2016-2017年河南省濮阳市开发区三中七年级上学期期中数学试卷带解析答案
- 格式:doc
- 大小:253.50 KB
- 文档页数:11
七年级《道德与法治》上册(人教版)期中考试卷(时间:60分钟,满分70分)班级姓名分数一、请你选择(共20分)▲单项选择(4小题,每小题2分,共8分。
下列每小题的四个选项中,只有一项是最符合题意的,请将所选项字母填入题后括号)1.进入初中后,我们要学会介绍自己,让同学了解自己。
那么,在自我介绍时最重要的是 ( )A.大声吆喝,哗众取宠 B.不好意思,扭扭捏捏C.突出个性,展示风采 D.小声小气,不敢张扬2.“主要看气质,气质靠颜值”是当前社会中的流行语之一,一些明星们的锥子脸、高鼻梁等所谓“涨气质”的“高颜值”,除了在荧屏中欣赏,不少人也希望通过整形手术让自己达到“男神”或“女神”的高度,然而随着不少人对“气质”“颜值”的选择,整形市场也出现逐渐低龄化趋势,令人担忧。
这启示广大青少年 ( )A.学习成才任务重,颜值形象没有用B.爱美之心人皆有,增添气质靠整容C.品德培养涨气质,盲目整容不可取D.男神女神颜值高,效仿明星赶潮流3.有人说:“人生最美好的东西就是同别人的友谊。
”这句话说明 ( )A.人生的价值就是要看有多少朋友B.人世间最亲密的人就是朋友C.友谊让我们感到生活的美好D.可以不择手段地维护友谊4.网络时代人们的交往方式更加多样。
在网络交往中,下列行为可取的是 ( )A.QQ:-回生二回熟,明天是周末,见个面吧B.微博:这是我假期旅游的照片,和大家一起分享C.淘宝:这家店铺不好,咱们一起黑了它D.微信:大家疯转的信息,一定很好,我也转一下▲多项选择(4小题,每小题3分,共12分。
下列每小题的四个选项中,至少有两项是符合题意的,请将所选项字母填入题后括号。
多选、错选均不得分。
少选者:若有两个正确选项,只选一项者得1.5分;若有三个正确选项,每选一项得1分;若有四个正确选项,选三项者得2分,选一、二项者均得1分)5.中学生刘敏说:“我学习很刻苦,也制订了学习计划,晚上常常学习到深夜。
可是我的成绩却并没有提高,真苦恼!”出现这种情况的原因可能有 ( )A.她没有掌握有效的学习方法,效率低下B.她太不聪明了,智商比其他同学低C.她没听从父母安排,思想经常开小差D.她没有合理安排好自己的学习时间6.初中生小红总是为自己个子不高感到难过,她总觉得自己什么都不如别人。
濮阳市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)-5的绝对值为()A . -5B . 5C .D .2. (2分)(2020·扶沟模拟) 下列各数中比﹣2小的是()A . ﹣1B . ﹣3C .D . 03. (2分)某商品以每包30千克为标准,32千克记为+2千克,那么记为-3千克、+5千克、-2千克、+1千克、+4千克的5包该商品的平均质量为()A . 31千克B . 30千克C . 1千克D . 5千克4. (2分)北京2008奥运的国家体育场鸟巢建筑面积达258000平方米, 用科学记数法表示为A . 平方米B . 平方米C . 平方米D . 平方米5. (2分) (2018七上·梁子湖期中) 下列式子:①abc;②x2﹣2xy+ ;③ ;④ ;⑤﹣ x+y;⑥ ;⑦ .中单项式的个数()A . 2D . 56. (2分)若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+ n]的值为()A . ﹣3B . ﹣2C . ﹣1D . 07. (2分) (2018七上·朝阳期中) 小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A . 80%x﹣100B . 80%(x﹣100)C . 20%(x﹣100)D . 20%x﹣1008. (2分)(2017·灌南模拟) 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,则下列关系正确的是()A . a+c=2bB . b>cC . c﹣a=2(a﹣b)D . a=c9. (2分)若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A . ﹣15B . 15C . 2D . -810. (2分)若,且,则的值为()A . 3B . 4二、填空题 (共8题;共8分)11. (1分) (2019七下·东莞月考) ﹣5的倒数是________;的相反数是________.12. (1分)将下列各数填在相应的集合里.,π,3.1415926,﹣0.456,3.030030003…(相邻的两个3之间0的个数逐渐增加),0,,,,.有理数集合:{________};无理数集合:{________};正实数集合:{________};整数集合:{________}.13. (1分) (2019七上·开州月考) 定义“*”是一种运算符号,规定,则=________.14. (1分) (2016七上·瑞安期中) 大于﹣3.1而小于π的整数有________个.15. (1分) a的相反数与b的3倍的和用代数式表示为________.16. (1分)已知n为自然数,代数式xn+1-2y3+1是三次多项式,则n可以取值的个数是________个.17. (1分) (2016七上·乐昌期中) 绝对值不大于6的整数的和是________.18. (1分)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a12+b12=________.三、解答题 (共7题;共72分)19. (20分)20. (5分) (2019七上·凤山期中) 先化简,再求值: ,其中, .21. (10分) (2016七上·萧山期中) 有一列式子,按一定规律排列成﹣3a2 , 9a5 ,﹣27a10 , 81a17 ,﹣243a26 ,….(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是________(2)上列式子中第n个式子为________(n为正整数).22. (6分) (2018七上·如皋期中) 在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的(探究).(提出问题)两个有理数a、b满足a、b同号,求的值.(解决问题)解:由a、b同号,可知a、b有两种可能:①当a,b都正数;②当a,b都是负数.①若a、b都是正数,即a>0,b>0,有|a|=a,|b|=b,则 = =1+1=2;②若a、b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则 = =(﹣1)+(﹣1)=﹣2,所以的值为2或﹣2.(探究)请根据上面的解题思路解答下面的问题:(1)两个有理数a、b满足a、b异号,求的值;(2)已知|a|=3,|b|=7,且a<b,求a+b的值.23. (7分)某检修小组乘一辆汽车在东西走向的公路上检修线路,约定向东走为正,某天从A地出发到收工时的行走记录如下(单位:km):+15,-2,+5,-1,+10,-13,-2,+12,-5,+4,+6,求:(1)问收工时检修小组是否回到A地,如果回到A地,请说明理由;如果没有回到A地,请说明检修小组最后的位置;(2)距离A地最近的是哪一次?距离多远?(3)若汽车每千米耗油3升,开工时储油180升,到收工时,中途是否需要加油,若加油最少加多少升?若不需要加油,到收工时,还剩多少升汽油?(假定汽车可以开到油量为0)24. (12分) (2016七上·大石桥期中) 一艘轮船顺水航行3小时,逆水航行2小时.(1)轮船在静水中前进的速度是m千米/小时,水流的速度是a千米/小时,则轮船顺水航行路程比逆水航行路程多几千米?(2)轮船在静水中前进的速度是90千米/小时,水流的速度是3千米/小时,则轮船顺水航行路程比逆水航行路程多几千米?25. (12分) (2018七上·唐山期中) 如图所示,C为线段AB上一点,AC=10cm,CB=6cm,M,N分别是AC,BC的中点。
2016-2017学年七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.32.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形3.扬州市旅游经济发展迅速,据扬州市统计局统计,2005年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A.1.137×107B.1.137×108C.0.1137×108D.1137×1044.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等5.一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.O D.±16.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和C.2和D.﹣(﹣2)和|﹣2|7.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a8.下列图形不能围成正方体的是()A. B.C. D.9.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A.18 B.﹣2 C.﹣18 D.210.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个二、填空题(每小题3分,共30分)11.的相反数是,绝对值是,倒数是.12.单项式﹣的系数为,次数是.13.某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是元.14.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是℃.15.绝对值不大于4的所有整数的积是,和是.16.有理数2,+7.5,﹣0.03,﹣0.4,0 中,非负数是.17.x=﹣时,代数式x2﹣x+6的值为.18.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.19.若(a+2)2+|b﹣3|=0,则a+b=.20.对有理数a与b,定义运算a*b=,则3*4=.三、解答题21.分别画如图几何体的主视图、左视图、俯视图.22.计算:(1)﹣12+11﹣8+39(2)23÷[(﹣2)3﹣(﹣4)](3)(﹣)×(﹣﹣)×0(4)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(5)(﹣﹣)×(﹣60).23.在数轴上把下列各数表示出来,并将它们从小到大排列起来.7,﹣,﹣3.5,0,.24.已知x,y互为相反数,a,b互为倒数,|n|=4,求x+y+的值.25.如图,用代数式表示图中阴影部分的面积,并求当a=4时阴影部分的面积(π取3).26.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?27.观察下列计算:=1﹣,=,,…(1)第n个式子是;(2)从计算结果中找规律,利用规律计算: ++++…+.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【解答】解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形【考点】截一个几何体.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选:D.3.扬州市旅游经济发展迅速,据扬州市统计局统计,2005年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A.1.137×107B.1.137×108C.0.1137×108D.1137×104【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:11 370 000=1.137×107.故选A.4.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【考点】有理数;相反数;绝对值.【分析】根据有理数的定义和特点,绝对值、互为相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、0的绝对值是0,故选项A错误;B、没有最大的负有理数也没有最小的负有理数,故选项B错误;C、没有最大的有理数,也没有最小的有理数,故选项C错误;D、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D正确.故选D.5.一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.O D.±1【考点】倒数.【分析】根据倒数的定义分别进行解答即可.【解答】解:一个数的倒数是它本身,则这个数是±1;故选D.6.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和C.2和D.﹣(﹣2)和|﹣2|【考点】绝对值;相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、|﹣2|=2,﹣2的相反数是2,故本选项正确;B、﹣2的相反数是2,故本选项错误;C、2的相反数是﹣2,故本选项错误;D、﹣(﹣2)=2,|﹣2|=2,相等,故本选项错误.故选A.7.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a【考点】列代数式.【分析】根据数的表示,用数位上的数字乘以数位即可.【解答】解:这个两位数是:10a+b.故选C.8.下列图形不能围成正方体的是()A. B.C. D.【考点】展开图折叠成几何体.【分析】根据正方体展开图的常见形式作答即可.【解答】解:由展开图可知:A、C、D能围成正方体;B围成几何体时,有两个面重合,故不能围成正方体.故选B.9.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A.18 B.﹣2 C.﹣18 D.2【考点】有理数的加法;相反数.【分析】根据题意表示出另一个数,相加即可得到结果.【解答】解:根据题意得:10+(﹣10+2)=10﹣10+2=2.故选D10.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成( )A .8个B .16个C .4个D .32个【考点】有理数的乘方.【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.【解答】解:2×2×2×2=24=16.故选B .二、填空题(每小题3分,共30分)11.的相反数是 ,绝对值是 ,倒数是 ﹣6 .【考点】倒数;相反数;绝对值.【分析】根据只有符号不同的两个数互为相反数,负数的绝对值是它的相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:的相反数是,绝对值是,倒数是﹣6,故答案为:,,﹣6.12.单项式﹣的系数为 ﹣ ,次数是 3 .【考点】单项式.【分析】根据单项式系数和次数的概念求解即可.【解答】解:单项式﹣的系数为﹣,次数是3,故答案为:﹣,3.13.某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 2a +10 元.【考点】列代数式.【分析】由已知,本月的收入比上月的2倍即2a ,还多10元即再加上10元,就是本月的收入.【解答】解:根据题意得:本月的收入为:2a +10(元).故答案为:2a +10.14.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是 4 ℃.【考点】有理数的加减混合运算.【分析】气温上升用加,下降用减,列出算式后进行有理数的加减混合运算.【解答】解:根据题意列算式得,﹣2+9﹣3=﹣5+9=4.即这天傍晚北方某地的气温是4℃.故答案为:4.15.绝对值不大于4的所有整数的积是0,和是0.【考点】有理数的乘法;有理数的加法.【分析】根据绝对值的性质列出算式,再根据有理数的乘法和加法运算进行计算即可得解.【解答】解:(﹣4)×(﹣3)×(﹣2)×(﹣1)×0×1×2×3×4=0;(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4=0.故答案为:0;0.16.有理数2,+7.5,﹣0.03,﹣0.4,0 中,非负数是2,+7.5,0.【考点】有理数.【分析】非负数是指正数和0.【解答】解:故答案为:非负数是2,+7.5,0.17.x=﹣时,代数式x2﹣x+6的值为6.【考点】代数式求值.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=﹣时,原式=++6=6,故答案为:618.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21.【考点】有理数的乘法.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.19.若(a+2)2+|b﹣3|=0,则a+b=1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,计算即可.【解答】解:由题意得,a+2=0,b﹣3=0,解得,a=﹣2,b=3,则a+b=1,故答案为:1.20.对有理数a与b,定义运算a*b=,则3*4=﹣12.【考点】有理数的混合运算.【分析】根据所给的运算,把a、b换成3、4即可.【解答】解:3*4==﹣12.故答案是﹣12.三、解答题21.分别画如图几何体的主视图、左视图、俯视图.【考点】作图-三视图.【分析】从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为2,1;从上面看从左往右3列正方形的个数依次为1,2,1.【解答】解:如图所示:22.计算:(1)﹣12+11﹣8+39(2)23÷[(﹣2)3﹣(﹣4)](3)(﹣)×(﹣﹣)×0(4)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(5)(﹣﹣)×(﹣60).【考点】有理数的混合运算.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算括号中的运算,再计算除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式利用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣20+40=20;(2)原式=23÷(﹣4)=﹣;(3)原式=﹣10+2﹣12=﹣20;(4)原式=﹣40+5+16=﹣19.23.在数轴上把下列各数表示出来,并将它们从小到大排列起来.7,﹣,﹣3.5,0,.【考点】有理数大小比较;数轴.【分析】根据数轴可知:负数都在原点的左边,它们比0小,而正数都在原点的右边,它们比0大,正数也比负数大;在数轴上,越向右,数越大,越向左,数越小;据此解答即可.【解答】解:如图所示:从小到大排列:﹣3.5<﹣<0<<7.24.已知x,y互为相反数,a,b互为倒数,|n|=4,求x+y+的值.【考点】代数式求值.【分析】先根据题意得出x+y=0,ab=1,n2=16,再代入代数式进行计算即可.【解答】解:∵x,y互为相反数,a,b互为倒数,|n|=4,∴x+y=0,ab=1,n2=16,∴x+y+=0+=16.25.如图,用代数式表示图中阴影部分的面积,并求当a=4时阴影部分的面积(π取3).【考点】代数式求值;列代数式.【分析】根据阴影部分面积=正方形的面积﹣扇形的面积列式,把a=4代入代数式进行计算即可得解.【解答】解:阴影部分面积=a2﹣πa2;当a=4,π=3时,阴影部分的面积=42﹣×3×42,=16﹣12,=4.26.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?【考点】正数和负数.【分析】(1)由已知,把所有数据相加,如果得数是正数,则A处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【解答】解:(1)根据题意:10+(﹣8)+(+7)+(﹣15)+(+6)+(﹣16)+(+4)+(﹣2)=﹣14,答:A处在岗亭南方,距离岗亭14千米;(2)由已知,把记录的数据的绝对值相加,即10+8+7+15+16+4+2=68,已知摩托车每行驶1千米耗油0.2升,所以这一天共耗油,68×0.2升.答:这一天共耗油13.6升.27.观察下列计算:=1﹣,=,,…(1)第n个式子是=﹣;(2)从计算结果中找规律,利用规律计算: ++++…+.【考点】有理数的混合运算.【分析】(1)根据题中给出的例子找出规律即可;(2)根据(1)中的规律即可进行计算.【解答】解:(1)∵第一个式子为:=1﹣,第二个式子为:=,第三个式子为:,第11页(共12页)第四个式子为:…, ∴第n 个式子为:=﹣.故答案为:=﹣; (2)原式=1﹣+﹣+﹣+…+﹣ =1﹣=.2016年10月25日第12页(共12页)。
2016-2017学年人教版初一数学七年级上册期中测试卷及答案2016-2017学年七年级(上)期中数学试卷一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在答题卡上的指定位置.每小题3分,共30分)1.相反数是2的数是()A.﹣2B.C.2D.2.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0 D.﹣5﹣2=﹣33.在有理数,(﹣1)2。
A.4B.3C.2D.1,﹣|﹣2|,(﹣2)3中正数有()个.4.下列说法中正确的是()A.没有最小的有理数B.既是正数也是负数C.整数只包括正整数和负整数D.﹣1是最大的负有理数5.2011年,XXX公布了第六次全国人口普查结果,总人口约为人,将用科学记数法表示正确的是()A.0.×1010B.1.3397×109C.13.397×108D.×1056.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是67.下列各式中与多项式2x﹣3y+4z相等的是()A.2x+(3y﹣4z)B.2x﹣(3y﹣4z)C.2x+(3y+4z)D.2x﹣(3y+4z)8.若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A.B.1C.﹣1D.﹣29.已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是()A.a+b>B.ab<C.b﹣a>D.a>b10.解为x=﹣3的方程是()A.3x﹣2=﹣7B.3x+2=﹣11C.2x+6=0D.x﹣3=0第1页(共17页)二.填空题(请将答案填写在答题卡指定的位置.每小题3分,共15分)11.如果水位升高3m时,水位变化记作+3m,那么水位下降5m时,水位变化记作:m.12.5与x的差的比x的2倍大1的方程是:.13.一个单项式加上﹣y2+x2后等于x2+y2,则这个单项式为.14.如果m、n互为相反数,a,b互为倒数,则|m+n﹣ab|等于.15.观察一列数。
2016-2017学年上学期九年级期中试卷数 学一、选择题(本题有9小题,每小题3分,共27分) 1.一元二次方程240x -=的解为( ) A .12x =,22x =-B .2x =-C . 2x =D .12x =,20x =2.抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,-1)C.(-3, 1)D.(-3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A.(-2,-3)B.(-2, 3)C.(2, 3)D.(-3, 2) 4.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=5.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )6.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++B. 23(1)2y x =+-C. 23(1)2y x =--D. 23(1)2y x =-+ 7.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A . 173(1+x%)2=127 B .173(1-2x%)=127 C . 127(1+x%)2=173 D .173(1-x%)2=1278.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ) A .10 B .8或10 C .8 D .8和10 9.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2> 4ac ;②2a+b=0;③a-b +c=0;④5a < b .其中正确结论有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题3分,共分18分)10、把方程3x(x+1)=2(x–2)+8化为一般形式,二次项系数,一次项系数,常数项。
人教版七年级(上)期中模拟数学试卷【含答案】一、选择题(本题有10个小题,每小题3分,满分30分。
下面每小题给出的四个选项中,只有一个是正确的)1.(3分)如图,A、B、C、D中的图案()可以通过如图平移得到.A.B.C.D.2.(3分)下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(0,﹣2)3.(3分)下列算式正确是()A.±=3B.=±3C.=±3D.=4.(3分)在3.14,,,π,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个5.(3分)如图,已知AB∥CD,∠2=125°,则∠1的度数是()A.75°B.65°C.55°D.45°6.(3分)若|x﹣2|+=0,则xy的值为()A.﹣8B.﹣6C.5D.67.(3分)如图,下列条件能判定AB∥CD的是()A.∠1=∠2B.∠1=∠4C.∠2=∠3D.∠2+∠3=180°8.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.9.(3分)已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣9 10.(3分)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A.(45,9)B.(45,13)C.(45,22)D.(45,0)二、填空题(本题有6个小题愿,每小题3分,满分18分)11.(3分)﹣8的立方根是.12.(3分)在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度再向上平移1个单位得到的点的坐标是.13.(3分)已知满足方程2x﹣my=4,则m=.14.(3分)点A(2,3)到x轴的距离是.15.(3分)用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=.16.(3分)如图,AB∥CD,∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=.三、解答题(本大题有9小题,满分102分,解答要求写出文字说明,证明过程或计算步骤) 17.(10分)(1)计算:﹣32+||+(2)解方程:(a﹣2)2=1618.(10分)解方程组(1)(2)19.(10分)已知,如图.AD∥BE,∠1=∠2,求证:∠A=∠E.请完成解答过程.证明:∵AD∥BE(已知)∴∠A=∠()又∵∠1=∠2(已知)∴AC∥()∴∠3=∠(两直线平行,内错角相等)∴∠A=∠E(等量代换)20.(10分)已知=x,=2,z是9的算术平方根,求:2x+y﹣z的平方根.21.(12分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,分别求出∠BOE,∠DOF的度数.22.(12分)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到三角形ABC,求三角形ABC的面积.23.(10分)已知与都是方程y=ax+b的解,求a+b的平方根.24.(14分)如图,在平面直角坐标系中,A(﹣2,0),C(2,2),过C作CB⊥x轴于B.(1)如图(1),则三角形ABC的面积为;(2)如图(2),若过B作BD∥AC交y轴于D,则∠BAC+∠ODB的度数为;若AE,DE分别平分∠CAB,∠ODB,求∠AED的度数.25.(14分)如图1,在平面直角坐标系中,A(m,0),B(n,0),C(﹣1,2),且满足式|m+2|+(m+n﹣2)2=0.(1)求出m,n的值.(2)①在x轴的正半轴上存在一点M,使△COM的面积等于△ABC的面积的一半,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积等于△ABC的面积的一半仍然成立,若存在,请直接在所给的横线上写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.2017-2018学年广东省广州中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分。
2016-2017学年中学七年级(上)期中数学试卷两套汇编二附答案解析2016-2017学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1094.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y26.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣97.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=38.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有个,互为相反数的是.10.用四舍五入的方法将3.495精确到十分位是,精确到0.01是.11.规定二阶行列式=ad﹣bc,依据此法则计算=.12.单项式﹣的系数是,次数是.13.在数轴上与﹣3的距离等于5的点表示的数是.14.若x2+x﹣1=0,则4x2+4x﹣6的值为.15.已知+=0,则的值为.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=;b=;c=.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,﹣a+c0(2)化简:|b﹣c|+|﹣a|.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?参考答案与试题解析一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.【考点】绝对值.【分析】根据绝对值的意义进行化简.【解答】解:因为|﹣|=故选D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将194亿用科学记数法表示为:1.94×1010.故选:A.4.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣5+4)ab=﹣ab,故选:D.5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y2【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(x2﹣3y2)+(x2+2y2)=x2﹣3y2+x2+2y2=2x2﹣y2.故选B6.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣9【考点】非负数的性质:绝对值.【分析】根据非负数的性质,几个非负数的和等于0,则每个数等于0,据此即可求得a和b的值,从而求解.【解答】解:根据题意得:a+3=0,b﹣2=0,解得:a=﹣3,b=2.则ab=(﹣3)2=9.故选C.7.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=3【考点】同类项.【分析】根据同类项的概念可得方程:a+1=2,b=3,解方程求得a,b的值.【解答】解:∵单项式﹣x n+1y3与y b x2是同类项,∴a+1=2,解得a=1,b=3.故选:B.8.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231【考点】代数式求值.【分析】观察图示我们可以得出关系式为:,因此将x的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值>100为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:由于,∵6<100∴应该按照计算程序继续计算,∵21<100∴应该按照计算程序继续计算,∴输出结果为231.故选D.二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有1个,互为相反数的是(﹣4)2与﹣42.【考点】正数和负数.【分析】先化简题目中的数据即可解答本题.【解答】解:∵(﹣4)2=16,﹣42=﹣16,(﹣3)2=9,﹣(﹣3)=3,故答案为:1,(﹣4)2与﹣42.10.用四舍五入的方法将3.495精确到十分位是 3.5,精确到0.01是 3.50.【考点】近似数和有效数字.【分析】根据“求一个小数的近似数,要看精确到哪一位,就从它的下一位运用“四舍五入”取得近似值”进行解答即可.【解答】解:用四舍五入的方法将3.495精确到十分位是3.5,精确到0.01是3.50;故答案为:3.5,3.50.11.规定二阶行列式=ad﹣bc,依据此法则计算=11.【考点】有理数的混合运算.【分析】原式利用已知的新定义化简即可得到结果.【解答】解:根据题意得:2×4﹣1×(﹣3)=8+3=11,故答案为:1112.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,次数是3.故答案是:﹣;3.13.在数轴上与﹣3的距离等于5的点表示的数是﹣8或2.【考点】数轴.【分析】设该点表示的数为x,根据绝对值的意义可列出方程|x+3|=5,求出x 即可.【解答】解:设该点表示的数为x,∴|x+3|=5,∴x+3=±5,x=﹣8或2;故答案为:﹣8或214.若x2+x﹣1=0,则4x2+4x﹣6的值为﹣2.【考点】代数式求值.【分析】将所求代数式进行适当的变形后,将x2+x﹣1=0整体代入即可求出答案.【解答】解:∵x2+x=1,∴原式=4(x2+x)﹣6=4﹣6=﹣2故答案为:﹣215.已知+=0,则的值为﹣1.【考点】绝对值.【分析】先判断出a、b异号,再根据绝对值的性质解答即可.【解答】解:∵ +=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.【考点】有理数的混合运算.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣+﹣)×(﹣12)=×12﹣×12+×12=2﹣9+5=﹣2;(2)﹣22+3×(﹣1)2016﹣|﹣4|×5=﹣4+3×1﹣4×5=﹣4+3﹣20=﹣21.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.【考点】整式的加减—化简求值.【分析】(1)首先去括号,合并同类项,进行化简后,再代入x的值即可求值;(2)首先去括号,合并同类项,进行化简后,再代入a、b的值即可求值.【解答】解:(1)原式=3x2﹣6x﹣3﹣12x+8+2x﹣2,=3x2﹣16x+3,当x=﹣3时,原式=3×(﹣3)2﹣16×(﹣3)+3=27+48+3=78;(2)原式=4a2b+6ab2﹣3a2b+3﹣2ab2﹣2,=a2b+4ab2+1,当a=﹣1,b=时,原式=1×+4×(﹣1)×+1=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.【考点】代数式求值;列代数式.【分析】先用含x的式子表示出第二组,第三组的植树棵树,然后求得各组的和,最后将x=130代入求解即可.【解答】解:第一组植树x棵,第二组植的树(2x+8)棵,第三组植的树(x﹣2)棵.三个组共植树的棵树=x+2x+8+x﹣2=4x+6.当x=130时,4x+6=4×130+6=526.所以三个小组共植树526棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?【考点】整式的加减—化简求值.【分析】先对原代数式化简,结果中不含x项,故计算结果与x的取值无关,故甲同学把x=错看成x=﹣,但计算结果仍正确.【解答】解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵结果中不含x项,∴与x的取值无关.∴甲同学把x=错看成x=﹣,但计算结果仍正确.20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=1;b=﹣1;c=0.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.【考点】有理数的加法;绝对值.【分析】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a、b、c的值;(2)由绝对值的意义,求出x、y,再由ay<0,确定y的值.代入代数式求出a+b+x+y的值.【解答】解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,∴a=1,b=﹣1,c=0;故答案为1,﹣1,0.(2)因为a=1,由于ay<0,所以y<0.因为|x|=3,|y|=4,所以x=±3,y=﹣4.当a=1,b=﹣1,x=3,y=﹣4时a+b+x+y=1+(﹣1)+3+(﹣4)=﹣1;当a=1,b=﹣1,x=﹣3,y=﹣4时a+b+x+y=1+(﹣1)+(﹣3)+(﹣4)=﹣7.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,﹣a+c>0(2)化简:|b﹣c|+|﹣a|.【考点】数轴;绝对值.【分析】根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)b﹣c<0,a+b<0,﹣a+c>0;(2)|b﹣c|+|﹣a|=c﹣b﹣a.故答案为:<,<,>.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?【考点】规律型:图形的变化类.【分析】(1)观察图形得到第①号图中的火柴棒根数为3根;第②号图中的火柴棒根数为(3+2)根;第③号图中的火柴棒根数为(3+2×2)根;…;(2)由此可推出第n号图中的火柴棒根数=3+2×(n﹣1)=(2n+1)根;(3)由(2)得到2n+1=2011,然后解方程即可.【解答】解:(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.搭1个这样的三角形要用3+2×0=3根火柴棒;搭2个这样的三角形要用3+213=5根火柴棒;搭3个这样的三角形要用3+2×2=7根火柴棒;则搭4个这样的三角形要用3+2×3=9根火柴棒;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.(3)2n+1=2015,n=1007,照这样2015根火柴棒可以摆1007个三角形.故答案为5,7,9;2016-2017学年七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.83.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=45.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×1047.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=98.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和010.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.311.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.14.按所列数的规律填上适当的数:3,5,7,9,,.15.比较大小:﹣(﹣)﹣|﹣3|;﹣0.1﹣0.001.(用“>”或“<”号)16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=.17.光的速度大约是300000000米每秒,用科学记数法可记作米每秒.18.单项式﹣的系数是,次数是.三、计算(每小题6分,共12分)19.20.﹣22+|5﹣8|+24÷(﹣3)×.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数【考点】正数和负数.【分析】根据各个选项中的说法可以判断其是否正确,从而可以解答本题.【解答】解:+(﹣2)=﹣2,故选项A错误;﹣(﹣2)=2,故选项B错误;上升5米,再下降3米,实际上升2米,故选项C正确;一个数不是正数,就是负数或零,故选项D错误;故选C.2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.8【考点】数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:∵数轴上点A表示﹣4,点B表示2,∴AB=|﹣4﹣2|=6.故选C.3.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|【考点】相反数.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选D.4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=4【考点】绝对值.【分析】利用绝对值的性质解答即可.【解答】解:A.|﹣4|=4,所以此选项等号成立;B.﹣|4|=﹣4,﹣|﹣4|=﹣4,所以此选项等号成立;C.|﹣4|=4,|4|=4,所以此选项等号成立;D.﹣|﹣4|=﹣4≠4,所以此选项等号不成立,故选D.5.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出大于﹣小于的所有整数有多少个即可.【解答】解:大于﹣小于的所有整数有:﹣3,﹣2,﹣1,0,1,2,3,共7个,故选:B.6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×104【考点】科学记数法与有效数字.【分析】根据科学计数法和有效数字以及精确度进行选择即可.【解答】解:A、近似数1.8与1.80表示的意义不一样,故原来的说法正确;B、5.0万精确到千位,故原来的说法不正确;C、0.200精确到0.001,故原来的说法正确;D、0.345×105用科学记数法表示为3.45×104,故原来的说法正确;故选B.7.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=9【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】分别根据有理数的加法、减法及乘方的运算法则计算出各选项的值.【解答】解:A、﹣12﹣8=﹣20,故本选项错误;B、﹣5+4=﹣1,故本选项错误;C、符合有理数的减法法则,故本选项正确;D、﹣32=﹣9,故本选项错误.故选B.8.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】有理数的乘方;倒数.【分析】分别计算出四个选项中有理数的平方及其倒数,找出相同的数即可.【解答】解:A、∵12=1,1的倒数是1,故本选项符合题意;B、∵(﹣1)2=1,1的倒数是﹣1,故本选项不符合题意;C、∵(±1)2=1,±1的倒数是±1,故本选项不符合题意;D、∵(±1)2=1,02=0;±1的倒数是±1,0没有倒数,故本选项不符合题意.故选A.10.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.11.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次【考点】单项式.【分析】单项式的系数是指单项式中的数字因数,单项式的次数是指单项式所含字母的指数的和,根据定义即可判断各项.【解答】解:A、﹣x的次数是1,故本选项错误;B、﹣πx的系数是﹣π,故本选项错误;C、﹣5是0次单项式,故本选项错误;D、﹣5a2b的次数是2+1=3,故本选项正确;故选D.12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a【考点】列代数式.【分析】根据一个三位数=百位上的数×100+十位上的数×10+个位上的数求解即可.【解答】解:∵一个三位数,个位数是a,十位数是b,百位数是c,∴这个三位数是100c+10b+a.故选D二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.14.按所列数的规律填上适当的数:3,5,7,9,11,13.【考点】有理数.【分析】先观察总结规律,再利用规律代入求解.【解答】解:本题所给的数都从小到大排列的奇数(2n+1),故应填11,13.15.比较大小:﹣(﹣)>﹣|﹣3|;﹣0.1<﹣0.001.(用“>”或“<”号)【考点】有理数大小比较.【分析】先去括号及绝对值符号,再比较大小即可.【解答】解:∵﹣(﹣)=>0,﹣|﹣3|=﹣3<0,∴﹣(﹣)>﹣|﹣3|;∵|﹣0.1|=0.1,|﹣0.001|=0.001,0.1>0.001,∴﹣0.1<﹣0.001.故答案为:>,<.16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=﹣2.【考点】代数式求值.【分析】由题意可知:x+y=0,mn=1,然后代入代数式即可求出答案.【解答】解:由题意可知:x+y=0,mn=1,∴原式=(1﹣3)+0=﹣2,故答案为:﹣217.光的速度大约是300000000米每秒,用科学记数法可记作3×108米每秒.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:300000000=3×108.故答案为:3.×108.18.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣;3.三、计算(每小题6分,共12分)19.【考点】有理数的混合运算.【分析】对有理数式将转化为,将去括号,约分化简.【解答】解:,=,=﹣6﹣20,=﹣26.20.﹣22+|5﹣8|+24÷(﹣3)×.【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3﹣=﹣.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)【考点】有理数的混合运算.【分析】原式逆用乘法分配律计算即可得到结果.【解答】解:原式=12.5×(3.7﹣2.3+6.6)=12.5×8=100.22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.【考点】代数式求值.【分析】首先将原式分解因式得出原式=(2x﹣y)2,再将已知代入求出即可.【解答】解:原式=(2x﹣y)2,∵x=3,y=﹣2,∴2x﹣y=8.∴原式=(2x﹣y)2=64.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣2<﹣1.5<0<1<3<4.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.【考点】列代数式;代数式求值.【分析】(1)甲方案的收费:月租+0.2×时间;乙方案收费:0.3×通话时间;(2)把10小时=600分钟代入(1)中的代数式计算即可.【解答】解:(1)甲方案:9+0.2x,乙方案:0.3x;(2)10小时=600分钟,甲方案收费:9+0.2×600=129(元),乙方案收费:0.3×600=180(元),∵129<180,∴甲方案合算.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?【考点】列代数式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a元;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=(0.6b﹣10)元.(2)∵用户2008年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2008年10月份用电113度,则他应交电费57.8元.26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.。
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
七年级上册数学期中考试卷及答案解析2017年七年级上册数学期中考试卷及答案解析畏难只有输,爱拼才会赢,输赢一念间。
2017年七年级数学期中考试你拼搏了吗?以下是店铺为你整理的2017年七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.13.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a24.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×1025.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.56.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.27.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A.120元B.100元C.80元D.60元8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= .13.若∠1=35°21′,则∠1的余角是.14.如果x=6是方程2x+3a=6x的解,那么a的值是.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=度.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为.三、细心解一解(每小题6分,满分18分)17.计算: .18.解方程:4x﹣6=2(3x﹣1)19.一个角的余角比它的补角的大15°,求这个角的度数.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐人;3张桌子拼在一起可坐人;n张桌子拼在一起可坐人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.2017年七年级上册数学期中考试卷答案与解析一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为8﹣(﹣2)=10℃.故选:C.2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.3.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a2【考点】合并同类项.【分析】分别根据合并同类项法则求出判断即可.【解答】解:A、3x+2y无法计算,故此选项错误;B、4x﹣3x=x,故此选项错误;C、ab﹣2ab=﹣ab,故此选项正确;D、2a+a=3a,故此选项错误.故选:C.4.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35800=3.58×104,故选:B.5.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.5【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故选:B.6.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.2【考点】两点间的距离.【分析】首先根据AC=6,CB=3,求出AB的长度是多少;然后用它除以2,求出AO的长度是多少;最后用AC的长度减去AO的长度,求出OC的长等于多少即可.【解答】解:∵AC=6,CB=3,∴AB=6+3=9,∵O是线段AB的中点,∴AO=9÷2=4.5,∴OC=AC﹣AO=6﹣4.5=1.5.故选:C.7.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的.进价为( )A.120元B.100元C.80元D.60元【考点】一元一次方程的应用.【分析】设这种商品每件的进价为x元,等量关系为:售价=进价+利润,根据这两个等量关系,可列出方程,再求解.【解答】解:设这种商品每件的进价为x元,则:x+20=200×0.5,解得:x=80.答:这件商品的进价为80元,故选B.8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“创”相对的字.【解答】解:结合展开图可知,与“创”相对的字是“明”.故选B.9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°【考点】方向角.【分析】根据方向角,可得∠1,∠2,根据角的和差,可得答案.【解答】解:如图,由题意,得∠1=54°,∠2=15°.由余角的性质,得∠3=90°﹣∠1=90°﹣54°=36°.由角的和差,得∠AOB=∠3+∠4+∠2=36°+90°+15°=141°,故选:D.10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R【考点】数轴.【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选:B.二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于﹣1 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是1,a=﹣1,那么a2017=﹣1,故答案为:﹣1.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= 16 .【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得x﹣3=1,2y﹣1=3,解得x=4,y=2.xy=24=16,故答案为:16.13.若∠1=35°21′,则∠1的余角是54°39′.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和为90度计算即可.【解答】解:根据定义,∠1的余角度数是90°﹣35°21′=54°39′.故答案为54°39′.14.如果x=6是方程2x+3a=6x的解,那么a的值是8 .【考点】一元一次方程的解.【分析】将x=6代入方程得到关于a的一元一次方程,从而可求得a的值.【解答】解:当x=6时,原方程变形为:12+3a=36,移项得:3a=36﹣12,解得:a=8.故答案为:8.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=180 度.【考点】角的计算.【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为180°.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为﹣2 .【考点】有理数的混合运算.【分析】根据*的含义,以及有理数的混合运算的运算方法,求出(﹣3)*7的值为多少即可.【解答】解:(﹣3)*7=5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2故答案为:﹣2.三、细心解一解(每小题6分,满分18分)17.计算: .【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=10+8× ﹣2×5=10+2﹣10=2.18.解方程:4x﹣6=2(3x﹣1)【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:4x﹣6=6x﹣2,移项得:4x﹣6x=6﹣2,合并得:﹣2x=4,解得:x=﹣2.19.一个角的余角比它的补角的大15°,求这个角的度数.【考点】余角和补角.【分析】设这个角为x°,则它的余角为(90°﹣x),补角为,再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),补角为,依题意,得:(90°﹣x)﹣=15°,解得x=40°.答:这个角是40°.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?【考点】正数和负数.【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知,正数为超过的次数,负数为不足的次数.【解答】解:(1)这8名男生的达标的百分数是×100%=62.5%;(2)这8名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56个.21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.【考点】整式的加减—化简求值;整式的加减.【分析】(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把代入上式计算.【解答】解:(1)3A﹣2B+2,=3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当时,3A﹣2B+2= .22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.【考点】比较线段的长短.【分析】由已知条件可知,BC=AC+BD﹣AB,又因为E、F分别是线段AB、CD的中点,故EF=BC+ (AB+CD)可求.【解答】解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+ (AB+CD)=2+ ×4=4cm.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐8 人;3张桌子拼在一起可坐10 人;n张桌子拼在一起可坐2n+4 人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.【考点】规律型:图形的变化类.【分析】(1)根据图形查出2张桌子,3张桌子可坐的人数,然后得出每多一张桌子可多坐2人的规律,然后解答;(2)求出每一张大桌子可坐的人数与可拼成的大桌子数,然后相乘计算即可.【解答】解:(1)由图可知,2张桌子拼在一起可坐8人,3张桌子拼在一起可坐10人,…依此类推,每多一张桌子可多坐2人,所以,n张桌子拼在一起可坐2n+4;故答案为:8,10,2n+4;(2)当n=5时,2n+4=2×5+4=14(人),可拼成的大桌子数,45÷5=9,14×9=116(人);24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.【考点】角的计算;角平分线的定义.【分析】设∠DOE=x,则∠BOE=2x,用含x求出∠COE的表达式,然后根据∠COE=α列出方程即可求出∠BOE的度数.【解答】解:设∠DOE=x,则∠BOE=2x,∵∠BOD=∠BOE+∠EOD∴∠BOD=3x∴∠AOD=180°﹣∠BOD=180°﹣3x∵OC平分∠AOD∴∠COD= ∠AOD=90°﹣ x∵∠COE=∠COD+∠DOE=90°﹣x+x=90°﹣∴90°﹣=α∴x=180°﹣2α,即∠DOE=180°﹣2α∴∠BOE=360°﹣4α25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n ﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×2×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.。
河南省濮阳县2017-2018学年七年级数学上学期期中试题一、选择题(本大题共10小题,每小题3分,共30分)1.某天的温度上升了- 2℃的意义是 ( )A .上升了2℃B .没有变化C .下降了- 2aCD .下降了2℃2.下列各组式子中,不是同类项的是 ( )A .222552xy y x 和 B .ba ab 和- C .y x y x 22221和 D .ab x abx 223773--和 3.下列计算:;77;325;523222a a a y y ab b a =+=-=+③②①④⋅=-xy xy y x 2222 其中正确的有 ( )A .0个B .1C .2个D .3个4.计算:12 -7×(-4) +8÷(-2)的结果是 ( )A .-24B .- 20C .6D .365. 长方形窗户上的装饰物如图所示,它是由半径均为6的两个四 分之一圆组成,则能射进阳光部分的面积是 ( )A .222b a π-B .2222b a π-C .22b ab π-D .222b ab π- 6. 已知2||,5||==b a ,且a b b a -=-||,则a+b 的值为( )A.3或7 B .-3或-7 C .-3 D .-77.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则 这两个两位数的和一定能被 ( )A.9整除 B .10整除 C.ll 整除 D .12整除8.使22222295)2()2(cy xy x y bxy x y xy ax +-=++--+-成立的a ,b ,c 的值依次是( )A. 4,-7,-1 B .-4,-7,-1 C. 4,7,-1 D. 4,7,19.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为 ( )A .1. 94 1010B .0.194×1010 C.19.4 109 D .1. 94 l0910.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将 图③中一个正方形剪开得到图④,图④中共有10个正方形; …,如此下去,则第2014个图中共有正方形的个数为( )A. 2014.B.2017C.6040D.6044二、填空题(本大题共10小题,每小题3分,共30分)11. -3的相反数是 ;-3的倒数是12.单项式5322y x -的系数是 ,次数是 , 13.若,0)2(|3|2=++-n m 则m+2n 的值为14.如果单项式b 3312y x y x a 和+是同类项,则a 、b 的值分别为15.若m 、n 互为相反数,则=---)102(21)(3n m n m ,),(),(21212211y y x x y x y x +=⋅16.按照下面所示的操作步骤,若输入并的值为-2,则输出的是________.17.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金 元.18.小明发明了一个魔术盒,当任意有理数对(a ,b)进入其中时,会得到一个新的有理数:a 2 +b-l ,例如把(3,-2)放人其中,就会得到32+(-2)-1 =6.现将有理数对(-1,3)放人其 中,得到有理数m ,再将有理数对(m ,1)放人其中后,得到有 理数是 219.若,),(),(21212211y y x x y x y x +=⋅则(4,-5).(-6,8)=20.已知整数,,,,4321a a a a 满足下列条件|,3||,2|3423+-=+-=a a a a 1,0121+-==a a a…依次类推,则a 2014的值为 。
2016-2017学年河南省濮阳市开发区三中七年级(上)期中数学试卷(五四学制)一、选择题(每题3分,共30分)1.(3分)在3,0,6,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.32.(3分)黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为()A.(11+t)℃B.(11﹣t)℃C.(t﹣11)℃D.(﹣t﹣11)℃3.(3分)下列式子中成立的是()A.(﹣2)2>﹣32B.﹣0.3<﹣C.﹣<﹣D.﹣>﹣4.(3分)小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()A.617×105B.6.17×106C.6.17×107D.0.617×1085.(3分)已知整式6x﹣l的值是2,y2的值是4,则(5x2y+5xy﹣7x)﹣(4x2y+5xy ﹣7x)=()A.﹣ B.C.或﹣D.2或﹣6.(3分)下列说法正确的是()A.平方是本身的数是0 B.立方等于本身的数是1、﹣1C.绝对值是本身的数是正数D.倒数是本身的数是1、﹣17.(3分)单项式的系数和次数分别是()A.﹣5和9 B.﹣5和4 C.和4 D.和98.(3分)下列计算正确的是()A.x5﹣x4=x B.x+x=x2C.x3+2x5=3x3D.﹣x3+3x3=2x39.(3分)已知a,b在数轴上的位置如图,则下列式子正确的是()A.a﹣b>a B.|a|<b﹣a C.b﹣a<a﹣b D.﹣a<b10.(3分)一长方形的一边长为5a﹣6b,另一边比它小3a﹣b,则它的周长是()A.14a﹣22b B.14a+22b C.7a+11b D.7a﹣11b二、填空题(每题2分,共16分)11.(2分)如果|x+8|=5,那么x=.12.(2分)计算2×(﹣3)2﹣33﹣6÷(﹣2)等于.13.(2分)在数轴上点A表示数﹣3,点B和点A的距离为4,则点B在数轴上表示的数为.14.(2分)若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.15.(2分)将一根长1米的木棒,第一次截去一半,第二次截去剩下的一半,如此截下去,截至第五次,剩下的木棒长是米.16.(2分)若一个三角形三边之比为3:4:5,又知最长的边比最短的边多4cm,则最短的边为cm.17.(2分)如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要个三角形,…,摆第n层图需要个三角形.18.(2分)当x=1时,ax3+bx﹣2=3;当x=﹣1时,ax3+bx﹣2=.三、解答题(共54分)19.(12分)计算:(1)﹣10+8÷(﹣2)3﹣(﹣40)×(﹣3);(2)﹣2+15﹣81+24÷(﹣3);(3)[30﹣(+﹣)×36]÷(﹣5);(4)[53﹣4×(﹣5)2﹣(﹣1)10]÷(﹣24﹣24+24).20.(8分)化简.(1)(﹣2ab+3a)﹣2(2a﹣b)+2ab;(2)(3x﹣2x2)﹣[5x﹣(2x2+1)﹣x2].21.(8分)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.若3A+6B的值与x的值无关,求y的值.22.(8分)当x=﹣时,求多项武3﹣2x2+3x+3x2﹣5x﹣7的值.23.(8分)已知(b﹣1)2+|a+2|=0,求代数式3ab2﹣3a2+5a2b+b3﹣4ab2+8a2﹣5ba2﹣100b3的值.24.(10分)某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?2016-2017学年河南省濮阳市开发区三中七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)在3,0,6,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.3【解答】解:3,0,6,﹣2这四个数中,最大的数是6.故选:B.2.(3分)黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为()A.(11+t)℃B.(11﹣t)℃C.(t﹣11)℃D.(﹣t﹣11)℃【解答】解:设最低气温为x℃,则:t﹣x=11,x=t﹣11.故选:C.3.(3分)下列式子中成立的是()A.(﹣2)2>﹣32B.﹣0.3<﹣C.﹣<﹣D.﹣>﹣【解答】解:A、∵(﹣2)2=4>0,﹣32=﹣9<0,∴、(﹣2)2>0﹣32,故本选项正确;B、∵|﹣0.3|=0.3,|﹣|=≈0.33,0.33>0.3,∴﹣03>﹣,故本选项错误;C、∵|﹣|==,|﹣|==,<,∴﹣>﹣,故本选项错误;D、∵|﹣|=>1,|﹣|=<1,﹣<﹣,故本选项错误.故选:A.4.(3分)小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()A.617×105B.6.17×106C.6.17×107D.0.617×108【解答】解:将61700000用科学记数法表示为6.17×107.故选:C.5.(3分)已知整式6x﹣l的值是2,y2的值是4,则(5x2y+5xy﹣7x)﹣(4x2y+5xy ﹣7x)=()A.﹣ B.C.或﹣D.2或﹣【解答】解:由题意得:x=,y=2或﹣2,原式=5x2y+5xy﹣7x﹣4x2y﹣5xy+7x=x2y,当x=,y=2时,原式=;当x=,y=﹣2时,原式=﹣,故选:C.6.(3分)下列说法正确的是()A.平方是本身的数是0 B.立方等于本身的数是1、﹣1C.绝对值是本身的数是正数D.倒数是本身的数是1、﹣1【解答】解:A、平方是本身的数是0和1,故A错误;B、立方等于本身的数是1、﹣1、0,故B错误;C、绝对值是本身的数是正数和0,故C错误;D、倒数是本身的数是1、﹣1,故D正.故选:D.7.(3分)单项式的系数和次数分别是()A.﹣5和9 B.﹣5和4 C.和4 D.和9【解答】解:单项式的系数是﹣;次数是9.故选:D.8.(3分)下列计算正确的是()A.x5﹣x4=x B.x+x=x2C.x3+2x5=3x3D.﹣x3+3x3=2x3【解答】解:A、x5与x4不是同类项,不可相加减,错误;B、x+x=2x,应该是系数相加,字母和字母的指数不变,错误;C、x3与x5不是同类项,不可相加减,错误;D、﹣x3+3x3=2x3,正确.故选D.9.(3分)已知a,b在数轴上的位置如图,则下列式子正确的是()A.a﹣b>a B.|a|<b﹣a C.b﹣a<a﹣b D.﹣a<b【解答】解:由图可知,a<0,b>0且|a|>|b|,A、应为a﹣b<a,故本选项错误;B、|a|<b﹣a,故本选项正确;C、应为b﹣a>a﹣b,故本选项错误;D、应为﹣a>b,故本选项错误.故选:B.10.(3分)一长方形的一边长为5a﹣6b,另一边比它小3a﹣b,则它的周长是()A.14a﹣22b B.14a+22b C.7a+11b D.7a﹣11b【解答】解:由题意可知:另一边的长度为(5a﹣6b)﹣(3a﹣b)=2a﹣5b,∴周长为:2(5a﹣6b)+2(2a﹣5b)=14a﹣22b,故选:A.二、填空题(每题2分,共16分)11.(2分)如果|x+8|=5,那么x=﹣3或﹣13.【解答】解:|x+8|=5,得到x+8=5或x+8=﹣5,解得:x=﹣3或﹣13.故答案为:﹣3或﹣13.12.(2分)计算2×(﹣3)2﹣33﹣6÷(﹣2)等于﹣6.【解答】解:原式=2×9﹣27+3=18﹣27+3=﹣6,故答案为:﹣613.(2分)在数轴上点A表示数﹣3,点B和点A的距离为4,则点B在数轴上表示的数为﹣7或1.【解答】解:在表示﹣3左边的,比﹣3小4的数时,这个数是﹣3﹣4=﹣7;在表示﹣3右边的,比﹣3大4的数时,这个数是﹣3+4=1.故答案为:﹣7或1.14.(2分)若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为2.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.15.(2分)将一根长1米的木棒,第一次截去一半,第二次截去剩下的一半,如此截下去,截至第五次,剩下的木棒长是米.【解答】解:第一次截去一半,剩下,第二次截去剩下的一半,剩下×=()2,如此下去,第5次后剩下的长度是()5=故答案为:.16.(2分)若一个三角形三边之比为3:4:5,又知最长的边比最短的边多4cm,则最短的边为6cm.【解答】解:设三角形的三边长分别为:3xcm,4xcm,5xcm,由题意得:5x﹣3x=4,解得:x=2,所以三角形的三边长分别为:6cm,8cm,10cm,所以最短的边为6cm,故答案为:6.17.(2分)如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n层图需要n2﹣n+1个三角形.【解答】解:观察可得,第1层三角形的个数为1,第2层三角形的个数为22﹣2+1=3,第3层三角形的个数为32﹣3+1=7,第四层图需要42﹣4+1=13个三角形摆第五层图需要52﹣5+1=21.那么摆第n层图需要n2﹣n+1个三角形.故答案为:21;n2﹣n+1.18.(2分)当x=1时,ax3+bx﹣2=3;当x=﹣1时,ax3+bx﹣2=﹣7.【解答】解:∵当x=1时,ax3+bx﹣2=3,∴a+b﹣2=3,∴a+b=5,∴x=﹣1时,ax3+bx﹣2=﹣a﹣b﹣2=﹣(a+b)﹣2=﹣5﹣2=﹣7,故答案为:﹣7.三、解答题(共54分)19.(12分)计算:(1)﹣10+8÷(﹣2)3﹣(﹣40)×(﹣3);(2)﹣2+15﹣81+24÷(﹣3);(3)[30﹣(+﹣)×36]÷(﹣5);(4)[53﹣4×(﹣5)2﹣(﹣1)10]÷(﹣24﹣24+24).【解答】解:(1)原式=﹣10+8÷(﹣8)﹣120=﹣10+(﹣1)﹣120=﹣131;(2)原式=﹣2+3﹣8=﹣7;(3)原式=(30﹣28﹣30+33)÷(﹣5)=5÷(﹣5)=﹣1;(4)原式=(125﹣4×25﹣1)÷(﹣24)=24÷(﹣24)=﹣1.20.(8分)化简.(1)(﹣2ab+3a)﹣2(2a﹣b)+2ab;(2)(3x﹣2x2)﹣[5x﹣(2x2+1)﹣x2].【解答】解:(1)原式=﹣2ab+3a﹣4a+2b+2ab=2b﹣a;(2)原式=3x﹣2x2﹣5x+2x2+l+x2=x2﹣2x+l.21.(8分)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.若3A+6B的值与x的值无关,求y的值.【解答】解:3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=(15y﹣6)x﹣9,∵3A+6B的值与x的值无关,∴15y﹣6=0,解得:y=.22.(8分)当x=﹣时,求多项武3﹣2x2+3x+3x2﹣5x﹣7的值.【解答】解:原式=3﹣2x2+3x+3x2﹣5x﹣x2﹣7=(3﹣7)+(﹣2+3﹣l)x2+(3﹣5)x=﹣4﹣2x,当x=﹣时,原式=一4﹣2×(﹣)=﹣3.23.(8分)已知(b﹣1)2+|a+2|=0,求代数式3ab2﹣3a2+5a2b+b3﹣4ab2+8a2﹣5ba2﹣100b3的值.【解答】解:原式=﹣ab2+5a2﹣99b3,∵(b﹣1)2+|a+2|=0,∴a=﹣2,b=1,则原式=2+20﹣99=﹣77.24.(10分)某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?【解答】解:(1)根据题意可得:向东走为“+”,向西走为“﹣”;则收工时距离等于(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=+39.故收工时在A地的正东方向,距A地39km.(2)从A地出发到收工时,汽车共走了|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65km;从A地出发到收工时耗油量为65×3=195(升).故到收工时中途需要加油,加油量为195﹣180=15升.………………………………………………………………………………………………………………………………………………………第11页(共11页)。