2009年考研解题思路班微积分+线性代数+概率讲义1
- 格式:pdf
- 大小:333.75 KB
- 文档页数:26
汪宏喜:辅导地位:历届考生公认的“安徽省数学考研辅导第一人”,安徽农业大学应用数学系教授、硕士生导师,现任安徽农业大学应用数学系主任。
授课特点:功底扎实,讲解透彻,条理清晰,重点突出,循循善诱,培养能力。
名师风采:曾被评为安徽省优秀中青年骨干教师;获校级教学成果奖五项,省教学成果奖三项;曾在国内外刊物上发表论文20余篇,单独完成以及合作完成数学教材6部。
个人简介:1964年2月出生,1988年8月毕业于福州大学数学系基础数学专业,获理学硕士学位。
应用数学系主任,信息与计算科学专业建设负责人。
2003年11月晋升为教授,2006年遴选为硕士生导师。
研究方向为应用微分方程,近年来主要从事算法设计与分析方面的应用研究。
主要从事数学教学及数学应用方面的研究工作,为本科各专业开设过《高等数学》、《线性代数》、《概率论与数理统计》、《计算方法》,《常微分方程》等主要数学课程,并为工科研究生开设《现代控制理论》、《MATLAB语言与控制系统仿真》、《计算方法与MATLAB语言》以及《算法设计与分析》基础与专业课程,教学效果良好,多次被评为优秀教师。
1995年获得安徽农业大学优秀教师称号;1998年参加了原国家教委“面向二十一世纪教学内容和课程体系改革计划”项目的研究;参与研究的“结合科研、改进教法,充实更新农科数学教学内容的研究与实践”项目,1997年获校教学成果二等奖;参与数学教研室校级重点课程建设。
98年被列为安徽省优秀中青年骨干教师培养对象。
1996年参与编写全国高等农林院校《高等数学》专科教材;1999年参与校研究生课程体系建设;2001年作为第二主持人参与省级重点课程建设;2001主持一项校级教学研究项目;2001获校教学成果一等奖,安徽省教学成果三等奖;2000年与2001年连续两次获得校青年教师教学比赛三等奖(相当校级教学成果三等奖);参与编写面向二十一世纪农林水院校通用教材《高等数学(Ⅱ)》(副主编)、《概率论与数理统计》(参编)各一本;2002年参与编写面向二十一世纪《高等数学(Ⅱ)》教材(副主编);2004年参加全国高等学校教学研究中心课题“21世纪高等学校农林/医药类专业数理化基础课程的创新与实践”的子课题—“高等数学教学内容和课程体系结构的改革(教学基本要求、论文、立体化教材建设)(项目号:BIA010092—B03)(主持人);2006年参与编写高等农林院校“十一五”规划教材《高等数学》(工科)(副主编),安徽省高等学校2007年省级教学研究项目“农林类院校经济管理类数学教学内容体系研究”(主持人);2007年参与编写高等农林院校“十一五”规划教材《概率论》(副主编); 2004--2007年度被评为安徽农业大学优秀教师;2007年获得校第六届教师教学竞赛教授组个人二等奖,理学院团体二等奖的主要成员。
万学海文名师李永乐谈09考研数学线性代数复习完美攻略嘉宾:李永乐广受学生信赖的“线代王”,万学海文考研数学辅导“黄金团队”领头人,全国硕士研究生入学考试北京地区数学阅卷组组长,清华大学应用数学系教授,北京高教学会数学研究会副理事长。
主持人:各位同学大家好,很高兴今晚又与大家相约在万学海文辉煌讲堂。
针对09年的考研公共课规划,我们在前几期的节目中邀请到了考研英语辅导界的众多名师为大家做了英语复习的规划。
今天开始我们非常荣幸地邀请到全国硕士研究生入学考试北京地区数学阅卷组组长,清华大学应用数学系教授,北京高教学会数学研究会副理事长李永乐老师,为大家讲解考研数学线性代数的复习规划。
李永乐:各位同学大家好,考研是一个长期准备的过程,从每年考生的复习情况看,从11月起,就该进入全面的准备阶段。
今天在万学海文的辉煌讲堂我给大家讲讲线性代数的复习。
要想从整体上对自己的数学复习有一个清晰的思路和复习规划,首先同学们需要了解考研数学命题规律。
考研数学试题的题量一般在20-22道之间(一般6道填空题,6道选择题,10道大题),试题量有所控制,这样才能保证考生基本能答完试题并有时间检查。
数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其高数6个,线性代数和概率论各2个。
首先填空题命题原则是考最基本的运算,它的难易度一般要求都是容易和中等偏下的。
通过填空题的考察要了解同学快捷准确的能力,这就要求平时复习中一定要注意准确,会做的题拿不到分是最可惜的。
有的填空题会有一些小窍门,要学会总结和积累,做到快捷准确答题。
其次选择题命题原则考两个方面,一是对数学概念的理解,二是对数学方法的掌握。
选择题的难易度是中下等。
前两部分不会有难题,所以应该有个比较高的得分率,一定要好好复习。
最后,简答题中数一15到19是微积分,20、21是线性代数,22、23是概率论。
数二15到21是微积分,22、23是线性代数。
在这9道题里应该有1到2个难题,而且出在微积分部分,因为微积分部分题多分多。
2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(1)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-等价无穷小,则()(A )11,6a b ==- (B )11,6a b ==(C )11,6a b =-=- (D )11,6a b =-=【解析与点评】考点:无穷小量比阶的概念与极限运算法则。
参见水木艾迪考研数学春季基础班教材《考研数学通用辅导讲义》(秦华大学出版社)例 4.67,强化班教材《大学数学强化 299》16、17 等例题。
【答案】A22220000sin sin 1cos sin lim lim lim lim ln(1)()36x x x x x ax x ax a x a axx bx x bx bx bx→→→→---===---- 230sin lim 166.x a ax a b b axa →==-=- 36ab =-意味选项B ,C 错误。
再由21cos lim 3x a axbx →-=-存在,故有1cos 0(0)a ax x -→→,故a=1,D 错误,所以选A 。
(2)如图,正方形{(,)|||1,||1}x y x y ≤≤被其对角线划分为四个区域,(1,2,3,4),cos KK K D D k I y xdxdy ==⎰⎰,则14max{}K K I ≤≤=()【解析与点评】本题利用二重积分区域的对称性及被积函数的奇偶性。
对称性与轮换对称性在几分钟的应用是水木艾迪考研数学重点打造的技巧之一。
参见水木艾迪考研数学春季班教材《考研数学通用辅导讲义----微积分》例 12.3、12.14、12.16、12.17,强化班教材《大学数学同步强化 299》117 题,以及《考研数学三十六技》例 18-4。
2009年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=.(2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=( )()A 1I .()B 2I . ()C 3I .()DI (3)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为( )()A .()B .x()C .()D .(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则( )()A 当1n n b ∞=∑收敛时,1n n n a b ∞=∑收敛.()B 当1n n b ∞=∑发散时,1n n n a b ∞=∑发散.()C 当1nn b∞=∑收敛时,221n nn a b∞=∑收敛.()D 当1nn b ∞=∑发散时,221n nn a b∞=∑发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基 122331,,αααααα+++的过渡矩阵为( )()A 101220033⎛⎫⎪⎪ ⎪⎝⎭. ()B 120023103⎛⎫⎪⎪ ⎪⎝⎭.()C 111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭.()D 111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. (6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A **32O B A O ⎛⎫ ⎪⎝⎭.()B **23OB A O ⎛⎫⎪⎝⎭. ()C **32O A BO ⎛⎫ ⎪⎝⎭.()D **23O A BO ⎛⎫⎪⎝⎭.(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX =( )()A 0.()B 0.3. ()C 0.7.()D 1.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为( )()A 0.()B 1. ()C 2.()D 3.二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ 。
2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当时,与等价无穷小,则(A) (B)(C)(D) 【考点分析】:等价无穷小,洛必达法则,泰勒公式 【求解过程】:⏹ 方法一:利用洛必达法则和等价无穷小0x →时,ln(1)~bx bx --2320000()sin sin 1cos limlim lim lim 1()ln(1)3x x x x f x x ax x ax a axJ g x x bx bx bx→→→→---=====--- 1a ⇒=否则,J =∞⇒2220011cos 12lim lim 1336x x x x J bx bx b→→-====---16b ⇒=-。
选A ⏹ 方法二:利用泰勒公式或者三角函数的幂级数展开式 由三角函数的幂级数展开式:357111sin 3!5!7x x x x x =-+-+ 所以,3331sin ()(0)6ax ax a x o x x =-+→ 由泰勒公式:3331sin ()(0)6ax ax a x o x x =-+→332301(1)()sin 6lim 1ln(1)x a x x o x x ax J x bx bx →-++-⇒===-- 1a ⇒=,否则J =∞⇒116J b ==-16b ⇒=-。
选A(2)如图,正方形{(,)|1,1}x y x y ≤≤被其对角线划分为四个区域(1,2,3,4)k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)(B)(C)(D)0x →()sin f x x ax =-()()2ln 1g x x bx =-11,6a b ==-11,6a b ==11,6a b =-=-11,6a b =-=1I 2I 3I 4I【考点分析】:利用对称性化简二重积分,二重积分的估值 【求解过程】:1234111222331444(,)cos ,cos ,(,)0,0cos ,(,)0,cos ,(,)0,0cos ,(,)0,A D D D D f x y y x I y xdxdy D f x y I I y xdxdy D x f x y y I I y xdxdy D f x y I I y xdxdy D x f x y y I ==≥≥===≤≤==⎰⎰⎰⎰⎰⎰⎰⎰记在上则,关于轴对称,且关于为奇函数,则在上则,关于轴对称,且关于为奇函数,则所以选择。
考研数学二真题20092009年数学二真题回顾2009年的考研数学二真题是考研数学历年真题中的一道经典题目。
本文将回顾这道题目所涉及的知识点和解题技巧,并为考生提供一些解题思路和指导。
一、题目回顾与分析题目要求:已知函数f(x)在区间[0,1]上连续,且f(x)在(0,1)内可导,函数满足方程f(x) - f(x^2) = ln(1 + x) - ln(1 - x),求f(x)的表达式。
题目分析:根据题目要求,我们需要找到函数f(x)的表达式。
首先,根据方程f(x) - f(x^2) = ln(1 + x) - ln(1 - x),我们可以发现方程右侧是两个对数函数的差,因此我们可以考虑对数函数的性质进行分析。
另外,我们还可以考虑使用微分学的知识来解决这道题目。
二、解题思路与方法1. 利用对数函数性质解题:我们可以将方程f(x) - f(x^2) = ln(1 + x) - ln(1 - x)两边同时取指数,得到e^(f(x) - f(x^2)) = (1 + x) / (1 - x)。
进一步化简,我们可以得到f(x) - f(x^2) = ln((1 + x) / (1 - x))。
根据对数函数的性质,我们知道对数函数的真数大于1时,对数函数的值大于0,真数小于1时,对数函数的值小于0。
因此,我们可以得到一个重要的性质:当x在区间(0,1)内变化时,x^2的取值范围是(0,1),显然,f(x)和f(x^2)的差值也应在区间(0,1)内变化。
2. 使用微分学解题:考虑到函数f(x)在(0,1)内可导,我们可以通过微分学的知识来解决这道题目。
我们可以对方程f(x) - f(x^2) = ln(1 + x) - ln(1 - x)两边同时求导,得到f'(x) - 2x * f'(x^2) = 1 / (1 + x) + 1 / (1 - x)。
我们可以观察到这是一个用到了复合函数的求导法则的题目,即f(g(x))的导数等于f'(g(x)) * g'(x)。
2009年全国硕士研究生入学统一考试年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当0x ®时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==- (B)11,6a b ==(C)11,6a b =-=- (D)11,6a b =-=(2)如图,正方形(){},1,1x y x y ££被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =òò,则{}14max k k I ££=(A)1I(B)2I(C)3I (D)4I(3)设函数()y f x =在区间[]1,3-上的图形为上的图形为则函数()()0xF x f t dt =ò的图形为的图形为1 ()f x-20 2 3x-1O(A)(B)(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n na ®¥=,则()f x23x1-2-11 ()f x0 23x1-1 1 ()f x0 2 3x1 -2-1 1()f x23x1-2 -11(A)当1n n b ¥=å收敛时,1n n n a b ¥=å收敛.(B)当1n n b ¥=å发散时,1n n n a b ¥=å发散.(C)当1n n b ¥=å收敛时,221n nn a b ¥=å收敛. (D)当1n n b ¥=å发散时,221n n n a b ¥=å发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基12233,,+++αααααα的过渡矩阵为的过渡矩阵为 (A)101220033æöç÷ç÷ç÷èø (B)120023103æöç÷ç÷ç÷èø(C)111246111246111246æö-ç÷ç÷ç÷-ç÷ç÷ç÷-ç÷èø (D)111222111444111666æö-ç÷ç÷ç÷-ç÷ç÷ç÷-ç÷èø(6)设,A B均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3==A B ,则分块矩阵O A B O æöç÷èø的伴随矩阵为的伴随矩阵为(A)**32OB AO æöç÷èø (B)**23O B AO æöç÷èø(C)**32O A B O æöç÷èø (D)**23OA B O æöç÷èø(7)设随机变量X 的分布函数为()()10.30.72x F x x -æö=F +F ç÷èø,其中()x F 为标准正态分布函数,则EX =(A)0 (B)0.3 (C)0.7 (D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为点个数为(A)0 (B)1(C)2 (D)3二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2z x y ¶=¶¶. (10)若二阶常系数线性齐次微分方程0y ay by ¢¢¢++=的通解为()12e xy C C x =+,则非齐次方程y ay by x ¢¢¢++=满足条件()()02,00y y ¢==的解为y =. (11)已知曲线()2:02L y xx =££,则Lxds =ò. (12)设(){}222,,1x y z x y z W =++£,则2z dxdydz W=òòò. (13)若3维列向量,αβ满足2T =αβ,其中Tα为α的转置,则矩阵Tβα的非零特征值为. (14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k =.三、解答题(15-23小题,共94分请将解答写在答题纸指定的位置上解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分9分) 求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分9分) 设n a 为曲线n y x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ¥¥-====åå,求1S 与2S 的值.(17)(本题满分11分) 椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成.(1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积.(18)(本题满分11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b x Î,使得()()()()f b f a f b a x ¢-=-.(2)证明:若函数()f x 在0x =处连续,在()()0,0d d >内可导,且()0lim x f x A +®¢=,则()0f +¢存在,且()0f A +¢=.(19)(本题满分10分) 计算曲面积分()32222xdydz ydzdx zdxdy I x y z ++=å++òò,其中å是曲面222224x y z ++=的外侧.(20)(本题满分11分)设111111042--æöç÷=-ç÷ç÷--èøA ,1112-æöç÷=ç÷ç÷-èøξ(1)求满足21=A ξξ的2ξ.2231=A ξξ的所有向量2ξ,3ξ. (2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关.(21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x xx x =++-+-.(1)求二次型f 的矩阵的所有特征值;(2)若二次型f 的规范形为2212y y +,求a 的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1)求{}10p X Z ==.(2)求二维随机变量(),X Y 概率分布. (23)(本题满分11 分)设总体X 的概率密度为2,0()0,xxe x f x l l-ì>=íî其他,其中参数(0)l l >未知,1X ,2X ,…n X 是来自总体X 的简单随机样本.(1)求参数l的矩估计量.(2)求参数l的最大似然估计量.2009年考研数学试题答案与解析(数学一)一、选择题:1~8小题,每小题4分,共32分. (1)当0x ®时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则等价无穷小,则(A)11,6a b ==-. (B)11,6a b ==.(C)11,6a b =-=-.(D)11,6a b =-=. 【答案】【答案】A. 【解析】2()sin ,()ln(1)f x x ax g x x bx =-=-为等价无穷小,则为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx®®®®®---==-×---洛洛230sin lim 166x a ax a b b ax a®==-=-× 36a b \=- 故排除(B)、(C). 另外201cos lim3x a axbx®--存在,蕴含了1cos 0a ax -®()0x ®故 1.a =排除(D). 所以本题选(A ). (2)如图,正方形(){},1,1x y x y ££被其对角线划分为被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =òò,则{}14max kk I ££=(A)1I . (B)2I . (C)3I . (D)4I .【答案】【答案】A. 【解析】本题利用二重积分区域的对称性及被积函数的奇偶性.24,D D 两区域关于x 轴对称,而(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的奇函数,所以240I I ==;13,D D 两区域关于y 轴对称,而(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函数是关于x 的偶函数,所以{}1(,),012cos 0x y y x x I y xdxdy ³££=>òò; {}3(,),012cos 0x y y x x I y xdxdy £-££=<òò.所以正确答案为(A).-1-111xy 1D 2D3D4D(3)设函数()y f x =在区间[]1,3-上的图形为上的图形为则函数()()0x F x f t dt =ò的图形为的图形为(A)(B)(C)(D)【答案】D.【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征:,从而可得出几个方面的特征:①[]0,1x Î时,()0F x £,且单调递减.②[]1,2x Î时,()F x 单调递增. ③[]2,3x Î时,()F x 为常函数.()f x O23x1-2-11()f x O 23x1-1 1 ()f x O 2 3x1-2-11()f x O23x1-2 -11 1()f x -2O 2 3x-11④[]1,0x Î-时,()0F x £为线性函数,单调递增.⑤由于F(x)为连续函数为连续函数结合这些特点,可见正确选项为(D ).(4)设有两个数列{}{},n n a b ,若lim 0n n a ®¥=,则,则(A )当1nn b¥=å收敛时,1n nn a b¥=å收敛. (B )当1nn b¥=å发散时,1n nn a b¥=å发散.(C)当1n n b ¥=å收敛时,221n nn a b ¥=å收敛. (D)当1n n b ¥=å发散时,221n nn a b ¥=å发散.【答案】C. 【解析】方法一:【解析】方法一:举反例:(A )取1(1)n n na b n==-(B )取1n n a b n ==(D )取1n na b n ==故答案为(C ).方法二:因为lim 0,n n a ®¥=则由定义可知1,N $使得1n N >时,有1na <又因为1n n b ¥=å收敛,可得lim 0,n n b ®¥=则由定义可知2,N $使得2n N >时,有1n b < 从而,当12n N N >+时,有22n nn a b b <,则由正项级数的比较判别法可知221n nn a b¥=å收敛.(5)设123,,a a a 是3维向量空间3R 的一组基,则由基12311,,23a a a 到基到基122331,,a a a a a a +++的过渡矩阵为的过渡矩阵为(A)101220033æöç÷ç÷ç÷èø. (B)120023103æöç÷ç÷ç÷èø.(C)111246111246111246æö-ç÷ç÷ç÷-ç÷ç÷ç÷-ç÷èø. (D)111222111444111666æö-ç÷ç÷ç÷-ç÷ç÷ç÷-ç÷èø. 【答案】A.【解析】因为()()1212,,,,,,n nA h h h a a a =,则A 称为基12,,,n a a a 到12,,,nh h h 的过渡矩阵. 则由基12311,,23a a a 到122331,,a a a a a a +++的过渡矩阵M 满足满足()12233112311,,,,23M a a a a a a a a a æö+++=ç÷èø12310111,,22023033a a a æöæöç÷=ç÷ç÷èøç÷èø所以此题选(A).(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵O A B O æöç÷èø的伴随矩阵为的伴随矩阵为 ()A **32O B A O æöç÷èø.()B **23OB A O æöç÷èø. ()C **32O A B O æöç÷èø.()D **23O A B O æöç÷èø. 【答案】B.【解析】根据CC C E *=,若111,C C C CC C *--*==分块矩阵O A B O æöç÷èø的行列式221236O AA B B O ´=-=´=(),即分块矩阵可逆,即分块矩阵可逆11116601O B BO A O A O A O B B O B B O A O A O A **---*æöç÷æöæöæöç÷===ç÷ç÷ç÷ç÷èøèøèøç÷èø1236132O B OB A O A O ****æöç÷æö==ç÷ç÷ç÷èøç÷èø故答案为(B ).(7)设随机变量X 的分布函数为()()10.30.72x F x x -æö=F +F ç÷èø,其中()x F 为标准正态分布函数,则EX =(A)0. (B)0.3. (C)0.7. (D)1. 【答案】C.【解析】因为()()10.30.72x F x x -æö=F +F ç÷èø, 所以()()0.710.322x F x x -æö¢¢¢=F +F ç÷èø, 所以()()10.30.352x EXxF x dxx x dx +¥+¥-¥-¥é-ùæö¢¢¢==F +F ç÷êúèøëûòò()10.30.352xx x dx x dx +¥+¥-¥-¥-æö¢¢=F +F ç÷èøòò而()0x x dx +¥-¥¢F =ò,()()11221222x x x dx u u u du +¥+¥-¥-¥--æö¢¢F =+F =ç÷èøòò 所以00.3520.7EX =+´=.(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为的间断点个数为 (A)0. (B)1. (C)2. (D)3.【答案】【答案】B.【解析】【解析】()()(0)(0)(1)(1)1[(0)(1)]21[(00)(1)]2Z F z P XY z P XY z Y P Y P XY z Y P Y P XY z Y P XY z Y P X z Y P X z Y =£=£==+£===£=+£==×£=+£=,X Y 独立独立1()[(0)()]2Z F z P X z P X z \=×£+£(1)若0z <,则1()()2Z F z z =F(2)当0z ³,则1()(1())2Z F z z =+F0z \=为间断点,故选(B ).二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y ¶=¶¶. 【答案】"'"12222xf f xyf ++. 【解析】''12z f f yx ¶=+×¶,2"'""'"1222212222z xf f yx f xf f xyf x y ¶=++×=++¶¶. (10)若二阶常系数线性齐次微分方程0y ay by ¢¢¢++=的通解为()12x y C C x e =+,则非齐次方程y ay by x ¢¢¢++=满足条件()()02,00y y ¢==的解为y = . 【答案】2xy xe x =-++.【解析】由12()x y c c x e =+,得121l l ==,故2,1a b =-= 微分方程为''2'y y y x -+=设特解*y Ax B =+代入,',1y A A ==220,2A Ax B xB B -++=-+==\特解特解 *2y x =+\12()2x y c c x e x =+++ 把 (0)2y = ,'(0)0y =代入,得120,1c c ==- \ 所求2xy xe x =-++ (11)已知曲线()2:02L y x x =££,则Lxds =ò. 【答案】136【解析】由题意可知,2,,02x x y x x ==££,则,则()()22214ds x y dx x dx ¢¢=+=+,所以()22222011414148Lxds x x dx x d x =+=++òòò()2320121314836x =×+=(12)设(){}222,,1x y z x y z W =++£,则2z dxdydz W=òòò. 【答案】415p .【解析】【解析】 方法一:21222200sin cos z dxdydz d d d ppqj r jr j r =òòòòòò()2124000cos cos d d d ppq j j r r =-òòò3cos 1423515d pjp j p =×-×=ò方法二:由轮换对称性可知2z dxdydz W=òòò2x dxdydz W=òòò2y dxdydz Wòòò所以,()212222400011sin 33z dxdydz x y z dxdydz d d r dr p p j q j W W=++=òòòòòòòòò 14002214sin sin 33515d r dr d pp p p pj j j j =××=òòò (13)若3维列向量,a b 满足2Ta b =,其中T a 为a 的转置,则矩阵Tba 的非零特征值为.【答案】2.【解析】2Ta b =()2TTba b b a b b \==×,Tba \的非零特征值为2. (14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = . 【答案】1-. 【解析】2X kS -+为2np 的无偏估计的无偏估计22()E X kX np -\+=2(1)1(1)(1)11np knp p npk p p k p p k \+-=\+-=\-=-\=-三、解答题:15~23小题,共94分.(15)(本题满分9分)分) 求二元函数()22(,)2ln f x y x y y y =++的极值.【解析】【解析】2(,)2(2)0x f x y x y ¢=+=2(,)2ln 10y f x y x y y ¢=++=故10,x y e= =2212(2),2,4xx yy xyf y f x f xy y¢¢¢¢¢¢=+ =+=则12(0,)12(2)xxef e¢¢=+,1(0,)0xy ef ¢¢=,1(0,)yyef e ¢¢=. 0xx f ¢¢>而2()0xy xx yy f f f ¢¢¢¢¢¢-<\二元函数存在极小值11(0,)f e e=-.(16)(本题满分9分)分)设n a 为曲线n y x =与()11,2,.....n y x n +==所围成区域的面积,记所围成区域的面积,记122111,n n n n S a S a ¥¥-====åå,求1S 与2S 的值.【解析】由题意,ny x =与n+1y=x 在点0x =和1x =处相交,处相交,所以112111111a ()()1212nn n n n x xdx xxn n n n +++=-=-=-++++ò,从而1111111111S lim lim(-)lim()23122+22Nn nN N Nn n a a N N N ¥®¥®¥®¥=====-++=-=++åå 2211111111111111=)22+1232N 2N+123456n n n S a n n ¥¥-====--++-=-+-+åå()( 由2(1)1(1)2n n x x n-++-+ln(1+x)=x- 取1x =得22111ln(2)1()11ln 2234S S =--+=-Þ=-.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成.(Ⅰ)求1S 及2S 的方程的方程 (Ⅱ)求1S 与2S 之间的立体体积.【解析】(I )1S 的方程为222143x y z ++=,过点()4,0与22143x y +=的切线为122yx æö=±-ç÷èø, 所以2S 的方程为222122y z x æö+=-ç÷èø.(II )1S 与2S 之间的体积等于一个底面半径为32、高为3的锥体体积94p 与部分椭球体体积V 之差,其中22135(4)44V x dx p p =-=ò.故所求体积为9544p p p -=.(18)(本题满分11分)分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b x Î,使得()()()()f b f a f b a x ¢-=-(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0d d >内可导,且()0lim x f x A +®¢=,则()0f+¢存在,且()0f A +¢=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aj -=----,易验证()x j 满足:满足:()()a b j j =;()x j 在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aj -=--.根据罗尔定理,可得在(),a b 内至少有一点x ,使'()0j x =,即,即'()f x '()()0,()()()()f b f a f b f a f b a b ax --=\-=-- (Ⅱ)任取0(0,)x d Î,则函数()f x 满足:在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x x d ÎÌ,使得,使得()'00()(0)x f x f f x x -=-……()*又由于()'0lim x fx A +®=,对上式(*式)两边取00x +®时的极限可得:时的极限可得:()()00000'''00()00lim lim ()lim ()0x x xx x f x f f f f A x x x x ++++®®®-====-故'(0)f +存在,且'(0)f A+=.(19)(本题满分10分)计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=å++òò,其中å是曲面是曲面222224x y z ++=的外侧.【解析】2223/2()xdydz ydxdz zdxdyI x y z S++=++òò,其中222224x y z ++= 2222223/22225/22(),()()xy z x x x y z x y z ¶+-=¶++++①2222223/22225/22(),()()y x z y y x y z x y z ¶+-=¶++++② 2222223/22225/22(),()()zx y z z x y z x y z ¶+-=¶++++③ \①+②+③=2223/22223/22223/2()()()0()()()xyzx x y z y x y z z x y z ¶¶¶++=¶++¶++¶++由于被积函数及其偏导数在点(由于被积函数及其偏导数在点(00,0,0)处不连续,作封闭曲面(外侧))处不连续,作封闭曲面(外侧)222211:.016x y z R R S ++=<<有1132223/233313434()3xdydz ydxdz zdxdy xdydz ydxdz zdxdy R dV x y z R R R p p S S S W ++++====×=++òòòòòòòòò(20)(本题满分11分)分)设111111042A --æöç÷=-ç÷ç÷--èø 1112x -æöç÷=ç÷ç÷-èø(Ⅰ)求满足21A x x =的2x . 231A x x =的所有向量2x ,3x .(Ⅱ)对(Ⅰ)中的任意向量2x ,3x 证明1x ,2x ,3x 无关.【解析】(Ⅰ)解方程21A x x =()1111111111111,111100000211042202110000A x ---------æöæöæöç÷ç÷ç÷=-®®ç÷ç÷ç÷ç÷ç÷ç÷---èøèøèø()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k x æöæöç÷ç÷=-+ç÷ç÷ç÷ç÷èøèø,其中1k 为任意常数.解方程231A x x =2220220440A æöç÷=--ç÷ç÷èø()21111022012,2201000044020000A x -æöç÷-æöç÷ç÷=--®ç÷ç÷ç÷ç÷èøç÷èø故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200h æöç÷ç÷=ç÷ç÷ç÷èø 故 321121000k x æöç÷æöç÷ç÷=-+ç÷ç÷ç÷ç÷èøç÷èø,其中2k 为任意常数. (Ⅱ)证明:(Ⅱ)证明:由于121212*********21112(21)()2()(21)22221k k k k k k k k k k k k k -+--=+++-+-+-+ 102=¹故123,,x x x 线性无关. (21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x xx x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.【解析】(Ⅰ)(Ⅰ) 0101111a A a a æöç÷=-ç÷ç÷--èø 0110||01()1111111aaa E A a a a a l l l l l l ll -----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a l l l l l l l l l l l l l l l l =---+--+-=---+-=--++--=-+--=--+-- 123,2,1a a a l l l \==-=+(Ⅱ)(Ⅱ)若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a l ==,则,则 220l =-< ,31l = ,不符题意,不符题意 2) 若20l = ,即2a =,则120l =>,330l =>,符合,符合3) 若30l = ,即1a =-,则110l =-< ,230l =-<,不符题意,不符题意 综上所述,故2a =.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数. (Ⅰ)求{}10p X Z ==;(Ⅱ)求二维随机变量(),X Y 概率分布.【解析】(Ⅰ)在没有取白球的情况下取了一次红球,利用压缩样本空间则相当于只有1个红球,2个黑球放回摸两次,其中摸了一个红球个黑球放回摸两次,其中摸了一个红球12113324(10)9C P X Z C C ´\====×. (Ⅱ)X ,Y 取值范围为0,1,2,故,故()()()()()()()()()1111332311116666111223111166661122116611221166110,0,1,0461112,0,0,136311,1,2,10910,291,20,2,20C C C C P X Y P X Y C C C C C C C P X Y P X Y C C C C C C P X Y P X Y C C C C P X Y C C P X Y P X Y ××========××××========×××=======××====×======X Y0 1 20 1/4 1/6 1/36 1 1/3 1/9 0 21/9(23)(本题满分11 分)分)设总体X 的概率密度为2,0()0,xxex f x ll -ì>=íî其他,其中参数(0)l l >未知,1X ,2X ,…,n X 是来自总体X 的简单随机样本.(Ⅰ)求参数l 的矩估计量;的矩估计量; (Ⅱ)求参数l 的最大似然估计量的最大似然估计量【解析】【解析】 (1)由EX X =而22022ˆxEX x edx X Xl l l l+¥-===Þ=ò为总体的矩估计量为总体的矩估计量 (2)构造似然函数)构造似然函数()()12111L ,.....,;;ni i n nx nn i i i i x x f x x e l l l l =-==å==××ÕÕ取对数11ln 2ln ln n ni i i i L n x x l l ===+-åå令111ln 222001ni n n i iii i d L nnx d x x nl ll====Þ-=Þ==ååå故其最大似然估计量为2Xl ¢¢=。
典型试题思路与解法(概率统计)1.(2006)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A) ()()P A B P A ∪> (B) ()()P A B P B ∪>(C) ()()P A B P A ∪= (D) ()()P A B P B ∪= [ C ] 【分析】 注意到等式左端均为)(B A P ∪,利用事件和的运算及条件概率的概念即可.【详解】 由题设,知 ()(|)1()P AB P A B P B ==,即()()P AB P A =.又 ()()()()()P A B P A P B P AB P A ∪=+−=.故应选(C).【评注】 1. 本题考查条件概率的概念以及随机事件的运算和关系的概念,应牢记. 2. 本题得不到“B AB =”或“A B ⊂”一类结论。
2.(2000) 两个相互独立的事件A 、B 都不发生的概率为1/9,A 发生B 不发生的概率与B发生A 不发生的概率相等,则P (A ) = .【详解】 由题设,知)()(B A P B A P =,得)()()()(AB P B P AB P A P −=−,故)()(B P A P =,而31)()]([)()()(912=⇒===A P A P B P A P B A P ,从而32)(1)(=−=A P A P 【评注】本题考查概率的基本性质(减法公式和求逆公式)和独立性的本质。
也可以用对称性直接获得(常用的技巧)。
3.(2005)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1L 中任取一个数,记为Y , 则}2{=Y P =4813 . 【分析】 本题中Y 的取值是依赖于X 的取值的,一旦X 的取值确定后,Y 的取值的概率就容易计算,因此,自然会想到用全概率公式,。
【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++×【评注】1. 全概率公式综合考查了加法公式、乘法公式和条件概率,这类题型一直都是考查的重点.而且全概率公式的思想是概率轮中最重要的思想之一,大家一定要熟练。
2. 若随机试验可以分两阶段(或层次)进行,且第一阶段的各试验结果具体发生了哪一个未知,要求第二阶段的结果发生的概率,肯定用全概率公式; 若随机试验可以分两阶段(或层次)进行,且第一阶段的各试验结果具体发生了哪一个未知,但第二阶段的某一个结果是已知的,要求此结果是第一阶段某一个结果所引起的概率,则肯定用Bayes 公式。
解题的关键是完备事件组的选取。
4.(2007)某人向统一目标独立重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为:( C ) 。
(A) 2)1(3p p − (B) 2)1(6p p − (C) 22)1(3p p − (D) 22)1(6p p −【详解】P {第4次射击恰好第2次命中目标}=P {第4次射击命中,且前3次中恰好命中1次}22213)1(3)1(p p p p C p −=−⋅=,故选C.【评注】 本题是Bernoulli 试验中的典型问题,大家一定要熟悉Bernoulli 试验中相应的二项分布、几何分布和负二项分布的背景。
5.(2003) 已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品,从甲箱中任取3件放入乙箱后,求: (1)乙箱中次品件数X 的数学期望;(2)从乙箱中任取一件产品是次品的概率。
【详解】(1) 法一: 直接求X 的分布,然后用期望的定义直接计算即得。
X 的可能取值为0,1,2,3,由古典概型可算得3,2,1,0,)(36333===−k C C C k X P kk , 即X 0 1 2 3 P1/20 9/20 9/20 1/20故232013209220912010=×+×+×+×=EX . 法二:利用随机变量分解法。
设3,2,1.,0,1=⎩⎨⎧=i i X i 否则件产品是次品,从甲箱中取出的第则∑==31i i X X ,由于2101~2121=⇒⎟⎟⎠⎞⎜⎜⎝⎛i i EX X ,从而23)(3131===∑∑==i i i i EX X E EX . (2) 记 A = {从乙箱中任取一件产品是次品},而事件A 是取决于从甲箱中取的3件产品中的次品的件数的,也就是说与X 的取值有密切关系。
由于}3{},2{},1{},0{====X X X X 构成一完备事件组,故由全概率公式得41)(6)()|()(3030======∑∑==i i i X P ii X P i X A P A P【评注】本题中从甲箱中取出3件产品是“不放回”的,因此,各次取出的产品相应的各事件间没有独立性,不是Bernoulli 概型或二项分布(其实对应不放回的取法,取出的产品中的次品的件数服从“超几何分布”)。
解法2 的技巧需要引起读者的注意,可以通过引入新的随机变量,将X 表示为∑=ni ii Xa 1,这里关键在于式子∑==31i iXX 的成立,而32,X X 得分布与1X 的相同,用到了“抽签原理”,注意,虽然这里1X ,32,X X 不独立(这是“不放回”取法的特征),但∑==31i iEXEX 却总是成立的,如果要进一步求)(X D ,则须求ji X X 的分布等,有兴趣的读者不妨试试。
6.(2003)对于任意二事件A 和B(A) 若φ≠AB ,则A ,B 一定独立. (B) 若φ≠AB ,则A ,B 有可能独立. (C) 若φ=AB ,则A ,B 一定独立. (D) 若φ=AB ,则A ,B 一定不独立. 【答】 [ B ]【详解】 φ≠AB 推不出()()()B P A P AB P =, 因此推不出A 、B 一定独立,排除(A); 若φ=AB ,则P (AB )=0,但()()B P A P 是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).【评注】注意互不相容与独立性的关系。
7.(2006)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19. 【分析】 利用X Y 与的独立性及分布计算.【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎞=≤==⎜⎟⎝⎠∫.【评注】1. 考研大纲明确提出均匀分布是要求熟练掌握的重要分布之一(对大纲上给出的重要分布不仅要熟练掌握其分布和相关的数字特征外,也需要知道这些分布的背景),而极值函数是要求熟练掌握的随机向量的函数之一,其分布和概率求法有一般的规律可循。
本题是这两个重要基本知识和基本技能的结合,2.本题也可以用几何概型解决,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴.值得注意的是:均匀分布的许多问题都可以直接化为几何概型解决。
3. 最大最小值的概率计算的一般技巧也要掌握。
类似题(2007) 在区间(0,1)中随机的取两个数,则这两个数之差的绝对值小于21的概率为___3/4____。
8.(2006)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ−<>−< 则必有 (A)12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ A ] 【分析】 利用正态分布的标准化,化为标准正态分布进行比较。
. 【详解】 由题设可得12112211X Y P P μμσσσσ⎧−⎫⎧−⎫<><⎨⎬⎨⎬⎩⎭⎩⎭, 则 12112121σσ⎛⎞⎛⎞Φ−>Φ−⎜⎟⎜⎟⎝⎠⎝⎠,即1211σσ⎛⎞⎛⎞Φ>Φ⎜⎟⎜⎟⎝⎠⎝⎠.其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<. 故选(A).【评注】 对于服从正态分布2(,)N μσ的随机变量X ,在考虑它的概率时,一般先将X 标准化,即)1,0(~N X σμ−。
这是正态分布的相关问题的计算中最重要的处理手段。
9.(2004)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α−u. (C) 21α−u . (D) α−1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论。
【详解】 由标准正态分布概率密度函数的对称性知,αα=−<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=−≤+≥=≥=<−=−α即有 21}{α−=≥x X P ,可见根据定义有21α−=u x ,故应选(C). 【评注】 本题相当于上分位数,直观地有210.(2003)设随机变量X 和Y 都服从正态分布,且它们不相关,则 (A) X 与Y 一定独立. (B) ()Y X ,服从二维正态分布. (C) X 与Y 未必独立. (D) Y X +服从一维正态分布. 【答】 [ C ]【详解】当()Y X , 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X 和Y 都服从正态分布且相互独立,则()Y X ,服从二维正态分布,但题设并不知道X 、Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出Y X +服从一维正态分布,可排除(D).故正确选项为(C).11.(2005)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1 已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A ) a =0.2, b =0.3 (B) a =0.4, b =0.1(C) a =0.3, b =0.2 (D) a =0.1, b =0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b =0.5, 其次,利用事件的独立性又可得一等式,由此可确定a ,b 的取值.【详解】 由题设,知 a+b =0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a =))(4.0(b a a ++, 由此可解得 a =0.4, b =0.1, 故应选(B).【评注】 本题考查二维随机变量分布律的性质和独立随机事件的概念,均为大纲要求的基本内容. 特别是离散型的相关问题(如参数的确定),解题思路是非常明确的。