二次根式混合化简计算题
- 格式:doc
- 大小:175.50 KB
- 文档页数:7
两次根式混同估计之阳早格格创做1.估计题 (1)(2).2.估计:()218(12)(12)5023212322+-+-+⨯--.3.估计:(2-3)(2+3)+()20101-()2π--121-⎪⎭⎫⎝⎛4.估计(π-3)0-)12)(12(-++2312-+6、估计:)13(9-0+)322(2818)212(2----+2 7.估计(20141+ )(211++321++431++…+201420131+)8.估计:2×(2+12)-1882-212-⎛⎫⎪⎝⎭-|22-3|+38. 9.估计:4832426-÷+⨯.10.估计:(1)3132+218-5150;(2)(5-26)×(2-3);(3)(1+2+3)(1-2-3);(4)(12-481)(231-45.0). 11.估计:(1)11(24)(6)28--+ (2)3212524⨯÷ 12、估计36)22(2)2(2+---(1)327-+2)3(--31-13、估计: (1)11383322+-+(2)(753)(753)++-- 14、33364631125.041027-++---.11(24)2(6)28--+ 15、已知,3232,3232+-=-+=y x 供值:22232y xy x +-.16、估计:⑴()()24632463+-⑵20(3)(3)2732π++-+-17、估计(1)﹣×(2)(6﹣2x )÷3.20.估计:1312248233⎛÷ ⎝3631222⎝21.估计22.(1))235)(235(-++- (2))52453204(52+-22.估计:(1)()222122763⎛⎫+- ⎪⎝⎭(2)()()35233523-+23.化简:(1)83250+(2)2163)1526(-⨯-(3)(2)23()123)(123-+-+;(4)12272431233()? 24.估计(1)2543122÷⨯(2)(3)231|21|27)3(0++-+--(4)11545+204555245(5)()()201211+8π236+22--⨯-()(6)4832426-÷+⨯ (7)20121031(1)5()27(21)2----+(8)113123482732(92225(7)(3)-(10)21(232)8(3325)(3325)3(11)5.081232+-;(12)32212332a a a ⨯÷ (13))2332)(2332(-+(14)18282-+(15)3127112-+(16))31(33122-++参照问案 1.(1)﹣;(2).【剖析】试题分解:(1)先把各个两次根式举止化简,再合并共类两次根式即可; (2)根据两次根式的乘除混同运算规则估计. 解:(1)=3﹣2+﹣3=﹣;(2)=4××=.2.32-【剖析】试题分解:先将所给的各式化简成整数或者最简两次根式,而后合并共类两次根式即可. 试题剖析:本式125282632=-+-- 32=-考面:两次根式的估计. 【问案】766【剖析】试题剖析:解:619624322+-+ 26626463 =(26626463+⎭5666=766考面:两次根式的加减面评:本题主要考查了两次根式的加减运算.最先把两次根式化为最简两次根式,而后再合并共类两次根式. 4.0 【剖析】试题分解:根据真数的运算规则举止估计即可救出问案. 试题剖析:12010)21()2()1()32)(32(----++- π=234-⨯+- =0考面:真数的混同运算. 5.3(2)53.【剖析】试题分解:(1)先估计整次幂、两次根式化简、来千万于值标记、把括号展启,而后举止合并即可供解. (2)把两次根式化成最简两次根式后,合并共类两次根式即可.(1)本式(2)本式=12⨯=.考面:真数的混同运算;2.两次根式的混同运算.6.【剖析】试题分解:先举止两次根式的化简,财举止乘除运算,末尾合并共类两次根式即可供出问案.试题剖析:本式=2913⨯-+9213283=++-+-+=考面: 真数的混同运算.7.2013. 【剖析】试题分解:根据分母有理化的估计,把括号内各项分母有理化,估计后再利用仄圆好公式举止估计即可得解.试题剖析:(1211++321++431++…+201420131+)=(1+…=(1+1) =2014-1=2013.考面: 分母有理化. 8.2 【剖析】解:本式=2+1-=2+13-3+2=29.1+114【剖析】解:本式=4-(3-+4=4-3+4=1+11410.(1)342;(2)112-93;(3)-4-26;(4)8-364. 【剖析】(1)利用2a =a(a ≥0),ab =ab (a ≥0,b ≥0)化简;(2)不妨利用多项式乘法规则,分离上题提示估计; (3)利用仄圆好公式;(4)利用多项式乘法公式化简.11.(12【剖析】试题分解:(1)先把两次根式化成最简两次根式之后,再合并共类两次根式即可供出问案; (2)先把两次根式化成最简两次根式之后,再举止两次根式的乘除法运算.试题剖析:(1)-原式24=---4=;(2)4原式=310⨯考面: 两次根式的化简取估计.12.【剖析】试题分解:先举止两次根式的化简,再合并共类两次根式即可供出问案. 试题剖析:36)22(2)2(2+---=考面: 两次根式的化简供值.13.(1;(2)1--【剖析】试题分解:(1)把两次根式举止化简后,再合并共类两次即可得出问案; (2)先利用仄圆好公式展启后,再利用真足仄圆公式估计即可.试题剖析:(12=22=+=;(2)27=-78=--1=--考面: 两次根式的化简. 14.(1)1 (2)114-【剖析】解:(1)327-+2)3(--31-=.11--33-=+)( (2)33364631125.041027-++---=1111300.5.244---++=-15.385【剖析】解:果为xy y x xy y xy x y xy x +-=++-=+-22222)(2242232,38)32)(32()32()32)(32()32(3232323222=-+---++=+---+=-y x , 1)3232)(3232(=+--+=xy , 所以3851)38(2232222=+⨯=+-y xy x .16.【剖析】试题分解:先化成最简两次根式,再举止估计.试题剖析:-2(24-⨯22--考面:两次根式化简.17.【剖析】试题分解:先化成最简两次根式,再举止估计.试题剖析:--=. 考面:两次根式化简.18.(1)22; (2)6-【剖析】试题分解:(1)根据仄圆好公式,把括号展启举止估计即可供出问案.(2)分别根据仄圆、非整数的整次幂、两次根式、千万于值的意思举止估计即可得出问案. 试题剖析:(1)()()24632463+-22=-=54-32 =22.(2)2(2π+-312=+-6=-考面: 真数的混同运算. 19.(1)1;(2)13【剖析】试题分解:先把两次根式化简后,再举止加减乘除运算,即可得出问案.试题剖析:=32=-1=;(2)2÷=÷=÷13=.考面: 两次根式的混同运算.20.143.【剖析】试题分解:先将两次根式化成最简两次根式,再算括号内里的,末尾算除法.试题剖析:⎛÷⎝÷=143=.考面:两次根式运算.21.0.【剖析】试题分解:根据两次根式运算规则估计即可.=⎝.考面:两次根式估计.22.(1)2)10.【剖析】试题分解:(1)把括号内的项举止拉拢,利用仄圆好公式举止估计即可得到问案;(2)把两次根式化简后,合并共类两次根式,再举止估计即可供出问案.试题剖析:(1))235)(235(-++-25=-55=-+=(2))52453204(52+-=10==考面: 两次根式的混同运算.23.(1)18-(2)33.【剖析】试题分解:(1)根据两次根式化简估计即可;(2)应用仄圆好公式化简即可.试题剖析:(1)(18=-(2)(((22451233=-=-=.考面:两次根式化简.24.(1)92;(2)-【剖析】试题分解:(1)先来分母,再把各两次根式化为最简两次根式,举止估计;(2)曲交利用调配律来括号,再根据两次根式乘法规则估计即可.试题剖析:(1)本式92 =;(2)本式==-.考面:两次根式的混同运算;25.【剖析】试题分解:两次根式的加减,最先要把各项化为最简两次根式,是共类两次根式的才搞合并,没有是共类两次)0,0m n≥≥)0,0m n≥>,需要证明的是公式从左到左是估计,从左到左是两次根式的化简,而且两次根式的估计要对于截止有央供,能启圆的要启圆,根式中没有含分母,分母中没有含根式.试题剖析:解: 本式=18-1+3-考面:两次根式的估计.26.6-【剖析】试题分解:根据两次根式的混同运算程序战运算规则估计即可.试题剖析:22431233266233623662)?()()考面:两次根式的混同运算.27.(1)2103.(2)4.【剖析】试题分解:掌握两次根式的运算本量是解题的闭键.普遍天,两次根式的乘法:abba=•),(00≥≥ba;两次根式的除法:baba=),(0ba≥;两次根式的加减时,先将两次根式化为最简两次根式,再将被启圆数相共的两次根式举止合并.估计时,先算乘除法,能化简的根式要先举止化简再估计,末尾估计加减法,即合并共类项即可. 试题剖析:解:(1)本式=2514334⨯⨯1024334⨯⨯= =2103(2)本式8523+--=4=考面:1、两次根式的化简;2、真数的运算.28.-.【剖析】试题分解: 本题波及整指数幂、两次根式的化简、分母有理化、千万于值化简4个考面.正在估计时,需要针对于每个考面分别举止估计,而后根据真数的运算规则供得估计截止.试题剖析:本式=11-=-考面:1.真数的运算;2.整指数幂;3.分母有理化.29.2+.【剖析】试题分解:根据运算程序化各根式为最简两次根式后合并即可.试题剖析:本式1511322=⋅++=+ 考面:两次根式运算.30.2. 【剖析】试题分解:针对于有理数的乘圆,两次根式化简,整指数幂,背整数指数幂4个考面分别举止估计,而后根据真数的运算规则供得估计截止.试题剖析:本式12=-.考面:1.真数的运算;2.有理数的乘圆;3.两次根式化简;4.整指数幂;5.背整数指数幂. 31.32-22. 【剖析】试题分解:两次根式的乘法规则:)0,0(≥≥=⨯b a ab b a ,两次根式除法规则:)0,0( b a bab a ≥=÷,两次根式的乘除估计完后要化为最简两次根式,而后举止加减运算,两次根式加减的真量是合并共类两次根式.试题剖析:32-2234-223248-32426=+=÷+⨯. 考面:两次根式的混同运算.32.(1)0;(2)【剖析】试题分解:(1)本式=152310-++-=;(2)本式==.考面:1.真数的运算;2.两次根式的加减法.33.(1)1;(2)7-【剖析】试题分解:(1)解:本式=5-7+3=1;(2)解:本式=14(2720)--=7-考面:两次根式的混同运算.34.①、24;②、a 31【剖析】试题分解:根据两次根式的混同运算的规则分离两次根式的本量依次估计即可. 试题剖析:①、242222245.081232=+-=+-; ②、=⨯÷32212332a a a a a a a a 3146132232131122=⨯=⨯⨯⨯⨯⨯. 考面:真数的运算35.(1)-3)6;(4)6- 【剖析】试题分解:本题主要考查根式的根式的混同运算战0次幂运算.根据运算规则先算乘除法,是分式该当先将分式转移为整式,再按运算规则估计.试题剖析:(1)==-原式试题剖析:(2)=原式试题剖析:(3)116=+==原式试题剖析:(4)22439212186=-=⨯-⨯=-=-原式((。
专题2.25二次根式的化简求值50题(分层练习)(提升练)1.已知x =,y =,求下列各式的值:(1)22x y -.(2)22252x xy y -+.2.(1)先化简,再求值:)(x x x x ++-,其中x =(2)已知x y =,试求代数式22252x xy y -+的值.3.(1(2;(3)已知2x =,求代数式((272x x ++4.(1)已知x =y =,求22x xy y ++的值;(275.已知x =y =,求代数式223x xy y -+的值.6.在数学小组探究学习中,张兵与他的小组成员遇到这样一道题:已知a =2281a a -+的值.他们是这样解答的:2=-∴2a -=,∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-.请你根据张兵小组的解题方法和过程,解决以下问题:(1)a =,则2281a a -+=.(2)若a =43443a a a --+的值.7.已知a =,b =8.先化简,再求值:(()1x x x x -+-,其中2x =.9.已知a =,b =求:(1)22a b ab -的值;(2)22a ab b ++的值.10.先化简,再求值:(()22323a a a a --+,其中3a =.11.先化简下式,再求值:()()2237752x x x x -+----,其中1x =+.12.先化简,再求值:153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中12x =,3y =.13,其中:3a =,2b =.14.已知.已知1,1a b ==.(1)代数式221a a -+的值为________;(2)求代数式22a b +值.15.已知a =,求代数式229a a -+的值.16.(1)已知1α=+,求代数式((241αα-+的值(2)已知4y =x y 的值.17.已知:x =y =,求22x xy y ++的平方根.18.已知a =,b =(1)22a b ab -(2)22a b +19.在数学课外学习活动中,嘉琪遇到一道题:已知a =,求2281a a -+的值.他是这样解答的:∵2a ==∴2a -=.∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-,请你根据嘉琪的解题过程,解决如下问题:(1)化简:=__________;=__________;(2)(3)若a =2481a a -+的值.20.已知1a =+,1b ,求22a b -和abb a+的值.21.某同学在解决问题:已知a =2362a a -+的值.他是这样分析与解的:1a ===+ ,1a ∴-=()212a ∴-=,2212a a -+=,221a a ∴-=,()223623223125a a a a ∴-+=-+=⨯+=,请你根据这位同学的分析过程,解决如下问题:(1)++ (2)若a =;①求2281a a --的值;②求3236216a a a --+的值.22.(1=,=;(2)已知x =((272x x ++(323.阅读材料:像))221⨯=()0a a =≥,……这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.在进行二次根式运算时,利用有理化因式可以化去分母中的根号.数学课上,老师出了一道题“已知a =2361a a --的值.”聪明的小明同学根据上述材料,做了这样的解答:因为1a ===所以1a -=所以()212a -=,所以2212a a -+=所以221a a -=,所以2363a a -=,所以23612a a --=请你根据上述材料和小明的解答过程,解决如下问题:__________=______;2-的有理化因式是________=______;(2)若a =,求22123a a -++的值.24)0,0x y->>,其中1x =-,1y .25.先化简,再求值:(1a a a aa ⎛⎫++- ⎪⎝⎭,其中a =26.已知x =,y =(1)求222x xy y ++的值.(2)若x 的小数部分为a ,y 的整数部分为b ,求ax by +的平方根.27.已知非零实数a ,b 满足=28.先化简,再求值:()()()22282x y x y x y --++,其中1x =1y =.29.已知12x =,求()33420252022x x --.30.已知1,10,15a b c ==-=-31.已知:12x x +=,求221x x+的值.32.已知8a b +=-,12ab =,求33.(1)已知a 、b4b +,求a 、b 的值.(2)已知实数a 满足2021a a -,求22021a -的值.34.已知x =y =,求代数式22x y +的值.35.先化简,再求值:()()()22 2222a b a b a b b ⎡⎤++-⎣⎦+-2069b b ++=.36.已知x =y =,求代数式22205520x xy y ++的值.37.已知x =,y =.(1)求33x y xy +的值;(2)求y x x y +的值.38.若x ,y 为实数,且12y =39.已知x =y =.求:(1)x y +和xy 的值;(2)求22x xy y -+的值.40.已知x =y =,求下列各式的值:(1)22x y -(2)222x xy y ++.41.有这样一类题目:如果你能找到两个数m 、n ,使22m n a +=且mn =a ±将变成222m n mn +±,即变成2()m n ±(1)例如,∵222532+=++=++=,==______,请完成填空.(2)(3)利用上面的方法,设A =,B =,求A +B 的值.42.已知a =,b =,求b a a b+的值.43.先化简,再求值:⎛- ⎝,其中8x =,127y =.44.(12-+4x =.(2)已知x =y =,求22x xy y -+值.45.已知3y =+,若a b =a2+b 2+ab 的值.46.(1)已知x ,y ﹣2,求下列各式的值:①11x y +;②x 2﹣xy +y 2;(28=.47.已知x =1x 的值.48.已知=x x 的整数部分为a ,小数部分为b ,求2a b a b--+的值.49.(1)先化简,再求值:((26a a a a +---+,其中1a -.(2)已知2x =,2y =223x y xy+-50.已知a =b =(1)求22a ab b -+的值;(2)若a 的小数部分为m ,b 的小数部分为n ,求()()m n m n +-的值.参考答案1.(1);(2)42【分析】(1)先求解x y x y +-,再利用平方差公式进行因式分解,再直接代入计算即可;(2)先求解()2x y xy ,+再利用完全平方公式进行变形求值即可.(1)解:∵x =y ,∴x y +=,x y -=∴()()22x y x y x y -=+-=;(2)解:∵x =y ,∴x y +=,2xy ==-∴()22222529yx y y x x y x =+--+(()229242=-´-=.【点拨】本题考查的是二次根式的求值,二次根式的加减乘法的混合运算,掌握“利用平方差公式与完全平方公式进行变形求解代数式的值”是解本题的关键.2.(15-,1-(2)42【分析】(1)先计算整式的乘法,再合并同类项,然后把x =(2)先利用x 、y 的值计算出x y -=2xy =-,再利用完全平方公式得到222252(2)x xy y x y xy -+=--,然后利用整体代入的方法计算.(1)解:)(x x x x ++-225x x =-+-5=-,当x =原式56512=-=-=-(2)解:∵x =y ,∴x y -=,352xy =-=-,∴222252(2)x xy y x y xy-+=--(()222=⨯--42=.【点拨】本题主要考查了二次根式的混合运算,整式的混合运算,熟练掌握相关运算法则是解题的关键.利用整体代入的方法可简化计算.3.(1(2);(3)2【分析】(1)根据二次根式的乘除混合计算法则求解即可;(2)根据二次根式的混合计算法则求解即可;(3)直接把2x =((272x x ++++然后合并同类二次根式即可得到答案.解:(1)原式=(2)原式===(3)原式((27222=+-++-+()74343=+-+-+(7743=+-+-49481=-++2=【点拨】本题主要考查了二次根式的混合计算,二次根式的化简求值,二次根式的乘除混合计算,熟知相关计算法则是解题的关键.4.(1)11;(2)【分析】(1)先计算出x y xy +,值,再根据()222x xy y x y xy ++=+-,代入计算即可得到答案;(2x y ==,则2222727936x y x y a a +=+=-++=,,从而可以求出=33<解:(1) x =y =,x y ∴+==321xy ==-=,∴()222x xy y x y xy ++=+-(2111=-=;(2x y ==,则2222727936x y x y a a +=+=-++=,,∴()()222213xy x y x y =+-+=,∴()222223x y x y xy -=+-=,∴x y -==33<=【点拨】本题考查了运用完全平方公式的变形进行求值,注()222x xy y x y xy ++=+-以及整体思想的运用.5.3【分析】先将x 、y 的值分母有理化,再代入到原式2)x y xy --=(计算可得.解:1x == ,1y =,∴原式()2=--x y xy))21111=--41=-3=【点拨】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式分母有理化的能力.6.(1)1-;(2)4【分析】(1)仿照例题,可以求得所求式子的值;(2)仿照例题,将a 的值分母有理化,然后变形,即可求得所求式子的值.(1)解:2a ==+ ,2a ∴-()223a ∴-=,2443a a ∴-+=,241a a ∴-=-,()()22281241211211a a a a ∴+=+=⨯-+=---+=-,故答案为:1-;(2)解:2a =+ ,2a ∴-=,()225a ∴-=,2445a a +-∴=,241a a ∴-=,()43222244344314343134a a a a a a a a a a a ∴+=-+=⨯-++--=-=+=-,即43443a a a --+的值为4.【点拨】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确题意,利用类比的方法解答.7.【分析】先分母有理化求出a b 、的值,再利用完全平方公式将222a b ++变形为2()22a b ab +-+,然后代入求值即可.解:2a =,2b =,====.【点拨】本题主要考查了二次根式的化简求值和完全平方公式的应用,熟练掌握化简方法和完全平方公式的变形是解题的关键.8.222x x --,32-.【分析】先用二次根式的混合运算法则化简,然后将2x =代入计算即可.解:(()1x x x x -+-,=222x x x -+-,=222x x --,当x =时,原式=22222--()(),=()212422---),=32-.【点拨】本题主要考查了二次根式的混合运算、代数式求值等知识点,正确运用二次根式的混合运算法则化简原式是解答本题的关键.9.(1)-;(2)11【分析】(1)根据二次根式的乘法法则求出ab ,根据二次根式的减法法则求出a b -,根据提公因式法把原式变形,代入计算即可;(2)根据完全平方公式把原式变形,代入计算,得到答案.(1)解:a = ,b =321ab ∴==-=,a b -=-=-则22a b ab -()ab a b =-(1=⨯-=-;(2)22a ab b ++2223a ab b ab=-++()23a b ab=-+2(31=-+⨯83=+11=.【点拨】本题考查的是二次根式的化简求值,掌握二次根式的加减法法则、乘法法则是解题的关键.10.26a a +,7-【分析】直接利用平方差公式以及二次根式的乘法将原式变形,进而合并同类项,进而把已知代入求出答案.解:原式2243363a a a =--++26a a =+,把3a 代入,得,原式))2336=+2918=+-7=-.【点拨】此题主要考查了平方差公式,多项式乘单项式以及二次根式的化简求值,正确化简原式是解题关键.11.224x x --,3-【分析】先去括号,然后合并同类项化简,最后代值计算即可.解:()()2237752x x x x -+----2237752x x x x -+--++=224x x =--,当1x =+时,原式())2222415115253x x x =--=--=--=-=-.【点拨】本题主要考查了二次根式的化简求值,正确计算是解题的关键.12.【分析】先确定00,x y >>,再利用二次根式的性质化简,然后计算二次根式的加减法,最后将x ,y 的值代入计算即可得.解:由题意得:100y x x >>,,∴00,x y >>,则153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2221153x y x x y ⎛⎛=⋅⋅-- ⎝⎝=-=当12x =,3y =时,原式6====【点拨】本题考查了二次根式的化简求值,熟练掌握运算法则是解题关键.13.a b -,1.【分析】利用二次根式的性质和平方差公式化简,然后代入求值即可.221·ab =-a b =-a b =-,当3a =,2b =时,原式32=-1=.【点拨】题目主要考查二次根式的化简求值及平方差公式,熟练掌握二次根式的运算法则是解题关键.14.(1)3;(2)8【分析】(1)将221a a -+变形为()21a -,再代入a 的值求解即可;(2)将22a b +变形为()22a b ab +-,再代入a ,b 的值利用平方差公式和完全平方公式求解即可.(1)解:∵1a +,∴())222211113a a a -+=-=+-=,故答案为:3;(2)解:22a b +2222a b ab ab =++-()22a b ab =+-,当1,1a b =+=时,22a b +()22a b ab=+-)))211211⎡⎤=+-⎣⎦()12231=-⨯-8=.【点拨】本题考查二次根式的化简求值,掌握平方差公式和完全平方公式是解决问题的关键.15.13【分析】先对a进行分母有理化求出1a =,再把所求式子变形为()218a -+,再把1a =整体代入求解即可.解:∵a =,∴)())24141411511a ⨯+⨯+⨯+===+--,∴229a a -+2218a a =-++()218a =-+)2118=-+28=+58=+13=.【点拨】本题主要考查了二次根式的化简求值,分母有理化,正确求出1a =+并把所求式子变形为()218a -+是解题的关键.16.(1)2;(2)16.【分析】(1)把4-)21,再代入数据利用平方差公式计算即可求解;(2)根据二次根式有意义的条件得到20x -≥,20x -≥,求得2x =,4y =,再代入数据计算即可求解.解:(1)∵1α=,∴((241αα-+))()221111=+-))21111⎡⎤=--⎣⎦()()23131=---42=-2=;(2)∵4y =++4y =+∴20x -≥,20x -≥,∴2x =,4y =,∴2416x y ==.【点拨】本题考查了二次根式有意义的条件,二次根式的化简求值,掌握平方差公式的结构特征是解题的关键.17.±【分析】先将x 、y 化简,然后即可得到x y xy +、的值,从而可以求得所求式子的值.解:∵25x ==+,25y==-∴(55105525241x y xy +=++-==+-=-=,,∴22x xy y ++222x xy y xy=++-()2x y xy =+-2101=-1001=-99=.∵99的平方根为±∴22x xy y ++的平方根为±【点拨】本题考查二次根式的化简求值,求一个数的平方根,解答本题的关键是明确二次根式化简求值的方法.18.(1)-;(2)14【分析】(1)先把a 、b进行分母有理化得到2a =-2b =+,进而求出a b -=-1ab =,再根据()22a b ab ab a b -=-进行代值求解即可;(2)根据()2222a b a b ab +=-+进行求解即可.(1)解:∵a =b =∴a=b =,∴2243a -==-2243b ==-∴22a b -=---(22431ab =+-=-=,∴22a b ab -()ab a b =-1=-=-(2)解:由(1)得a b -=-1ab=,∴()(22222212214a b ab a b =-+=-+=+=+.【点拨】本题主要考查了二次根式的化简求值,正确求出a b -=-1ab=是解题的关键.19.,1;(3)5【分析】(1)根据分母有理化的方法进行求解即可;(2)把各项进行分母有理化,从而可求解;(3)仿照所给的解答方式进行求解.(1)解:==;2⨯=(21=++1;(3)解:∵1a ==,∴1a -=∴()212a -=,即2212a a -+=,∴()224814211442148145a a a a -+=-++-=⨯+-=+-=.【点拨】本题主要考查二次根式的化简求值,分母有理化,解答的关键是对相应的运算法则的掌握.20.4【分析】将a ,b 的值分别代入要求的式子中,然后按照二次根式运算的法则计算即可.解:22221)1)44a b -=-=++=2222842a b a b b a ab ++=====.【点拨】本题考查了二次根式的混合运算,熟记二次根式的混合运算法则是解题的关键.注意做这类计算题时,一定要细心.21.1;(2)①3-;②0;【分析】(1)根据例题可得:对每个式子的分子和分母,同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)①将a =化简,再得到241a a -=-,再整体代入化简后的式子计算即可;②根据241a a -=-,将所求式子变形,再整体代入计算即可.(1+ 1=1=;(2)解:① 2a ==-2a ∴-=()223a ∴-=,2443a a -+=241a a ∴-=-,∴()()222812412113a a a a --=--=⨯--=-,②由①知241a a -=-,∴3236216a a a --+()()()2224246436a a a a a a a a a =-+-+-++()()()1216136a a a =⨯-+⨯-+⨯-++2636a a a =---++0=.【点拨】本题考查了二次根式的化简求值,解题的关键是明确题意,利用平方差和完全平方公式解答.22.(1)2,2;(2)2+(3)>【分析】(1)根据二次根式的分母有理化可进行求解;(2)直接把x 的值代入求解即可;(3=解:(12142222-==-2;(2)∵x =,∴22x==∴((272x x ++((72=+⨯+⨯2=(3=;故答案为>.【点拨】本题主要考查二次根式的运算及分母有理化,熟练掌握二次根式的运算及分母有理化是解题的关键.23.2或2;2;(2)7【分析】(1)根据有理化因式的定义,进行求解即可;(2)根据题干给出的解题方法,进行求解即可.(1)解:∵321 =-=,=∵))()22341,22431=-=--=-=,22+或2,22=-=;2+或2;2;(2)解:∵(232332a+==+∴3a-=∴()237a-=,∴2697a a+=-,∴262a a-=-,∴22124aa-+=,∴221237a a-++=.【点拨】本题考查分母有理化.理解并掌握有理化因式的定义,是解题的关键.24.4【分析】利用二次根式的性质将原式化简,然后由平方差公式得出4xy=,代入求解即可.==,∵1x =-,1y =+,∴1)4xy ==,∴原式4==.【点拨】题目主要考查二次根式的化简及求代数式的值,平方差公式,熟练掌握运算法则是解题关键.25.223a -,3【分析】根据二次根式的混合运算法则,平方差公式和单项式乘多项式法则计算即可化简,再将a =代入化简后的式子计算即可.解:(1a a a a a ⎛⎫++- ⎪⎝⎭2221a a =-+-223a =-.当a =22232(33a =-=⨯-=.【点拨】本题考查二次根式的化简求值,涉及二次根式的混合运算,平方差公式和单项式乘多项式.熟练掌握各运算法则是解题关键.26.(1)20;(2)1±.【分析】(1)先分母有理化求出x 、y 的值,再求出x y +和xy 的值,最后根据完全平方公式进行变形,代入求出即可;(2)先求出x 、y 的范围,再求出a 、b 的值,最后代入求出即可.(1)解:12 2x ⨯==,2y =-,))22x y +=+-=,∴()(2222220x xy y x y ++=+==;(2)解;∵23,∴4<25+<,0<21-<,∵x 的小数部分为a ,y 的整数部分为b ,∴=a 24+-=2-,0y =,∴))2220541ax by +=+⨯=-=,∴ax by +的平方根是1=±.【点拨】本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点,能求出x y +和xy 的值是解(1)的关键,能估算出x 、y 的范围是解(2)的关键.27.3【分析】利用因式分解将已知化为0=,得出a b =,然后代入所求代数式即可得解.解: 非零实数a ,b 满足=,由题意可知0,0a b >>,220∴+=,∴=0,0a b >> ,0∴,=,a b ∴=,2332a a a a a a++=+-62aa =3=.【点拨】此题考查了二次根式的化简求值,熟练掌握二次根式的性质、因式分解以及分式的性质是解答此题的关键.28.18xy -,18-【分析】根据完全平方差公式、多项式乘以多项式运算法则先运算,再根据整式加减运算法则,去括号、合并同类项即可得到化简结果,最后代值利用平方差公式求解即可得到结果.解:()()()22282x y x y x y --++()()22222448282x xy y x xy xy y =-+-+++22228828102x xy y x xy y =-+---()()()22228881022x x xy xy y y =-+--+-18xy =-,当1x =1y =时,原式)1811=-⨯2181⎡⎤=-⨯-⎢⎥⎣⎦()1821=-⨯-18=-.【点拨】本题考查整式化简求值,涉及完全平方差公式、多项式乘以多项式、整式加减运算、去括号法则、合并同类项、平方差公式及二次根式运算,熟练掌握相关运算法则及公式是解决问题的关键.29.1-.【分析】根据x =12x -=()22121442022x x x -=-+=,2442021x x -=,将原式化为()()3322444420212022x x x x x ⎡⎤-+---⎣⎦,再整体代入即可求解.解:∵12x =,∴112122x -=-⨯∴()22121442022x x x -=-+=,∴2442021x x -=,∴原式()()3322444420212022x x x x x ⎡⎤=-+---⎣⎦()32021202120212022x x =+--()31=-1=-.【点拨】本题主要考查二次根式的化简,能正确根据二次根式的运算法则进行计算是解题关键.30.【分析】把已知数据代入代数式,根据二次根式的性质化简即可.解:∵1,10,15a b c ==-=-,===【点拨】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.31.5+【分析】根据2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭进行计算求解即可.解:∵12x x +=,∴221x x +2112x x x x ⎛⎫=+-⋅ ⎪⎝⎭(222=+-432=+-5=+【点拨】本题主要考查了二次根式的化简求值,完全平方公式的变形求值,正确根据完全平方公式得到2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭是解题的关键.32【分析】根据题意可判断a 和b 都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.解:8a b +=-Q ,12ab =,∴a 和b 均为负数,()222240a b a b ab +=+-====b b a a-+-=22=22a b-+====3-=【点拨】此题考查的是二次根式的化简和完全平方公式的变形;掌握二次根式的乘、除法公式和合并同类二次根式法则是解决此题的关键.33.(1)5a =,4b =-;(2)2022【分析】(1)根据二次根式有意义的条件先求出a 的值,进而求出b 的值即可;(2)根据二次根式有意义的条件得到2022a ≥,2021=,两边平方即可得到答案.解:(14b +要有意义,∴501020a a -≥⎧⎨-≥⎩,∴5a =,4b =+,∴4b =-;(2)∵2021a a -要有意义,∴20220a -≥,∴2022a ≥,∴2021a a -=,2021=,∴220222021a -=,∴220212022-=a 【点拨】本题主要考查了二次根式有意义的条件,化简绝对值,代数式求值,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.34.24【分析】先计算出x y +=2xy =-,,再利用完全平方公式变形得到()2222x y x y xy +=+-,然后利用整体代入的方法计算.解:∵x =y =,∴x y +=++=2xy =+=-,∴()(()222222220424x y x y xy +=+-=-⨯-=+=.【点拨】本题主要考查二次根式的化简求值,代数式求值,解题的关键是熟练运用完全平方公式化简二次根式.35+【分析】先根据整式的混合运算法则将所求整式化简,再根据算术平方根和偶次幂的非负性求出a 、b ,代入即可作答.解:()()()22+ 2+2+22a b a b a b b --⎡⎤⎣⎦()()22222442322a ab b a ab b b⎡⎤=+++-⎣⎦--()22222442322a ab b a ab b b =+++---()23a a b =+23b a a =+=+,2069b b ++=,()203b +=,0≥,()203b +≥,0=,()203b +=,∴20a -=,30b +=,∴=2a ,3b =-,将=2a ,3b =-3+中,原式()3332=+=+⨯-=【点拨】本题考查了二次根式的加减乘除混合运算,其中涉及到了算术平方根的非负性和完全平方公式等,解决本题的关键是牢记整式的混合运算法则.36.2015【分析】直接利用分母有理化将原式化简,再将多项式变形,进而代入得出答案.解:∵x 25===-,y 25===+22205520x xy y ∴++2220402015x xy y xy=+++()2220215x xy y xy=+++()22015x y xy=++((22055155252=⨯-++⨯-+()22010152524=⨯+⨯-2010015=⨯+200015=+2015=.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.37.(1)10;(2)10【分析】(1)先求出xy 及x +y 的值,再将33x y xy +因式分解,最后再整体代入求值;(2)先将y x x y+通分,再通过完全平方公式变形,最后代入求值.解:(1)x y ==1,xy ∴=⨯+=x y +==()33222()212110x y xy xy x y xy x y xy⎡⎤⎡⎤∴+=+=+-=⨯-⨯=⎣⎦⎣⎦(2)y x x y +22y x xy+=2()2x y xy xy+-=2211-⨯=10=【点拨】本题考查与二次根式相关的代数式求值问题,解题的关键是整体思想的应用.38.【分析】先根据二次根式有意义的条件求出x 的值,进而求出y 的值,然后代值计算即可.解:∵12y =要有意义,∴140410x x -≥⎧⎨-≥⎩,∴1144x ≤≤即14x =,∴1122y ==,∴122x y y x==,,==【点拨】本题主要考查了二次根式有意义的条件,二次根式的求值,正确求出x 、y 的值是解题的关键.39.(1)1;(2)9【分析】(1)根据二次根式的加法法则即可求出x y +,根据二次根式的乘法法则即可求出xy ;(2)先根据完全平方公式变成()2223x xy y x y xy =+--+,再代入求出答案即可.(1)解:∵x =y =,∴x y ==++321xy ⨯==-=.∴x y +的值为xy 的值为1.(2)∵x y +=1xy =,22x xy y -+()23x y xy=+-(231=-⨯123=-9=.∴22x xy y -+的值为9.【点拨】本题考查二次根式的化简求值,完全平方公式,平方差公式.能正确根据二次根式的运算法则进行计算是解题的关键.40.(1);(2)12【分析】(1)先计算出x y +和x y -,再利用乘法公式得到()()22x y x y x y -=+-;(2)利用乘法公式得到222)2(x xy y x y =+++,然后利用整体代入的方法计算.(1)解:x =Q y =,x y ∴+=,x y -=()()22x y x y x y -=+-=(2)由(1)知x y +=∴22222()12x xy y x y ++=+==.【点拨】本题考查了二次根式的运算,完全平方公式、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.41.1-;(3)2+【分析】(1(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩,即可得出相应结果.(2)根据(1)中“222532+=++=++=”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A式和B式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B式的结果分别算出,最后把A式和B式再代入A+B中,求出A+B的值.解:(1)∵222 5232+=++=++==(2)∵)22 43111 -=+-=+-=-1-.(3)∵222 6422(2A=+++++⨯+∴2 A=+∵2212132B+-⨯⨯===∴B=====∴把A式和B式的值代入A+B中,得:222A B+=+=【点拨】本题考查二次根式的化简求值问题,完全平方公式.解本题的关键在熟练掌握二次根式的性(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩和熟练运用完全平方公式()2222a b a ab b±=±+.42.18【分析】先将条件变形为:2a=,2b=,然后将结论变形22a bab+,最后将化简后的条件代入变形后的式子就可以求出其值.解:∵a =,b =,∴2a +,2b -,∴ab =1,+=a b∴b a a b +()(22222218a b a b ab ab ++==-=-=.【点拨】本题主要考查了二次根式的分母有理化,完全平方公式的运用,正确求出2a =,2b =是解答本题的关键.43.2+3+.【分析】先根据二次根式的运算法则,在根据分式的运算法则计算即可,先化简,再代入8x =,127y =即可.解:原式2=-2=+,当8x =、127y =时,原式3=329=+⨯3=.【点拨】本题考查了二次根式及分式的运算法则,熟练掌握并应用二次根式及分式的运算法则是解答本题的关键.44.(1)(2)11【分析】(1)根据二次根式的性质化简,然后代入即可求出答案.(2)先由x 与y 的值计算出x ﹣y 和xy 的值,再代入原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy 计算可得.解:(1)原式==,当4x =时,原式6=(2)∵x =y =,∴x y -==231xy ==-=-,原式=x 2﹣2xy +y 2+xy=(x ﹣y )2+xy=(2﹣1=12﹣1=11.【点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.45.3x +y ,15【分析】根据题意求出x 与y 的值,然后根据完全平方公式以及平方差公式进行化简,然后将x 与y 代入原式即可求出答案.解:∵3y =+有意义∴40x -≥且40x -≥∴x =4,∴y =3,∵a b =()222222a b ab a b ab ab a b ab++=++-=+-∴()2222a b ab a b ab ++=+-=+-(()2x y =--3x y=+把x =4,y =3代入上式中原式34315=⨯+=【点拨】本题主要考查了二次根式有意义的条件,二次根式的化简求解,完全平方公式和平方差公式,解题的关键在于能够熟练掌握相关知识进行求解.46.(1)①3;②19;(2)±【分析】(1)①根据x +2,y −2,可以得到xy 、x +y 的值,然后即可求得所求式子的值;②将所求式子变形,然后根据x2,y −2,可以得到xy 、x +y 的值,从而可以求得所求式子的值;(2)根据完全平方公式和换元法可以求得所求式子的值.解:(1)①11x y +=x yy x +,∵x 2,y ,∴x +y =,xy =3,当x +y =,xy =3时,原式=3;②x 2−xy +y 2=(x +y )2−3xy ,∵x 2,y ,∴x +y =,xy =3,当x +y ,xy =3时,原式=()2−3×3=19;(2x y ,则39−a 2=x 2,5+a 2=y 2,∴x 2+y 2=44,8,∴(x +y )2=64,∴x 2+2xy +y 2=64,∴2xy =64−(x 2+y 2)=64−44=20,∴(x −y )2=x 2−2xy +y 2=44−20=24,∴x −y =±,±故答案为:±【点拨】本题考查二次根式的化简求值、分式的加减法、平方差公式,解答本题的关键是明确它们各自的计算方法.47.32-【分析】先把=x x =再化简2154x x x --+得111x x ---,最后代入求值即可.解:x =+∵12<<∴34<<∴4x <1x1x=(4)1(4)(1)x x x x--=---111x x =---将x =代入上式得:原式=13(222-==-=【点拨】本题考查了二次根式的混合计算,熟练掌握运算法则是解答此题的关键.48.7-2=+12<得到3a =,1b =,将a 、b 代入即可计算即可.2=,12<<,∴3a =,1b =,∴(2312227a b a b -----===-+【点拨】本题考查二次根式的化简及计算,同时也考查了学生的估算能力,夹逼法是估算时常用的一种方法.49.(1)(a a ;5-(2)11【分析】(1)利用乘法公式化简,在代入求值计算即可;(2)把x ,y 代入代数式求解即可;解:(1)原式(222266a a a a a =--+=+=+,当1a -时,原式11=+,5=-.(2)由已知可得:1x y xy -==,原式=222x xy y xy -+-,()2=--x y xy,(21=-,121=-,11=.【点拨】本题主要考查了二次根式的化简计算,利用乘法公式化简是解题的关键.50.(1)13;(2)3-【分析】(1)利用二次根式的加法运算和乘法运算求得a b +和ab ,对所求式子利用完全平方公式变形,进而整体代入求出即可;(2)首先利用分母有理化法则求出a ,b的值,根据12<,可得m ,n 的值,进而代入求值即可.解:(1)22114442a b+-++====,1ab =,22a ab b -+()23a b ab=+-243=-13=;(2)2a ==,2b ==+∵12<<,21-<-,∴22221-<<-,21222+<<+,即021<,324<+∴2的整数部分是0,小数部分是2,即2m =2+31,即1n =,∴()()m n m n +-()()2121=3=-【点拨】本题主要考查了二次根式的化简求值,估算无理数的大小,根据12<<,得出m ,n 的值是解题关键,注意要分母有理化.。
人教版2020——2021年八年级下册新题二次根式的运算与化简求值专项练习1.(2020秋•遵化市期末)计算:(1)﹣(1﹣);(2)(2+6)×÷2.【分析】(1)根据二次根式的乘法和加减法可以解答本题;(2)根据二次根式的乘除法和加法可以解答本题.【解答】解:(1)﹣(1﹣)=﹣+3=3;(2)(2+6)×÷2=(2×+6×)×=(4+18)×=2+9.2.(2020秋•太平区期末)计算题:(1);(2)×﹣;(3)(+3)×(3﹣)﹣(﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后约分即可;(2)利用二次根式的乘除法则运算;(3)根据平方差公式和完全平方公式计算.【解答】解:(1)原式==6;(2)原式=﹣(﹣)=10﹣(2﹣)=8+;(3)原式=9﹣5﹣(3﹣2+1)=4﹣4+2=2.3.(2020秋•市中区期末)计算:(1)﹣4+2;(2)﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:(1)原式=3﹣2+4=5;(2)原式=+﹣4=2+3﹣4=1.4.(2020秋•项城市期末)计算:(1);(2).【分析】(1)根据二次根式的乘法法则运算;(2)根据平方差公式计算.【解答】解:(1)原式=2××+5=3+5;(2)原式=(2)2﹣()2=12﹣6=6.5.(2020秋•织金县期末)计算下列各题:(1)﹣+;(2)﹣(3﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的除法法则和完全平方公式计算.【解答】解:(1)原式=3﹣+=;(2)原式=+﹣(18﹣6+1)=2+4﹣19+6=6﹣13.6.(2020秋•沈河区期末)计算:(1)﹣+2÷;(2)﹣×.【分析】(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)﹣+2÷=2﹣+2=+2;(2)﹣×=1+﹣2=﹣1.7.(2020秋•碑林区校级期末)计算:(1)2﹣2+;(2)(﹣2)2﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的除法法则运算.【解答】解:(1)原式=6﹣+=6;(2)原式=3﹣4+4﹣(﹣)=7﹣4﹣3+2=6﹣4.8.(2020秋•武侯区期末)计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).【分析】(1)根据零指数幂、立方根的定义和绝对值的意义计算;(2)根据二次根式的除法法则和平方差公式计算.【解答】解:(1)原式=1﹣﹣2+﹣1=﹣2;(2)原式=+﹣(3﹣2)=2+3﹣1=4.9.(2020秋•郫都区期末)计算:(1)÷+×﹣;(2)(+2)2﹣(+2)(﹣2).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用二次根式的混合运算法则化简得出答案.【解答】解:(1)原式=+5﹣3=3;(2)原式=5+4+4﹣(5﹣4)=9+4﹣1=8+4.10.(2020秋•龙华区期末)计算题(1)+(+2)(﹣2);(2)6+|1﹣|﹣(+1)÷.【分析】(1)先化简二次根式,利用平方差公式计算,再进一步计算即可;(2)先化简二次根式、去绝对值符号、除法转化为乘法,再计算乘法,最后计算加减即可.【解答】解:(1)原式=+()2﹣22=2+3﹣4=1;(2)原式=6×+﹣1﹣(+1)×=3+﹣1﹣3﹣=﹣1.11.(2020秋•新化县期末)已知a=1+,b=1﹣,求:(1)求a2﹣2a﹣1的值;(2)求a2﹣2ab+b2的值.【分析】(1)根据完全平方公式把原式变形,把a的值代入计算即可;(2)根据完全平方公式把原式变形,把a、b的值代入计算即可.【解答】解:(1)原式=a2﹣2a+1﹣2=(a﹣1)2﹣2,当a=1+时,原式=(1+﹣1)2﹣2=0;(2)a2﹣2ab+b2=(a﹣b)2,当a=1+,b=1﹣时,原式=(1+﹣1+)2=8.12.(2020秋•永年区期末)已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.【分析】(1)根据分母有理化把x的值化简,计算即可;(2)根据二次根式的混合运算法则计算,得到答案.【解答】解:(1)x===2+,则=2﹣,∴x+=2++2﹣=4;(2)(7﹣4)x2+(2﹣)x+=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.13.(2020春•遵义期末)已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2;(2).【分析】(1)原式利用完全平方公式变形,把a与b的值代入计算即可求出值;(2)原式通分并利用同分母分式的减法法则变形,把a与b的值代入计算即可求出值.【解答】解:(1)∵x=+1,y=﹣1,∴原式=(x+y)2=(+1+﹣1)2=(2)2=8;(2)∵x=+1,y=﹣1,∴原式====2.14.(2020春•浦北县期末)已知:m=+2,n=﹣2,求(1)m﹣n的值;(2)mn的值.【分析】(1)把m与n的值代入原式计算即可求出值;(2)把m与n的值代入原式计算即可求出值.【解答】解:(1)当m=+2,n=﹣2时,m﹣n=(+2)﹣(﹣2)=+2﹣+2=4;(2)当m=+2,n=﹣2时,mn=(+2)×(﹣2)=5﹣4=1.15.(2020春•和县期末)已知x=2+,y=2﹣,求代数式x2﹣y2的值.【分析】根据二次根式的加减法法则分别求出x+y、x﹣y,根据平方差公式把原式变形,代入计算即可.【解答】解:∵x=2+,y=2﹣,∴x+y=4,x﹣y=2,∴x2﹣y2=(x+y)(x﹣y)=8.16.(2020春•潮南区期末)已知a=+2,b=﹣2.求下列式子的值:(1)a2b+ab2;(2)(a﹣2)(b﹣2).【分析】(1)将所求式子因式分解,然后将a+b和ab的值代入即可解答本题;(2)将a、b的值代入所求式子,即可解答本题.【解答】解:(1)∵a=+2,b=﹣2,∴a+b=2,ab=1,∴a2b+ab2=ab(a+b)=1×2=2;(2)∵a=+2,b=﹣2,∴(a﹣2)(b﹣2)=(+2﹣2)×(﹣2﹣2)=×(﹣4)=5﹣4.17.(2020春•姑苏区期末)已知:a=,b=.求值:(1)ab;(2)a2﹣3ab+b2;【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)ab=(+)(﹣)=5﹣3=2.(2)a﹣b=+﹣+=2,∴a2﹣3ab+b2=(a﹣b)2﹣ab=12﹣2=10.18.(2020春•临邑县期末)已知x=,y=.(1)计算x+y=2;xy=4;(2)求x2﹣xy+y2的值;【分析】(1)先将知x=,y=进行分母有理化.然后代入求值;(2)将x2﹣xy+y2的化成(x+y)2﹣3xy,然后将(1)中数据代入求值.【解答】解:∵已知x=,y=.∴x==,y==﹣1.(1)x+y=+1+﹣1=2,xy=(+1)(﹣1)=4.故答案为2,4;(2)x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×4=20﹣12=8.19.(2020春•鱼台县期末)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1.【分析】原式第一项约分,第二项利用完全平方公式化简,第三项利用二次根式性质计算得到最简结果,把x的值代入计算即可求出值.【解答】解:∵x=+1>0,∴原式=+x2﹣4x+4﹣2x=4x+x2﹣4x+4﹣2x=x2﹣2x+4=(x﹣1)2+3=5+3=8.20.(2020春•马山县期末)已知:x=+,y=﹣,求代数式x2﹣y2+5xy的值.【分析】首先把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x2﹣y2+5xy=(x+y)(x﹣y)+5xy=2×2+5(+)(﹣)=4+5.。
八年级二次根式化简题100题1. 二次根式化简题在八年级数学学习中,二次根式化简是一个重要的知识点。
通过化简二次根式,我们可以简化计算过程,更好地理解和应用根式的性质。
本文将为大家提供100道八年级二次根式化简题,帮助大家巩固和提高相关知识。
1. $\sqrt{16} = 4$2. $\sqrt{25} = 5$3. $\sqrt{36} = 6$4. $\sqrt{49} = 7$5. $\sqrt{64} = 8$6. $\sqrt{81} = 9$7. $\sqrt{100} = 10$8. $\sqrt{121} = 11$9. $\sqrt{144} = 12$10. $\sqrt{169} = 13$11. $\sqrt{196} = 14$12. $\sqrt{225} = 15$13. $\sqrt{256} = 16$15. $\sqrt{324} = 18$16. $\sqrt{361} = 19$17. $\sqrt{400} = 20$18. $\sqrt{441} = 21$19. $\sqrt{484} = 22$20. $\sqrt{529} = 23$21. $\sqrt{576} = 24$22. $\sqrt{625} = 25$23. $\sqrt{676} = 26$24. $\sqrt{729} = 27$25. $\sqrt{784} = 28$26. $\sqrt{841} = 29$27. $\sqrt{900} = 30$28. $\sqrt{961} = 31$29. $\sqrt{1024} = 32$30. $\sqrt{1089} = 33$31. $\sqrt{1156} = 34$32. $\sqrt{1225} = 35$34. $\sqrt{1369} = 37$35. $\sqrt{1444} = 38$36. $\sqrt{1521} = 39$37. $\sqrt{1600} = 40$38. $\sqrt{1681} = 41$39. $\sqrt{1764} = 42$40. $\sqrt{1849} = 43$41. $\sqrt{1936} = 44$42. $\sqrt{2025} = 45$43. $\sqrt{2116} = 46$44. $\sqrt{2209} = 47$45. $\sqrt{2304} = 48$46. $\sqrt{2401} = 49$47. $\sqrt{2500} = 50$48. $\sqrt{2601} = 51$49. $\sqrt{2704} = 52$50. $\sqrt{2809} = 53$51. $\sqrt{2916} = 54$53. $\sqrt{3136} = 56$54. $\sqrt{3249} = 57$55. $\sqrt{3364} = 58$56. $\sqrt{3481} = 59$57. $\sqrt{3600} = 60$58. $\sqrt{3721} = 61$59. $\sqrt{3844} = 62$60. $\sqrt{3969} = 63$61. $\sqrt{4096} = 64$62. $\sqrt{4225} = 65$63. $\sqrt{4356} = 66$64. $\sqrt{4489} = 67$65. $\sqrt{4624} = 68$66. $\sqrt{4761} = 69$67. $\sqrt{4900} = 70$68. $\sqrt{5041} = 71$69. $\sqrt{5184} = 72$70. $\sqrt{5329} = 73$72. $\sqrt{5625} = 75$73. $\sqrt{5776} = 76$74. $\sqrt{5929} = 77$75. $\sqrt{6084} = 78$76. $\sqrt{6241} = 79$77. $\sqrt{6400} = 80$78. $\sqrt{6561} = 81$79. $\sqrt{6724} = 82$80. $\sqrt{6889} = 83$81. $\sqrt{7056} = 84$82. $\sqrt{7225} = 85$83. $\sqrt{7396} = 86$84. $\sqrt{7569} = 87$85. $\sqrt{7744} = 88$86. $\sqrt{7921} = 89$87. $\sqrt{8100} = 90$88. $\sqrt{8281} = 91$89. $\sqrt{8464} = 92$91. $\sqrt{8836} = 94$92. $\sqrt{9025} = 95$93. $\sqrt{9216} = 96$94. $\sqrt{9409} = 97$95. $\sqrt{9604} = 98$96. $\sqrt{9801} = 99$97. $\sqrt{10000} = 100$98. $\sqrt{10201} = 101$99. $\sqrt{10404} = 102$100. $\sqrt{10609} = 103$通过以上100道二次根式化简题的练习,相信大家对二次根式的化简有了更深入的理解。
第06讲二次根式的混合运算与化简求值一.解答题1.(2023秋•新蔡县期中)计算:;【分析】(1)先计算二次根式的除法,再算减法,即可解答;【解答】解:(1)=3﹣2+=3﹣2+2=3;2.(2023秋•和平区校级期中)计算:(1)()﹣1+(1﹣)0+|﹣2|;(2)÷﹣×+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)()﹣1+(1﹣)0+|﹣2|=2+1+2﹣=5﹣;(2)÷﹣×+=﹣+4=﹣+4=4﹣2+4=2+4.3.(2023秋•金塔县期中)计算:(1);(2);(3);(4).【分析】(1)把各个二次根式化成最简二次根式,然后合并同类二次根式即可;(2)先把各个二次根式化成最简二次根式,然后利用乘法分配律进行计算即可;(3)先根据二次根式的乘法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;(4)先根据二次根式的除法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;【解答】解:(1)原式==;(2)原式==9+1=10;(3)原式===;(4)原式===4.(2023秋•太原期中)计算下列各题:(1);(2);(3);(4).【分析】(1)先化简,然后合并同二次根式即可;(2)先算乘法,再化简即可;(3)根据完全平方公式将式子展开,然后合并同类二次根式和同类项即可;(4)先化简,然后合并同二次根式即可.【解答】解:(1)=3﹣5+4=2;(2)===;(3)=20﹣4+1+4=21;(4)=﹣3+5=.5.(2023秋•郓城县期中)计算:(1)﹣+;(2)|﹣1|+﹣;(3)+×﹣|2﹣|;(4)﹣(+1)2﹣(+3)×(﹣3).【分析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答;(4)利用完全平方公式,平方差公式,进行计算即可解答.【解答】解:(1)﹣+=3﹣2+=2;(2)|﹣1|+﹣=﹣1+3﹣2=;(3)+×﹣|2﹣|=2+5×﹣(﹣2)=2+2﹣+2=3+2;(4)﹣(﹣(+3)×(﹣3)=﹣(4+2)﹣(5﹣9)=﹣4﹣2+4=﹣2.6.(2023秋•太和区期中)计算:(1);(2);(3);(4);(5);(6).【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(3)先计算二次根式的乘除法,再算加减,即可解答;(4)先计算二次根式的乘除法,零指数幂,再算加减,即可解答;(5)先化简各式,然后再进行计算即可解答;(6)利用完全平方公式,平方差公式进行计算,即可解答.【解答】解:(1)=﹣5=6﹣5=1;(2)=+3﹣3=;(3)=(﹣)÷=÷﹣÷=﹣=2﹣;(4)=+1﹣=+1﹣4=﹣3;(5)=﹣3+4﹣+﹣1=0;(6)=3﹣2+2﹣(6﹣1)=3﹣2+2﹣5=﹣2.7.(2022秋•青羊区校级期末)计算:(1);(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)=2+﹣3+=3﹣2;(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2=2﹣+1+﹣4=2﹣+1+3﹣4=2﹣.8.(2023秋•锦江区校级期中)计算:(1);(2).【分析】(1)先化简各式,然后再进行计算即可解答;(2)利用平方差公式,完全平方公式进行计算,即可解答.【解答】解:(1)=1+|5﹣5|﹣=1+5﹣5﹣3=5﹣7;(2)=3﹣4+4﹣(3﹣2)=3﹣4+4﹣1=6﹣4.9.(2023秋•汝阳县期中)计算:(1)5;(2)()2﹣(2+3)2024(2﹣3)2023.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘法,再算加减,即可解答.【解答】解:(1)5=+﹣×﹣×2=+﹣5﹣2=﹣5;(2)()2﹣(2+3)2024(2﹣3)2023.=2﹣2+1﹣[(2+3)2023(2﹣3)2023]×(2+3)=2﹣2+1﹣[(2+3)(2﹣3)]2023×(2+3)=2﹣2+1﹣(8﹣9)2023×(2+3)=2﹣2+1﹣(﹣1)2023×(2+3)=2﹣2+1﹣(﹣1)×(2+3)=2﹣2+1+2+3=6.10.(2023秋•皇姑区校级期中)计算:(1)﹣(+1)2+(+1)(﹣1).(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2;【分析】(1)利用平方差公式,完全平方公式进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)﹣(+1)2+(+1)(﹣1)=3﹣(2+2+1)+3﹣1=3﹣2﹣2﹣1+3﹣1=﹣1;(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2=﹣(﹣1)+1﹣(﹣5)﹣4=1+1﹣3+5﹣4=3﹣3.11.(2023秋•潞城区校级期中)阅读与思考.下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.双层二次根式的化简二次根式的化简是一个难点,稍不留心就会出错,我在上网还发现了一类带双层根号的式子,就是根号内又带根号的式子、它们能通过完全平方公式及二次根式的性质消掉外面的一层根号.例如:要化简,可以先思考(根据1)..通过计算,我还发现设(其中m,n,a,b都为正整数),则有a+b.∴a=m2+2n2,b=2mn.这样,我就找到了一种把部分化简的方法.任务:(1)文中的“根据1”是完全平方式,b=2mn.(2)根据上面的思路,化简:.(3)已知,其中a,x,y均为正整数,求a的值.【分析】(1)根据完全平方公式进行解答即可;(2)根据题干中提供的信息,进行变形计算即可;(3)根据,得出a=x2+3y2,4=2xy,根据x,y为正整数,求出x=2,y=1或x=1,y=2,最后求出a的值即可.【解答】解:(1)的根据是完全平方公式;∵,∴a=m2+2n2,b=2mn.故答案为:完全平方公式;2mn.(2)===.(3)由题意得,∴a=x2+3y2,4=2xy,∵x,y为正整数,∴x=2,y=1或x=1,y=2,∴a=22+3×12=7或a=12+3×22=13.12.(2023秋•龙泉驿区期中)已知x=,y=.(1)求x2+y2+xy的值;(2)若x的小数部分是m,y的小数部分是n,求(m+n)2021﹣的值.【分析】(1)先利用分母有理化化简x和y,从而求出x+y和xy的值,然后再利用完全平方公式进行计算,即可解答;(2)利用(1)的结论可得:m=2﹣,n=﹣1,然后代入式子中进行计算,即可解答.【解答】解:(1)∵x===2﹣,y===2+,∴x+y=2﹣+2+=4,xy=(2﹣)(2+)=4﹣3=1,∴x2+y2+xy=(x+y)2﹣xy=42﹣1=16﹣1=15;(2)∵1<<2,∴﹣2<﹣<﹣1,∴0<2﹣<1,∴2﹣的小数部分是2﹣,∴m=2﹣,∵1<<2,∴3<2+<4,∴2+的小数部分=2+﹣3=﹣1,∴n=﹣1,∴(m+n)2021﹣=(2﹣+﹣1)2021﹣(n﹣m)=12021﹣[﹣1﹣(2﹣)]=1﹣(﹣1﹣2+)=1﹣+1+2﹣=4﹣2.13.(2023秋•双流区校级期中)阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上这样的式子,其实我们还可以将其进一步化简:﹣1,以上这种化简的步骤叫作分母有理化.(1)化简:;(2)已知的整数部分为a,小数部分为b,求a2+b2的值.(3)计算:+++…++.【分析】(1)利用分母有理化进行计算,即可解答;(2)先利用分母有理化进行化简,然后再估算出的值的范围,从而估算出2+的值的范围,进而可求出a,b的值,最后代入式子中进行计算,即可解答;(3)先利用分母有理化化简各式,然后再进行计算即可解答.【解答】解:(1)===﹣,故答案为:﹣;(2)===2+,∵1<3<4,∴1<<2,∴3<2+<4,∴2+的整数部分是3,小数部分=2+﹣3=﹣1,∴a=3,b=﹣1,∴a2+b2=32+(﹣1)2=9+3﹣2+1=13﹣2;(3)+++…++=+++…++=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.14.(2023秋•大东区期中)观察下列各式:第一个式子:=1=1+(1﹣);第二个式子:=1=1+();第三个式子:=1=1+();…(1)求第四个式子为:;(2)求第n个式子为:(n为正整数)(用n表示);(3)求+…+的值.【分析】(1)观察题中所给式子各部分的变化规律即可解决问题.(2)利用(1)中的发现即可解决问题.(3)根据(2)中的结论即可解决问题.【解答】解:(1)观察题中所给式子可知,第四个式子为:.故答案为:.(2)由(1)中的发现可知,第n个式子为:.故答案为:(n为正整数).(3)原式==1×2022+=2022+1﹣=.15.(2023秋•晋中期中)阅读与思考:观察下列等式:第1个等式=;第2个等式;第3个等式:;…按照以上规律,解决下列问题:(1)=4﹣;(填计算的结果)(2)计算:.【分析】(1)利用分母有理化进行化简计算,即可解答;(2)利用材料的规律进行计算,即可解答.【解答】解:(1)===4﹣,故答案为:4﹣;(2)=(﹣1+﹣+2﹣+…+﹣)×(+1)=(﹣1)×(+1)=2023﹣1=2022.16.(2023秋•郁南县期中)综合探究:像,…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,2与等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;.根据以上信息解答下列问题(1)与+互为有理化因式;(2)请你猜想=﹣;(n为正整数)(3)<(填“>”“<”或“=”);(4)计算:(+++…+)×(+1).【分析】(1)利用互为有理化因式的定义,即可解答;(2)利用分母有理化进行化简计算,即可解答;(3)先求出它们的倒数,然后再进行比较,即可解答;(4)利用分母有理化先化简各数,然后再进行计算即可解答.【解答】解:(1)与+互为有理化因式,(2)==﹣,故答案为:﹣;(3)∵==+,==+,+>+,∴>,∴<,故答案为:<;(4)(+++…+)×(+1)=[+++…+]×(+1)=(+++…+)×(+1)=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)×(+1)=×(2023﹣1)=×2022=1011.17.(2023秋•平阴县期中)阅读下列材料,然后解决问题.在进行二次根式的化简时,我们有时会遇到形如,,的式子,其实我们可以将其进一步化简:,=,如上这种化简的步骤叫做“分母有理化”.(1)化简=,=,=﹣.(2)化简:.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)先进行分母有理化,然后再进行计算即可解答.【解答】解:(1)==,==,===﹣,故答案为:;;﹣;(2)=+++=+++=(﹣1+﹣+﹣+﹣)=.18.(2023春•莱芜区月考)观察下列一组等式,然后解答问题:,,,,…….(1)利用上面的规律,计算:;(2)请利用上面的规律,比较与的大小.【分析】(1)归纳总结得到一般性规律,计算即可求出式子的值;(2)利用得出的规律将与进行转化,再进行比较即可.【解答】解:(1)原式===;(2)由题意得,,,∵,∴.19.(2023春•宁海县期中)已知:a=+2,b=﹣2,求:(1)ab的值;(2)a2+b2﹣3ab的值;(3)若m为a整数部分,n为b小数部分,求的值.【分析】(1)代入求值即可;(2)代入求值,可将(1)的结果代入;(3)根据题意估算出m、n的值,代入分式,化简计算.【解答】解:(1)∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=7﹣4=3;(2)∵a=+2,b=﹣2,ab=3,∴a2+b2﹣3ab=a2+b2﹣2ab﹣ab=(a﹣b)2﹣ab=[(+2)﹣(﹣2)]2﹣3=(+2﹣+2)2﹣3=42﹣3=16﹣3=13;(3)∵m为a整数部分,n为b小数部分,a=+2,b=﹣2,∴m=4,n=b=﹣2∴===,∴的值.20.(2023•沈丘县校级开学)已知a,b,c是△ABC的三边长.(1)若a,b,c满足(a﹣b)(b﹣c)=0,试判断△ABC的形状;(2)化简:﹣.【分析】(1)根据若ab=0,则a=0或b=0,求出a与b,b与c的关系,进行解答即可;(2)先根据三角形三边关系,判断a+b﹣c和a﹣b﹣c的正负,再利用二次根式的性质进行计算化简即可.【解答】解:(1)∵a,b,c满足(a﹣b)(b﹣c)=0,∴a﹣b=0或b﹣c=0,∴a=b或b=c,∴△ABC是等腰三角形;(2)∵a,b,c是△ABC的三边长,∴a+b>c,a﹣b<c,∴a+b﹣c>0,a﹣b﹣c<0,∴=a+b﹣c﹣(﹣a+b+c)=a+b﹣c+a﹣b﹣c=2a﹣2c21.(2023•江北区开学)求值:(1)若,,求的值;(2)若的整数部分为a,小数部分为b,求的值.【分析】(1)先求出ab和a+b的值,然后利用完全平方公式进行计算即可解答;(2)先利用分母有理化进行化简可得=,然后估算出的值的范围,从而求出a,b 的值,然后代入式子中进行计算,即可解答.【解答】解:(1)∵,,∴ab=(﹣1)(+1)=3﹣1=2,a+b=﹣1++1=2,∴=====4,∴的值为4;(2)==,∵4<7<9,∴2<<3,∴5<3+<6,∴<<3,∴的整数部分为2,小数部分为﹣2=,∴a=2,b=,∴=22+(1+)×2×+=4+7﹣1+=10+=,∴的值为.22.(2023春•清江浦区期末)像、、…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,例如,和、与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)计算:①=,②=;(2)计算:.【分析】(1)①分子、分母都乘即可;②分子、分母都乘即可;(2)第一项分子、分母都乘以,第二项分子、分母都乘以,再计算即可.【解答】解:(1)①,故答案为:;②,故答案为:;(2)===2+﹣﹣1=1.23.(2023春•珠海校级期中)观察式子:,反过来:,∴,仿照上面的例子:(1)化简①;②;(2)如果x+y=m,xy=n且x>y>0,化简.【分析】(1)模仿示例将更号里面算式变形为完全平方式的形式进行化简;(2)将算式变形为,再运用二次根式的性质进行化简.【解答】解:(1)①====+1;②====;(2)∵x+y=m,xy=n且x>y>0,∴====+.24.(2023春•濮阳期中)已知,,求下列代数式的值.(1)a2﹣2ab+b2;(2)a2﹣b2.【分析】(1)先计算a+b和a﹣b的值,将原式分解因式,再将a﹣b的值代入计算即可;(2)将原式分解因式,再将a+b和a﹣b的值代入计算即可.【解答】解:(1)∵,,∴,,∴a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)==.25.(2023春•张店区期末)阅读材料,解答下列问题.材料:已知,求的值.小明同学是这样解答的:∵==5﹣x﹣2+x=3,∵,∴,这种方法称为“构造对偶式”.问题:已知.(1)求的值;(2)求x的值.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)利用(1)的结论可得2=5,从而可得=2.5,进而可得9+x=6.25,然后进行计算即可解答.【解答】解:(1)∵(﹣)(+)=()2﹣()2=9+x﹣3﹣x=6,∵,∴=2,∴的值为2;(2)由(1)得:﹣=2,+=3,∴2=5,∴=2.5,∴9+x=6.25,∴x=﹣2.75,∴x的值为﹣2.75.。
(-2)2 ab ab 3 3 (x -1)2 ab a 3b 9 + x 2 x - 32512a 3a 2 -1 x 2 - 2x+1 24 32 2 y -3 11 x 3 + 3x 2 x + 3 x 2 - 2xy + y 2 x 2 + 2xy + y 2 (x - 1 )2 +4 x (x + 1 )2- 4 x- a 3- a - a a ab a a - a - a •二次根式化简练习题含答案(培优)(一)判断题:(每小题 1 分,共 5 分)1. =-2 .…………………( )2. -2 的倒数是 +2.() 3. = ( x -1)2.…()4. 、1 、 - 31是同类二次根式.…( )5 , 都不是最简二次根式.( ) 3(二)填空题:(每小题 2 分,共 20 分)16. 当 x时,式子有意义.15 7. 化简- 8÷ = . 8. a -的有理化因式是.9.当 1<x <4 时,|x -4|+ = .10.方程 (x -1)=x +1 的解是 .ab - c 2d 211.已知 a 、b 、c 为正数,d =.1112.13.化简:(7-5 )2000·(-7-5 )2001=.14. 若 x +1 + =0,则(x -1)2+(y +3)2= .15. x ,y 分别为 8-的整数部分和小数部分,则2xy -y 2= .(三)选择题:(每小题 3 分,共 15 分)16.已知 =-x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若 x <y <0,则 + =………………………()(A )2x (B )2y (C )-2x (D )-2y18.若 0<x <1,则 -等于………………………()2 2(A )(B )-(C )-2x(D )2xx x19.化简 a( a <0 ) 得………………………………………………………………()(A ) (B )- (C )- (D ) 20.当 a <0,b <0 时,-a +2 -b 可变形为………………………………………( )(A ) ( + b )2(B ) - (- b )2(C ) (+ - b )2(D ) (- - b )22 ax b 2 10 27 a5325324 - 11 11 -7aa ab -a3 + 2 3 - 2 3 - 2 3 + 223 +7mnab(四)计算题:(每小题6 分,共24 分)21.(-+)(--);22.5-4-2;ab n2 2n23.(a-+m ma b ;m24.(+a)÷(b a +b+-)(a≠b).(五)求值:(每小题7 分,共14 分)x3 -xy225.已知x=,y=,求x4 y + 2x3 y2 +x2 y3的值.x 2x -x2 +a2 1 26.当x=1-六、解答题:(每小题8 分,共16 分)b ab +b5 (-2)2 3 (x -1)2 a 3b 9 + x 2 x a a 2 -1 a 2 -1 a 2 -1 2 c 2d 2ab ab ab 7 28 3 48 28 48 2 2 2 2 2 2 x - 2 + yy x2 111127.计算(2 +1).28.若 x ,y 为实数,且 y = 1- 4x + 4x -1 + 1.求2 - 的值.(一)判断题:(每小题 1 分,共 5 分) 1、【提示】 =|-2|=2.【答案】×. 1 2、【提示】=3 + 2 =-(+2).【答案】×. 3 - 43、【提示】 =|x -1|, ( 数.【答案】×. x -1)2 =x -1(x ≥1).两式相等,必须 x ≥1.但等式左边 x 可取任何4、【提示】1 、- 3化成最简二次根式后再判断.【答案】√. 5、 是最简二次根式.【答案】×.(二)填空题:(每小题 2 分,共 20 分) 6、【提示】 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0 且 x ≠9. 7、【答案】-2a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a - )( )=a 2- ( a 2 -1)2 .a + .【答案】a + . 9、【提示】x 2-2x +1=( )2,x -1.当 1<x <4 时,x -4,x -1 是正数还是负数?x -4 是负数,x -1 是正数.【答案】3. 10、【提示】把方程整理成 ax =b 的形式后,a 、b 分别是多少? 11、【提示】 =|cd |=-cd .-1, +1.【答案】x =3+2 . 【答案】 +cd .【点评】∵ ab = ( ab )2 (ab >0),∴ ab -c 2d 2=( + cd ) ( - cd ).12、【提示】2 = ,4 = .1 1 1 【答案】<.【点评】先比较 ,113、【提示】(-7-5 )2001=(-7-5 )2000·()[-7-5 .](7-5 )·(-7-5 )=?[1.]【答案】-7-5 .x + 2 + y y x 3 - 22a x b2y - 3 y - 3 11 11 11 11 x 2 - 2xy + y 2 (x - y )2 (x + y )2 a 2- a 3 - a ⋅ a 2 - a a 2- a - a ab (-a )(-b ) a b 3 15 15 11 11 7 7 n ⋅ m m n a + ab + b - ab a + b 5 5 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】 x +1 ≥0, ≥0. 当 x +1 + =0 时,x +1=0,y -3=0. 15、【提示】∵ 3< <4,∴<8- <.[4,5].由于 8- 介于 4 与 5之间,则其整数部分 x =?小数部分 y =?[x =4,y =4- ]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题 3 分,共 15 分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴= =|x -y |=y -x .= =|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质 =|a |.18、【提示】(x - 1 )2+4=(x + 1 )2,(x + 1 )2-4=(x - 1)2.又∵ 0<x <1,x x x x1 1 ∴ x + >0,x - <0.【答案】D .xx【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当 0<x <1 1 时 ,x - <0.x19、【提示】 = = · =|a | =-a .【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a = ( - a )2 ,-b =( - b )2 , = . 【答案】C .【点评】本题考查逆向运用公式( a )2 =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为 a <0,b <0 时, 、 都没有意义.(四)计算题:(每小题 6 分,共 24 分)21、【提示】将 - 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( - )2- ( 2)2 =5-2 +3-2=6-2 . 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 + 11) - 4( 11 + 7 ) - 2(3 - 7 ) =4+ - - -3+ =1. 16 -1111- 79 - 723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2ab n - m m 1 )· a 2b 2 = 1- 1 mn ⋅ m + n b 2 mab n ma 2b 2 11 1 a2 - ab +1=-+ = .b 2aba 2b 2a 2b224、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式= ÷3 m n m nm ⋅m n nx 2 + 2xy + y 2 a a ( a - b ) - b b ( a + b ) - (a + b )(a - b )ab ( a + b )( a - b )a b3 63 - 23 + 23 664 6x2 +a2x2 +a2x2 +a2x2 +a2x2 +a222xx2 +a2 ( x2 +a2 -x)2x -x2 +a2x( x2 +a2 -x) x2 +a253 3 99555ab ( a - b )( a + b )-ab (a +b)4 100= a =a +b=a +ba +b=·=-+.【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7 分,共14 分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.2【解】∵x( +2) =5+2 ,y==( -2)2 =5-2 .∴ x+y=10,x-y=4 6 ,xy=52-(2 )2=1.x3 -xy 2 x(x +y)(x -y) x -y 2=x 4 y + 2x3 y 2 +x 2 y 3x2 y(x +y)2=== 6 .xy(x +y) 1⨯10 5【点评】本题将x、y 化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=( x2+a2 )2,∴ x2+a2-x =(-x),x2-x =-x(-x).x 1=x 2 - 2x x 2 +a 2 + ( x 2 +a 2 )2 +x x 2 +a 2 -x 2 ( x2 +a2 )2 -x x2 +2x x 2 +a 2 (1x 2 +a 2 -x)1x x2 +a2 ( x2 +a2 -x)=.当x=1-1-.【点评】本题如果将前两个“分式”分拆成两个“分x式”之差,那么化简会更简便.即原式=-+1=( 1 1 --1 ) 1 1 .六、解答题:(每小题8 分,共16 分)x x27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(2 +1)( 2 -1 + 3 - 2 + 4 - 3 +…+100 - 99 )2 -1 3- 2 4 -3 100 - 99=(2 +1)[(=(2 +1)(=9(2 +1).2 -1)+(--1 ))+(-)+…+(-)]【点评】本题第二个括号内有99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.a +bx2 +a2 ( x2 +a2 -x)x x2 +a2 ( x2 +a2 -x)2100x yy xy x y x x y xy⎧x = 128、【提示】要使 y 有意义,必须满足什么条件?⎧[1⎨- 4x ≥ 0 ] 你能求出 x ,y 的值吗?[⎨ 4 ]⎩4x -1 ≥0. ⎧ 1⎪ y = 1 . ⎩ 2 x ≤ ⎧1 - 4x ≥ 0 4 1 1 1 【解】要使 y 有意义,必须[⎨⎩4x - 1 ≥ 0 , 即⎨⎪ 1 x ≥ .∴ x = 4.当 x = 时4 ,y = .2又∵=| + - |-| =- |∵ ⎩ 4 -x = 1 ,y = 1 ,∴x y< . 42 yx∴ 原式= - =2 当 x 1 y 1 + + = , = 时 , 421 原式=2 4 =1 2.【点评】解本题的关键是利用二次根式的意义求出 x 的值,进而求出 y 的值.x y 2 ( y )2 y x x + x + 2 + y y x x - 2 + y y x ( y )2y x x - y xx y“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
二次根式混合运算题及答案1. 23.4.5.化简.6.把化为最简二次根式.7.的倒数是8.计算÷的结果是9.当x _________ 时,成立.10.11、(1) (2).12、计算:2(1++-.13、619624322+-+14、计算:(2)(2)+()20101-()2π--121-⎪⎭⎫⎝⎛15、计算(-)0-+16、计算:)13(9-0+)322(2818)212(2----+ 217计算(20141+)(211++321++431++…+201420131+)18×212-⎛⎫⎪⎝⎭--3|19计算:.20.计算:(1)+-; (2)(5-2)×(-);(3)(1++)(1--); (4)(-4)(2-4).π3)12)(12(-+2312-+4832426-÷+⨯3132218515062323231281315.021、22、23、24、25、2627、.28、29、.30、参考答案一.填空题(共19小题)1.计算:=.考点:二次根式的乘除法.专题:计算题.分析:先把除法变成乘法,再求出×=2,即可求出答案.解答:解:×÷,=××,=2,故答案为:2.点评:本题考查了二次根式的乘除法的应用,注意:应先把除法转化成乘法,再根据二次根式的乘法法则进行计算即可,题目较好,但是一道比较容易出错的题目.2.=﹣.考点:二次根式的乘除法.分析:根据二次根式的乘除法运算,即可得出结果.注意把除法运算转化为乘法运算.解答:解:=×=﹣.点评:本题主要考查了二次根式的乘除法运算,比较简单,同学们要仔细作答.3.计算:=+2.考点:二次根式的乘除法;幂的乘方与积的乘方.专题:计算题.分析:根据××(+2)得出12011×(+2),推出1×(+2),求出即可.解答:解:原式=××(+2),=×(+2),=1×(+2),=+2,故答案为+2.点评:本题考查了幂的乘方与积的乘方和二次根式的乘除法的应用,关键是得出原式=×(+2),题目比较好,难度适中.4.计算=40.考点:二次根式的乘除法.分析:根据二次根式的乘法和减法法则进行计算.解答:解:原式=45﹣|﹣5|=45﹣5=40.故答案是:40.点评:主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.5.化简=﹣.考点:分母有理化.分析:式子的分子和分母都乘以即可得出,根据b是负数去掉绝对值符号即可.解答:解:∵b<0,∵====﹣.故答案为:﹣.点评:本题考查了二次根式的性质和分母有理化,注意:当b<0时,=|b|=﹣b.6.把化为最简二次根式得.考点:最简二次根式.分析:根据最简二次根式的定义解答.解答:解:根据题意知,①当x>0、y>0时,=•=;②当x<0、y<0时,=•=;故答案是:.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.7.的倒数是﹣2﹣.考点:分母有理化.专题:计算题.分析:先找到的倒数,然后将其分母有理化即可.解答:解:的倒数是:==﹣2﹣.故答案为:﹣2﹣.点评:本题主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.8.计算÷的结果是2a.考点:二次根式的乘除法.分析:先根据二次根式的除法法则,根指数不变,把被开方数相除,再化成最简二次根式或整式即可.解答:解:÷===2a,故答案为:2a.点评:本题考查了二次根式的性质和二次根式的乘除法,主要考查学生的计算能力.9.当x>6时,成立.专题:推理填空题.分析:根据式子的特点成立时,也成立,则x﹣5≥0,x﹣6>0,将其组成方程组,解答即可.解答:解:由题意得,由①得,x≥5,由②得,x>6,故当x>6时,成立.故答案为:x>6.点评:本题考查的是二次根式的除法,解答此题的关键是熟知商的算术平方根的性质,即:=(a≥0,b>0).10.(2007•河北)计算:=a.考点:二次根式的乘除法.分析:根据二次根式的乘法法则运算即可.解答:解:原式==a.点评:主要考查了二次根式的乘除法运算.二次根式的运算法则:乘法法则=.除法法则=.11.(1)﹣;(2).【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1)=3﹣2+﹣3=﹣;(2)=4××=.12.-【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.试题解析:原式12632=-+--=-13【答案】 【解析】试题解析:解:619624322+-+=(6+⎭-=考点:二次根式的加减点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式. 14.0 【解析】试题分析:根据实数的运算法则进行计算即可救出答案. 试题解析:12010)21()2()1()32)(32(----++- π=234-⨯+- =0考点:实数的混合运算.15.;(2) .【解析】试题分析:(1)先计算零次幂、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.(1)原式;(2)原式=12⨯=考点:实数的混合运算;2.二次根式的混合运算.16.【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.试题解析:原式=2913⨯-+9213283=++-+-+=考点: 实数的混合运算.17.2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:(1+(211++321++431++…+201420131+)=(1+…=(1+1)=2014-1=2013.考点: 分母有理化.18.2【解析】解:原式=)2+1-⎛=2+1=3-3+2=219.1+114【解析】解:原式=4-(3-)+4=4-3++4=1+11420.(1);(2)11-9;(3)-4-2;(4)8-. 342236364【解析】(1)利用=a(a ≥0),=(a ≥0,b ≥0)化简;(2)可以利用多项式乘法法则,结合上题提示计算; (3)利用平方差公式; (4)利用多项式乘法公式化简. 21、原式=2﹣3=﹣; 22、原式=×==30;23、原式=2﹣12=﹣10.24、原式==2. 25、原式===﹣6a . 26、原式=; 27、原式=()2﹣(﹣1)2=2﹣(3﹣2+1)= 28、原式=. 29、.原式=(3﹣2+3)×=(+3)×=1+30、原式=﹣+=; 2a ab a b。
二次根式计算题 100 道一、化简类1、√82、√183、√274、√325、√506、√727、√988、√1289、√16210、√200二、计算类11、√2 +√812、√3 √1213、2√5 +3√2014、4√12 9√2715、√27 √7516、√48 +√1217、√18 √32 +√218、√24 √6 +3√819、2√12 6√1/3 +√4820、3√45 √125 +5√20三、乘法运算类21、√2 × √822、√3 × √1223、√5 × √2024、√6 × √3025、2√3 × 3√226、3√5 × 2√1027、4√2 × 5√828、5√6 × 6√329、√18 × √2430、√27 × √32四、除法运算类31、√8 ÷ √232、√18 ÷ √333、√24 ÷ √634、√48 ÷ √1235、√50 ÷ √536、√72 ÷ √837、√98 ÷ √738、√128 ÷ √1639、√162 ÷ √1840、√200 ÷ √20五、混合运算类41、(√5 +√3)(√5 √3)42、(√2 + 3)(√2 1)43、(2√3 1)(2√3 + 1)44、(3√2 + 2)(3√2 2)45、(√5 2)²46、(√3 + 1)²47、(2√5 3)²48、(4√2 + 1)²49、√(2 √3)²50、√(3 √5)²六、分母有理化类51、 1/(√2 1)52、 1/(√3 √2)53、 2/(√5 +√3)54、 3/(√6 √5)55、 4/(√7 √6)56、 5/(√8 √7)57、 6/(√9 √8)58、 7/(√10 √9)59、 8/(√11 √10)60、 9/(√12 √11)七、含参数类61、已知 a =√2 + 1,b =√2 1,求 a² b²62、若 x = 2 +√3,y =2 √3,求 x²+ y²63、设 m =√5 + 2,n =√5 2,计算 m² n²64、已知 p = 3 +√2,q =3 √2,求 p² 2pq + q²65、当 a =√7 + 2,b =√7 2 时,求(a + b)²(a b)²66、若 x =√11 + 3,y =√11 3,计算 xy67、给定 m =2√3 + 1,n =2√3 1,求 m²n + mn²68、设 a = 4 +√15,b =4 √15,求 a²b ab²69、已知 c = 5 +2√6,d =5 2√6,求 c²/d + d²/c70、当 e =3√2 + 1,f =3√2 1 时,求 ef/(e + f)八、比较大小类71、√11 与√1372、√15 与 473、2√3 与3√274、√5 + 1 与 375、2√7 3 与 276、√18 √12 与√10 √877、√20 +√5 与5√278、3√11 2√7 与4√3 √1979、√17 √13 与√11 √780、5√2 3√3 与4√3 2√2九、求值类81、已知 x =√3 + 1,求 x² 2x + 2 的值82、若 y =√5 2,求 y²+ 4y + 4 的值83、当 z =2√2 1 时,求 z²+ 2z + 1 的值84、已知 a =√7 + 3,求 a² 6a 7 的值85、若 b =√10 1,求 b² 2b 1 的值86、当 c =3√3 + 2 时,求 c² 4c 5 的值87、已知 d =4√2 3,求 d²+ 6d + 5 的值88、若 e =√13 2,求 e²+ 4e + 3 的值89、当 f =5√2 + 1 时,求 f² 10f + 26 的值90、已知 g =6√3 5,求 g² 12g + 40 的值十、综合应用类91、一个直角三角形的两条直角边分别为√12 厘米和√27 厘米,求这个直角三角形的面积。