,求出CO的长度,即可解决问题.【详解】如图,∵AD∥CB,∴CO BO DO AO=;∵AO=2,BO=3,CD=6,∴362COCO=-,解得:CO=3.6,故选C.【点睛】本题考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键..8.D【分析】分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程12x2+bx+c=1的解的个数.解:点M 的纵坐标小于1,方程2112x bx c ++=的解是2个不相等的实数根;点M 的纵坐标等于1,方程2112x bx c ++=的解是2个相等的实数根;点M 的纵坐标大于1,方程2112x bx c ++=的解的个数是0.故方程2112x bx c ++=的解的个数是0,1或2.故选D .【点睛】本题考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.A 【分析】根据黄金分割的定义得出512BC AC AC AB -==,从而判断各选项.【详解】解:∵点C 是线段AB 的黄金分割点,且AC >BC ,∴512BC AC AC AB -==,∴选项A 符合题意,2AC BC AB =⋅,∴选项D 不符合题意;∵12AC BC +==,∴选项B 不符合题意;∵222AB AC BC ≠+,∴选项C 不符合题意;故选:A .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割的定义是解题关键.10.C如图:连接AC ,∵OD=2,CD ⊥x 轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC ==由菱形的性质,可知OA=OC ,∵△OCE 与△OAC 同底等高,∴S △OCE =S △OAC =12×OA×CD=12.故选C .11.1.25【分析】根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.【详解】设甲、乙两地间的实际距离为xcm ,则:1255000x=,解得:x =125000.125000cm =1.25km .故答案为:1.25.【点睛】本题考查了比例尺的概念、比例的性质;根据比例尺进行计算,注意单位的转换问题.12.2π【分析】根据圆和二次函数图象的对称性,用割补法和圆的面积公式,即可求解.把x 轴下方阴影部分关于x 轴对称后,原图形阴影部分的面积和,变为一个半圆的面积,即2222ππ⋅=【点睛】利用图形的对称性,把不规则的阴影部分,补成规则的图形,再用圆的面积公式求解.13.1:(﹣5):4【分析】通过解方程组,用x 分别表示出y 与z ,然后求x :y :z 的值.【详解】解:x +y +z =0①,3x ﹣y ﹣2z =0②,①+②得4x ﹣z =0,则z =4x ,把z =4x 代入①得x +y +4x =0,则y =﹣5x ,所以x :y :z =x :(﹣5x ):4x =1:(﹣5):4.故答案为1:(﹣5):4.【点睛】本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)是解决此类问题的关键.14.①②④【分析】先判断出BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,再判断出AB =BC =CD ,∠A =∠ADC =∠BCD =90°,进而得出∠ABE =∠DCF =30°,即可判断出△ABE ≌△DCF (ASA ),即可得出结论;由等腰三角形的性质得出∠PDC =75°,则可得出答案;证明△FPE ∽△CPB ,得出PF EF PC BC =,设PF =x ,PC =y ,则DC =y ,得出y =32(x +y ),则可求出答案;先判断出∠DPH =∠DPC ,进而判断出△DPH ∽△CPD ,即可得出结论.【详解】解:∵△BPC 是等边三角形,∴BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,在正方形ABCD 中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴△ABE≌△DCF(ASA),∴AE=DF,∴AE﹣EF=DF﹣EF,∴AF=DE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠ADP=∠ADC﹣∠PDC=90°﹣75°=15°.故②正确;∵∠FPE=∠PFE=60°,∴△FEP是等边三角形,∴△FPE∽△CPB,∴PF EF PC BC=,设PF=x,PC=y,则DC=y,∵∠FCD=30°,∴y=32(x+y),整理得:(1﹣32)y=32x,解得:2333xy=,则2333PFPC=,故③错误;∵PC=CD,∠DCF=30°,∴∠PDC=75°,∵∠BDC=45°,∴∠PDH =∠PCD =30°,∵∠DPH =∠DPC ,∴△DPH ∽△CPD ,∴PD PH PC PD=,∴PD 2=PH •CP ,∵PB =PC ,∴PD 2=PH •PB ;故④正确.故答案为:①②④.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.15.9a =,12b =,15c =【分析】根据比例的性质,可得a 、b 、c 的关系,根据a 、b 、c 的关系,可得一元一次方程,根据解方程,可得答案.【详解】解:由345a b c ==,得35a c =,45b c =,把35a c =,45b c =代入36a b c ++=,得343655c c c ++=,解得15c =,395a c ==,4125b c ==,所以三角形ABC 三边的长为:9a =,12b =,15c =.【点睛】本题考查了比例的性质,利用了比例的性质.利用等式的性质得出35a c =,45b c =是解题关键.16.()214y x =--+【分析】设顶点式()214y a x =-+,然后把(﹣2,﹣5)代入求出a 的值即可.【详解】解:设抛物线解析式为()214y a x =-+,把(﹣2,﹣5)代入得()22145a --+=-,解得:a =﹣1,所以抛物线解析式为:()214y x =--+.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数解析式时,要根据题目给定的条件,选择恰当的方法设出解析式,从而代入数值求解.17.(1)w =1600t (t >4);(2)每天要多做264004t t -(t >4)万个口罩才能完成任务【分析】(1)根据每天生产口罩w (万个)、生产时间t (天)(t >4)、生产总量之间的关系可直接列出函数表达式;(2)用提前4天交货的情况下每天生产的口罩数量减去计划每天生产的口罩数量即可得到结论.【详解】解:(1)由题意可得,函数表达式为:w =1600t(t >4);(2)由题意得:()()2160016004160016006400444t t t t t tt t ---==---(万个),答:每天要多做264004t t-(t >4)万个口罩才能完成任务.【点睛】本题主要考查了列反比例函数关系式,了解每天生产口罩w (万个)、生产时间t (天)(t >4)、生产总量之间的关系是解决问题的关键.18.1:16【分析】由已知得出BE:BC=1:4;证明△DOE∽△AOC,得到14DEAC=,由相似三角形的性质即可解决问题.【详解】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴1=4 DE BEAC BC=,∴S△DOE:S△AOC=1:16.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE:BC=1:4是解决问题的关键解题的关键.19.(1)A(﹣2,0),B(2,0);(2)y=x2﹣4【分析】(1)通过解方程mx²﹣4m=0可得A、B点的坐标;(2)先利用OA=2得到OC=4,所以|﹣4m|=4,然后求出满足条件的m的值,从而得到抛物线解析式.【详解】解:(1)当y=0时,mx2﹣4m=0,即x2﹣4=0,解得x1=2,x2=﹣2,∴A(﹣2,0),B(2,0);(2)当x=0时,y=mx2﹣4m=﹣4m,∴C(0,﹣4m),∵OA=2,∴OC=2OA=4,∴|﹣4m|=4,解得m=1或m=﹣1,∵m>0,∴m =1,∴抛物线解析式为y =x 2﹣4.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.(1)见解析;(2)见解析【分析】(1)由菱形的性质可得AB =AD ,∠BAC =∠DAC ,由“SAS”可证△ABP ≌△ADP ;(2)由全等三角形的性质可得PB =PD ,∠ADP =∠ABP ,通过证明△EPB ∽△BPF ,可得BP PE PF PB=,可得结论.【详解】证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,∠BAC =∠DAC ,在△ABP 和△ADP 中,AD AB BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP (SAS );(2)∵△ABP ≌△ADP ,∴PB =PD ,∠ADP =∠ABP ,∵AD //BC ,∴∠ADP =∠E ,∴∠E =∠ABP ,又∵∠FPB =∠EPB ,∴△EPB ∽△BPF ,∴BP PE PF PB=,∴PB 2=PE•PF ,∴PD 2=PE•PF .【点睛】本题考查了菱形的性质,三角形全等的判定与性质,三角形相似的判定与性质,解题的关键是熟练掌握三角形全等与相似的判定方法.21.(1)m>﹣1时,抛物线c与直线l没有公共点;(2)点B不在平移后的抛物线上,见解析【分析】(1)令x2+m=﹣2x﹣2,整理得x2+2x+m+2=0,根据判别式的意义得到△=22﹣4(m+2)<0,则抛物线c与直线l没有公共点;(2)先利用一次函数解析式确定A(0,﹣2),B(﹣1,0),再写顶点在A点的抛物线解析式为y=x2﹣2,然后根据二次函数图象上点的坐标特征进行判断.【详解】解:(1)根据题意得x2+m=﹣2x﹣2,整理得x2+2x+m+2=0,∵抛物线c与直线l没有公共点,∴△=22﹣4(m+2)<0,解得m>﹣1,∴m>﹣1时,抛物线c与直线l没有公共点;(2)当x=0时,y=﹣2x﹣2=﹣2,∴A(0,﹣2),当y=0时,﹣2x﹣2=0,解得x=﹣1,∴B(﹣1,0),∵抛物线c的顶点与点A重合,∴平移后的抛物线解析式为y=x2﹣2,当x=﹣1时,y=x2﹣2=﹣1,∴点B不在平移后的抛物线上.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程,把抛物线与一次函数的交点问题转化为一元二次方程根的问题.也考查了二次函数的几何变换.22.(1)k=1;(2)M(0,3 2)【分析】(1)A(1,3),则AB=3,OB=1,而AB=3BD,故BD=1,则D(1,1),将D坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(﹣1,0),连接AE交y轴于点M,则点M为所求点,即可求解.【详解】解:(1)∵A(1,3),AB⊥x轴,∴AB=3,OB=1,∵AB=3BD,∴BD=1,∴D(1,1),将D坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(﹣1,0),连接AE交y轴于点M,则点M为所求点,理由:d=MA+MB=MA+ME=AE为最小,设直线AE的表达式为y=mx+b,则3m bm b=+⎧⎨=-+⎩,解得3232mb⎧=⎪⎪⎨⎪=⎪⎩,故AE的表达式为y=32x+32,当x=0时,y=3 2,故点M的坐标为(0,3 2).【点睛】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、轴对称的性质等知识,本题考查知识点较多,综合性较强,难度适中.23.(1)见解析;(2)见解析;(3)不成立【分析】(1)根据折叠的性质得到∠CNM=∠PNM,CN=PN,得到PN=BN,根据等腰直角三角形的性质、平行线的判定定理证明结论;(2)过点M作ME⊥AB于E,过点N作NF⊥AB于F,证明△MEP∽△PFN,根据相似三角形的性质得到MPPN=MEPF=EPFN,根据等腰直角三角形的性质得到ME=AE,PN=BF,根据比例的性质计算,证明结论;(3)仿照(2)的证明方法可以判断(2)中的等式不成立.【详解】解:(1)∵∠C=90°,AC=BC,∴∠B=∠A=45°,∵点N为BC中点,∴CN=BN,由折叠的性质可知,∠CNM=∠PNM,CN=PN,∴PN=BN,∴∠NPB=∠B=45°,∴∠BNP=90°,∴∠CNM=45°,∴∠CNM=∠B,∴MN∥AB;(2)证明:如图2,过点M作ME⊥AB于E,过点N作NF⊥AB于F,由折叠的性质可知,MP=MC,NP=NC,∠MPN=∠C=90°,∴∠MPE+∠NPF=90°,∵∠PNF+∠NPF=90°,∴∠MPE=∠PNF,∵∠MEP=∠PFN=90°,∠MPE=∠PNF,∴△MEP∽△PFN,∴MPPN=MEPF=EPFN,∵ME⊥AB,NF⊥AB,∠B=∠A=45°,∴ME=AE,PN=BF,∴MPPN=MEPF=EPFN=ME PEPF FN++=AE PEPF FB++=APBP,∴MPPN=APBP;(3)解:不成立,理由如下:过点M作MG⊥AB于G,过点N作NH⊥AB于H,∵∠C=90°,AC≠BC,不妨设AC<BC,则∠A<45°,∠B>45°,∴MG<AG,NH>BH,由(2)的证明方法可知:MPPN≠APBP.【点睛】本题考查的是相似三角形的判定和性质、翻转变换的性质、比例的性质,掌握相似三角形的判定定理和性质定理是解题的关键.。
九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。
人教版九年级上册数学第三次月考试卷一、单选题1.下列图形是中心对称图形的是()A.B.C.D.2.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.无法确定3.如果-1是方程2x²-x+m=0的一个根,则m值()A.-1B.1C.3D.-34.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°5.在一个不透明的口袋中装有5个白球,若干个黑球,它们除颜色外其它完全相同,已知摸到白球概率为0.2,则袋子中黑球有多少个?()A.15B.10C.5D.206.将抛物线y=(x-1)²+2先向右平移3个单位,再向下平移5个单位得到的抛物线解析式是()A.y=(x-4)²+7B.y=(x-4)²-3C.y=(x+2)²+7D.y=(x+2)²-37.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6B.125.6(1﹣x)2=50.7C.50.7(1+2x)=125.6D.50.7(1+x2)=125.68.如图,AB是OO的直径,弦CD⊥AB,垂足为P,若CD=8,PB=2,则⊙O直径()A.10B.8C.5D.39.已知二次函数y=ax²+bx+c(a≠0)图象的一部分如图所示,给出以下结论:①abc<0;②当x=-1时,函数有最大值;③方程ax²+bx+c=0的解是x1=1,x2=-3;④4a+2b+c>0,⑤2a-b=0,其中结论正确的个数是()A.1B.2C.3D.410.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD 运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题11.一个盒子内装有大小、形状相同的6个球,其中红球3个、绿球1个、白球2个,任意摸出一个球,则摸到白球的概率是______12.已知圆锥的底面直径为4cm ,母线长为6cm ,则此圆锥的侧面积为____.13.若关于x 的一元二次方程kx²-x-1=0有两个实数根,则k 的取值范围______14.在Rt ABC 中,∠C=90°,BC=3,AC=4,则ABC 的外接圆半径是______15.如图,将△ABC 的绕点A 顺时针旋转得到△AED ,点D 正好落在BC 边上.已知∠C=80°,则∠EAB=____________°.16.如图,正六边形ABCDEF 内接于圆O ,边长AB=2,则正六边形的面积是______17.如图,点C 在以O 为圆心的半圆内一点,直径AB =4,∠BCO=90°,∠OBC=30°,将△BOC 绕圆心逆时针旋转到使点C 的对应点C′在半径OA 上,则边BC 扫过区域(图中阴影部分)面积为______(结果保留π)三、解答题18.解方程:(1)x 2+2x =2(2)4(3x ﹣2)(x +1)=3x +319.某幢建筑物从10米高的窗户A 用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M 离墙1米,离地面403米.问:(1)求抛物线的解析式;(2)求水流落地点B 离墙的距离20.已知:在ABC 中,AB AC =.(1)求作:ABC 的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若ABC 的外接圆的圆心O 到BC 边的距离为4,6BC =,则O S = .21.为落实“垃圾分类”,环卫部门要求垃圾要按A 、B 、C 三类分别装袋投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾,甲、乙各投放了一袋垃圾.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求甲乙投放的垃圾恰好是同类垃圾的概率(要求画出树状图)22.已知关于x 的一元二次方程x²-(2k+1)x+k 2+k=0(1)求证:无论k 为任何实数,方程总有两个不相等的实数根;(2)若两个实数根x 1,x 2满足()()121130x x ++=,求k 值.23.如图,已知正方形ABCD 的边长为3,E 、F 分别是边BC 、CD 上的点,∠EAF=45°(1)求证:BE+DF=EF(2)当BE=1时,求EF 的长24.如图:以ABC 的边AB 为直径作⊙O ,点C 在OO 上,BD 是⊙O 的弦,∠A=∠CBD ,过点C 作CF ⊥AB 于点交于点G 过作C ∥BD 交AB 的延长线于点E(1)求证:CG=BG(2)∠BAD=30°,CG=4,求BE 的长25.如图,已知抛物线25y ax bx =++经过A(5-,0),B(4-,3-)两点,与x 轴的另一个交点为C ,顶点为D ,连接CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B ,C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求PBC 的面积的最大值及点P 的坐标;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案1.A2.B3.D4.D5.D6.B7.A8.A9.C10.B11.1312.12π13.k≥14-且k≠0.14.52.15.20°.16.17.π18.(1)x 1=﹣1x 2=﹣1+(2)x 1=﹣1,x 2=1112.19.(1)210201033y x x =-++;(2)3米.20.(1)见解析;(2)25π21.(1)13;(2)13,作图见解析22.(1)见详解;(2)17k =-,24k =;23.(1)证明见解析;(2)52.24.(1)见解析;(2)25.(1)265y x x =++;(2)①278,P(52-,154-),②存在,P(32-,74-)或(0,5)。
九年级数学(下册)第三次月考试题一、选择题 (本大题共10小题,每小题3分,共30分)1.9的算术平方根是 A .3B .3-C .3±D .9-2.甘肃省位于黄河上游,简称甘或陇,因甘州(今张掖)与肃州(今酒泉)而得名,省会为兰州。
据省统计局最新发布:2009年末全省常住人口为2635.46万人.将数字2635.46用科学计数法(保留三个有效数字)表示为( )A.226.410⨯B.31064.2⨯C.32.6310⨯D.226.310⨯ 3、下列运算正确的是( )A .x x x 232=÷B .532)(x x =C .3x ·124x x =D . 222532x x x =+4.对于数据:85,83,85,81,86.下列说法中正确的是( ) A .这组数据的中位数是84 B .这组数据的方差是3.2 C .这组数据的平均数是85D .这组数据的众数是865.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( ) A .121 B .61 C .41 D .316. 已知,如图,AB 是⊙O 的直径,点D,C 在⊙O 上,联结AD 、BD 、DC 、AC ,如果∠BAD=25°,那么∠C 的度数是( ) A. 75o B. 65o C. 60o D. 50o 7. 如图折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 已知AB =38, ∠B =30°, 则DE 的长是( ) A. 6 B. 4 C. 34 D. 238.近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( ) A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+= 9.如图,反比例函数xk y =与⊙O 的一个交点为)1,2(,则图中阴影部分的面积是( )A.π43B.πC.π45D.π2310.已知二次函数y =ax 2+bx+c 的图象如图所示,那么下列判断中不正确的是( )A. abc > 0B. b 2-4ac > 0C.2a+b> 0D.4a-2b+c<0(第10题图)二、填空题 (本大题共8小题,每小题3分,共24分)把答案填在题中横线上。
2011秋第三次月考九年级数学试题
时间:120分钟 满分:120分 命题人:xiaoping
一.填空题(每.空.3.分.
共27分) 1.若y=x-3 +3-x +4,则x+y= .计算=-28______ 2.一元二次方程2x 2=3x 的根是 .
3. 点A (x,y )关于x 轴的对称点B 的坐标为(-1,3),那么点A 关于原点对称的点的坐标是___________
4. 如图1,量角器外沿上有A 、B
40°,则∠1的度数为 . 5. 若圆锥的母线长为3cm ,底面半径为2cm ,
则圆锥的侧面积为
6.
抛掷一枚正方体骰子两次,第一次上面的数字记为
a,第二次上面的数字记为b ,则两次结果使得关于x 的方程x 2+bx+a=0有实根的概率是_________ 7.在△ABC 中,已知∠C=90°,BC=3,AC=4, 则它的内切圆半径是 .
8. 如图,半径为2的⊙P 的圆心在直线12-=x y 上运动,当⊙P 与y 轴相切时圆心P 的坐标为 ______
二.选择题(每小题3分共24分)
9. 当a <0时,化简a a
1
- 的结果是( )
A.a
B.a - C .- a D.- 10. 已知抛一枚普通的硬币,掷得正面的概率等于1
2 ,它表示 ( )
A . 连续抛掷一枚普通的硬币两次,则一次是正面,另一次是反面。
B . 抛掷一枚普通的硬币两次,就有一次是正面。
C . 如果抛掷很多次的话,那么平均有两次就有一次是正面。
D . 如果抛掷一枚普通的硬币49次,恰有25次正面,24次反面,则第50次抛掷的结果将
肯定为反面。
11.下列图案都是由字母“m ”经过变形、组合而成的.其中不是中心对称图形的是( )
图1
12. 已知b 2-4ac >0,下列方程①ax 2+bx+c=0;② x 2+bx+ac=0;③ cx 2
+bx+a=0.其中一定有两个不相等的实数根的方程有( )
A.0个.
B. 1个.
C. 2个.
D. 3个.
13. 如图,一块边长为8 cm 的正三角形木板ABC ,在水平桌面上绕点B 按顺时针方向旋转
至A 1BC 1的位置时,顶点C 从开始到结束所经过的路径长为(点A 、B 、C 1在同一直线上) ( )
A.16π B π38 C.
π364 D.π3
16 14. 2009年,甲型H1N1病毒蔓延全球,抗病毒的药物需求量大增。
某制药厂连续两个月加大投入,提高生产量,其中九月份生产35万箱,十一月份生产51万箱。
设九月份到十一月份平均每月增长的百分率为X ,根据以上信息可以列出的正确的方程为:( )
A .51(1-X )2
=35, B.35(1+X)=51. C.35(1+X)=51(1-X). D.35(1+X)2
=51.
15 .2009年7月22日上午,长江流域的居民有幸目睹了罕见的日全食天文奇观,下面是天文爱好者拍摄的三个瞬间,其中白色的圆形是太阳,逐渐覆盖太阳的黑色圆形是月亮。
如果把太阳和月亮的影像视作同一平面中的两个圆,则关于这两个圆的圆心距与半径之间的关系的说法,正确的是( )
A.三张图片中圆心距都大于两圆的半径之和.
B.第一幅图片中圆心距等于两圆的半径之和.
C.第三幅图片中圆心距小于两圆的半径之差.
D.三张图片中圆心距都大于两圆的半径之差且小于两圆的半径之和.
16. 在⊙O 中,弦CD 垂直于直径AB,E 为劣弧上一动点(不与点B ,C 重合),DE 交弦BC 于点N ,AE 交半径OC 于点M 。
在E 点运动过程中,∠AMC 与∠BNE 的大小关系为( ) A. ∠AMC>∠BNE B. ∠AMC=∠BNE
C. ∠AMC <∠BNE
D. 随着E 点的运动以上三种关系都 有可能。
三.解答题(共69分) 17(本题8分).已知)57(21),57(21-=+=y x ,求x
y
y x +的值
18.(本题9分) 已知关于x 的一元二次方程2
20x x a --=. (1)如果此方程有两个不相等的实数根,求a 的取值范围;(4分) (2)如果此方程的两个实数根为12x x ,,且满足12112
3
x x +=-,求a 的值.(5分)
19(本题10分).已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,
90EDF ∠=°,
ED F ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证1
2
DEF CEF ABC S S S +=
△△△. 当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.
20(本题9分). 星期六的晚上小伟帮助妈妈做家务,清洗三个只有颜色不同的有盖茶杯,洗完后突然停电了,小伟只好把茶杯和杯盖随机地搭配在一起,求全部搭配正确的概率。
21.(本题9分)已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C . (1)如图①,若2AB =,30P ∠=︒,求PC 的长;(4分) (2)如图②,若D 为AP 的中点,求证:直线CD 是⊙O 的切线.(5分)
A E
C
F B
D 图1 图3
A
D
F
E
C
B
A
D
B
C
E 图2
F
A
图①
A
D
图②
22.(本题10分) 某广告公司制作广告的收费标准是:以面积为单位,在不超过规定的面积A (m 2),每张广告收费1000元,如果超过A (m 2),则除了要交这1000元的基本广告费以外,超过部分还要按每平方米50A 元交费,下表是该公司对两家用户广告面积和收费
红星公司要制作一张大型公益广告,棋材料形状是矩形,它的四周的空白,如图所示,如果上下各空0.25m ,左右各空0.5m ,那么空白部分的面积为6 m 2 。
已知矩形材料的长比宽多1m,并且空白部分不收广告费,中间的矩形部分才是广告面积, (1)求A 的值 (5分)
(2)如果这张广告的广告费为2600元,那么四周的空白部分的面积是多少?(5分)
23.(本题14分) 如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B.
(1) 当AP=32时,求直线AB 的解析式。
(5分)
(2) 点P 在运动时,线段AB 的长度也在发生变化,请写出线段AB 长度的最小值,并
说明理由。
(4分)
(3) 在⊙O 上是否存在一点Q ,使得以Q ﹑O ﹑A ﹑P 为顶点的四边形是平行四边形?若
存在,请求出Q
2011秋第三次月考九年级数学试题参考答案
一,填空题 1,7;2 2,2
3
21,0==x x ; 3,(1,3) 4,300 5,2
6cm π 6,
36
19
, 7,1
8,(
2,2
3
) 二,选择题:9D 10C 11B 12B 13D 14D 15D 16B 三,17,12 18,(1)a>-1 (2)a=3
19,图2成立。
提示:连接CD 证△EC D ≌△FBD ;图3不成立,关系式为:
ABC CEF DEF S S S ∆∆∆=
-2
1
20,P (全部正确)=
6
1 21,(1)PC=3 (2)略 22,(1)由表知3≤A<6,且有1000+50A (6-A )=1400 解得A 1=2(舍去) A 2=4
(2)设矩形材料的宽为xm,则长为(x+1)m 依题意有:
)225.0(5.02)1(25.026⨯-⨯⨯++⨯⨯=x x 解得x=4 故矩形长5m 宽4m,又广告费为
2600元,大于1000元,设广告面积为S m 2 则1000+50×4×(S-4)=2600解得S=12 故空白面积为4×5-12=8 m 2
23,(1)33
4
33+-
=x y (2)AB 的最小值为4, 取AB 的中点C ,则AB=2OC ,当OC=OP 时,OC 最短,
此时AB=4
(3)设存在符合条件的点Q
若Q 在第四象限,则Q (2,2-) 若Q 在第二象限则Q (2,2-)。