两角和与差的三角公式
- 格式:doc
- 大小:42.00 KB
- 文档页数:4
第讲两角和差的三角函数公式及应用三角函数是数学中的重要概念,它们在几何图形的计算以及物理、工程等学科中的应用非常广泛。
在三角函数的研究中,两角和差的公式是十分重要的一部分。
本文将讲解两角和差的三角函数公式及其应用。
一、两角和差的三角函数公式1. 两角和的公式设角A和角B为任意两个角,根据三角函数的定义,可以得到以下两角和的公式:sin(A + B) = sinAcosB + cosAsinBcos(A + B) = cosAcosB - sinAsinBtan(A + B) = (tanA + tanB) / (1 - tanAtanB)2. 两角差的公式同样地,设角A和角B为任意两个角,根据三角函数的定义,可以得到以下两角差的公式:sin(A - B) = sinAcosB - cosAsinBcos(A - B) = cosAcosB + sinAsinBtan(A - B) = (tanA - tanB) / (1 + tanAtanB)这些公式是通过对角A + B和角A - B进行展开,并利用三角函数的基本性质得到的。
掌握了这些公式,我们可以对任意两个角的和与差进行计算。
二、两角和差的三角函数公式的应用两角和差的公式在实际问题中有着广泛的应用。
以下是两个具体的应用案例。
1. 证明等式通过两角和差的公式,我们可以证明一些三角函数的等式。
例如,我们来证明sin(A + B) = sinAcosB + cosAsinB这个等式。
证明:根据两角和的公式,sin(A + B) = sinAcosB + cosAsinB 成立。
这样,我们通过两角和差的公式成功地证明了sin(A + B) = sinAcosB + cosAsinB这个等式。
2. 计算实际问题两角和差的公式在实际问题中的应用非常广泛。
例如,在直角三角形中,我们可以利用两角和差的公式求解各种角度下的三角函数值,从而进行各种计算。
假设在一个直角三角形中,已知一个角度的正弦值和余弦值,我们要求解这个角度。
两角和与差的正弦余弦正切公式下面我们将分别介绍两角和与差的正弦、余弦和正切公式。
1.正弦的两角和与差公式:设角A和角B的正弦值分别为sinA和sinB,那么有:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinB证明:我们考虑一个单位圆(半径为1),圆心为O,且角A对应的弧与x 轴的交点为点P,角B对应的弧与x轴的交点为点Q。
根据单位圆上的点的坐标表示,我们有:点P的坐标为(cosA, sinA)点Q的坐标为(cosB, sinB)以O为起点,连接OP和OQ,将其延长到圆的边缘,分别交于点M和点N。
由于所有的角度都是以弧度来表示的,因此我们可以使用三角函数的定义来表示OP和OQ的长度。
通过定义我们有:sinA = PMcosA = OMsinB = QNcosB = ON现在我们来计算sin(A + B)。
根据三角形的正弦定理,我们可以得到:sin(A + B) = PN(即三角形OPN的高)通过几何推导我们可以发现,三角形OPN的底边的长度为cosB * cosA。
同样地,通过几何推导我们可以发现,三角形OPN的高为sinA * cosB + cosA * sinB。
因此,我们得到sin(A + B) = sinA * cosB + cosA * sinB。
同理,可以推导得到sin(A - B) = sinA * cosB - cosA * sinB。
2.余弦的两角和与差公式:设角A和角B的余弦值分别为cosA和cosB,那么有:cos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinB证明:我们考虑一个单位圆(半径为1),圆心为O,且角A对应的弧与x 轴的交点为点P,角B对应的弧与x轴的交点为点Q。
根据单位圆上的点的坐标表示,我们有:点P的坐标为(cosA, sinA)点Q的坐标为(cosB, sinB)以O为起点,连接OP和OQ,将其延长到圆的边缘,分别交于点M和点N。
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。
两角和与差的公式-CAL-FENGHAI.-(YICAI)-Company One1两角和与差的正弦、余弦、正切公式1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β=tan(α±β)(1tan_αtan_β), tan αtan β=1-tan α+tan βtan(α+β)=tan α-tan βtan(α-β)-1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)设sin 2α=-sin α,α∈(π2,π),则tan 2α= 3.( √ )1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52. 化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.2.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34 C .-43 答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________.答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13,即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,且θ为第二象限角, 解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.4.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin[(x +φ)-φ]=sin x , ∴f (x )的最大值为1.题型一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1D .3(2)若0<α<π2,-π2<β<0,cos(π4+α)=13, cos(π4-β2)=33,则cos(α+β2)等于( ) B .-33D .-69答案 (1)A (2)C解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.故选A. (2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2). ∵0<α<π2, 则π4<π4+α<3π4,∴sin(π4+α)=223. 又-π2<β<0, 则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.故选C.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )C .-35D .-45(2)计算:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°)=________. 答案 (1)A (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 20°sin 10° =cos 10°-2sin 20°2sin 10° =cos 10°-2sin(30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32.题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( )(2)化简:2cos 4x -2cos 2x +122tan(π4-x )sin 2(π4+x )=________. (3)求值:cos 15°+sin 15°cos 15°-sin 15°=________.答案 (1)B (2)12cos 2x (3)3解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos[90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)]=sin 45°=22.故选B. (2)原式=12(4cos 4x -4cos 2x +1)2×sin(π4-x )cos(π4-x )·cos 2(π4-x ) =(2cos 2x -1)24sin(π4-x )cos(π4-x )=cos 22x 2sin(π2-2x ) =cos 22x 2cos 2x =12cos 2x .(3)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.答案 (1)cos α (2)3解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cos α2 =(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tan A +C2=3,所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2=3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=________,cos β=________.(2)(2013·课标全国Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( )答案 (1)-1010 95010 (2)A解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2. 又∵tan(α-β)=-13<0, ∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010.∵α为锐角,sin α=35,∴cos α=45. ∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42 =1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2, 所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,选A.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.(1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( )或255或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________. 答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45. 于是cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.高考中的三角函数求值、化简问题典例:(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin(θ+π4)=________.(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( ) A .3α-β=π2 B .2α-β=π2 C .3α+β=π2D .2α+β=π2(3)(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53 B .-59(4)(2012·重庆)sin 47°-sin 17°cos 30°cos 17°等于( ) A .-32 B .-12思维点拨 (1)注意和差公式的逆用及变形.(2)“切化弦”,利用和差公式、诱导公式找α,β的关系. (3)可以利用sin 2α+cos 2α=1寻求sin α±cos α与sin αcos α的联系. (4)利用和角公式将已知式子中的角向特殊角转化. 解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0,解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β, 即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α). ∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2), ∴由sin(α-β)=sin(π2-α),得α-β=π2-α, ∴2α-β=π2.(3)方法一 ∵sin α+cos α=33,∴(sin α+cos α)2=13, ∴2sin αcos α=-23,即sin 2α=-23. 又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ), ∴4k π+π<2α<4k π+32π(k ∈Z ), ∴2α为第三象限角,∴cos 2α=-1-sin 22α=-53. 方法二 由sin α+cos α=33两边平方得1+2sin αcos α=13,∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0,∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α=153.由⎩⎪⎨⎪⎧ sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧ sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53.(4)原式=sin(30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17° =sin 30°cos 17°cos 17°=sin 30°=12.答案 (1)3+22 (2)B (3)A (4)C温馨提醒 (1)三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.(2)三角求值要注意角的变换,掌握常见的配角技巧.方法与技巧1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.A 组 专项基础训练(时间:30分钟)1.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )答案 C解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以 tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan(α+β)-tan ⎝⎛⎭⎫β-π41+tan(α+β)tan ⎝⎛⎭⎫β-π4=322. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )答案 D解析 由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为( ) A .4 3C .4答案 B解析 1+cos 2α+8sin 2αsin 2α=2cos 2α+8sin 2α2sin αcos α, ∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654. 4.(2013·重庆)4cos 50°-tan 40°等于( )D .22-1答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin(50°+30°)-sin 40°cos 40° =3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3. 5.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是( ) A .-233B .±233C .-1D .±1答案 C解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1.6. sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.12°-3,(4cos 212°-2)sin 12°)=________.答案 -43解析 原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12°=23⎝ ⎛⎭⎪⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin(-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3. 9.已知 1+sin α1-sin α- 1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合. 解 因为1+sin α1-sin α- 1-sin α1+sin α = (1+sin α)2cos 2α- (1-sin α)2cos 2α=|1+sin α||cos α|-|1-sin α||cos α| =1+sin α-1+sin α|cos α|=2sin α|cos α|,所以2sin α|cos α|=-2tan α=-2sin αcos α.所以sin α=0或|cos α|=-cos α>0.故α的取值集合为{α|α=k π或2k π+π2<α<2k π+π或2k π+π<α<2k π+3π2,k ∈Z }.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升(时间:25分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos(α-π4)等于()A .-255B .-3510C .-31010答案 A 解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos(α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.12.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( )答案 D解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14, ∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14, ∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.13.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=________. 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2),所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210.14.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. (1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2,∴[f (β)]2-2=4sin 2π4-2=0.15.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4).(1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4· cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x=12(sin 2x +cos 2x )+12.由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12 =22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。
两角和与差及二倍角的三角函数公式1.两角和公式:设角A和角B的三角函数值分别为sinA、cosA、tanA、cotA等,sinB、cosB、tanB、cotB等,且A和B的和(差)角也在三角函数的定义域内(常用定义域是[-π, π]或[0,2π]),则有以下两角和(差)公式:(1)sin(A ± B) = sinA*cosB ± cosA*sinB(2)cos(A ± B) = cosA*cosB ∓ sinA*sinB(3)tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA*tanB)(4)cot(A ± B) = (cotA*cotB ∓ 1) / (cotB ± cotA)2.二倍角公式:设角A的三角函数值为sinA、cosA、tanA、cotA等,且2A在三角函数的定义域内,则有以下二倍角公式:(1)sin2A = 2*sinA*cosA(2)cos2A = cos^2A - sin^2A = 2*cos^2A - 1 = 1 - 2*sin^2A (3)tan2A = (2*tanA) / (1 - tan^2A)(4)cot2A = (cot^2A - 1) / (2*cotA)推导两角和与差公式和二倍角公式的方法通常有几种:三角函数的和差化积、三角恒等式推导法、欧拉公式推导法等。
这里以三角函数的和差化积为例,推导两角和公式和二倍角公式。
推导两角和公式:对于sin(A ± B),利用三角函数的和差化积公式,有:sin(A ± B) = sinA*cosB ± cosA*sinB其中,sinA*cosB表示A和B的正弦余弦积,cosA*sinB表示A和B 的余弦正弦积。
推导二倍角公式:对于sin2A,利用三角函数的和差化积公式,令A=B,有:sin(2A) = sin(A + A) = sinA*cosA + cosA*sinA = 2*sinA*cosA 同样地,对于cos2A,利用三角函数的和差化积公式,有:cos(2A) = cos^2A - sin^2A = 2*cos^2A - 1 = 1 - 2*sin^2Atan2A和cot2A的推导过程类似,利用两角和公式进行展开和化简即可。
tan 2α= . tan αtan β=1- = -1.(3)公式 tan(α+β)= tan α+tan β可以变形为 tan α+tan β=tan(α+β)(1-tan αtan β),且对任意(5)设 sin 2α=-sin α,α∈( ,π),则 tan 2α= 3.( √ ) 1+tan αtan β1-tan αtan β两角和与差的正弦、余弦、正切公式1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan α-tan βtan(α-β)= (T (α-β))tan α+tan βtan(α+β)= (T (α+β))2.二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;2tan α 1-tan 2α3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如 T (α±β)可变形为tan α±tan β=tan(α±β)(1 tan_αtan_β),tan α+tan β tan α-tan βtan (α+β) tan (α-β)【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数 α,β,使等式 sin(α+β)=sin α+sin β 成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和 cos A cos B 大小不确定.(× )1-tan αtan β角 α,β 都成立.( × )(4)存在实数 α,使 tan 2α=2tan α.( √ )π2A. B. C .- D .- 解析 ∵sin α+2cos α= 10∴sin 2α+4sin αcos α+4cos 2α= .cos 2α 4 sin α-cos α 2A .- B. C .- D. sin α-cos α 2 tan α-1 2 1-tan 2α 4 3.(2013· 课标全国Ⅱ)设 θ 为第二象限角,若 tan ⎝θ+4⎭= ,则 sin θ+cos θ=________.答案 - 10解析 ∵tan ⎝θ+4⎭= ,∴tan θ=- ,解得 sin θ= 10 ,cos θ=-. ⎩1.(2013· 浙江)已知 α∈R ,sin α+2cos α= 10 2,则 tan 2α 等于( )4 3 3 4 3 4 43答案 C2 ,52化简得:4sin 2α=-3cos 2α,sin 2α 3 ∴tan 2α= =- .故选 C.sin α+cos α 12.若 = ,则 tan 2α 等于( )3 34 44 4 33答案 Bsin α+cos α 1 tan α+1 1解析 由 = ,等式左边分子、分母同除cos α 得, = ,解得 tan α=-3,2tan α 3则 tan 2α= = .⎛ π⎫ 1 25⎛ π⎫ 1 12 3⎧⎪3sin θ=-cos θ, 即⎨ 且 θ 为第二象限角,⎪sin 2θ+cos 2θ=1,3 1010 10∴sin θ+cos θ=- 10 5.4.(2014· 课标全国Ⅱ)函数 f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.(2)若 0<α< ,- <β<0,cos( +α)= , cos( - )= ,则 cos(α+ )等于( )A. 39tan α+tan β(2)cos(α+ )=cos[( +α)-( - )]答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ)=sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为 1.题型一 三角函数公式的基本应用例 1 (1)设 tan α,tan β 是方程 x 2-3x +2=0 的两根,则 tan(α+β)的值为( )A .-3C .1B .-1D .3π π π 12 2 4 3π β 3 β4 2 3 23 B .- 335 3 C.D .-6 9答案 (1)A (2)C解析 (1)由根与系数的关系可知tan α+tan β=3,tan αtan β=2.3∴tan(α+β)= = =-3.1-tan αtan β 1-2故选 A.β2π π β4 4 2=cos( +α)cos( - )+sin( +α)sin( - ).∵0<α< ,则 < +α< ,∴sin( +α)= .又- <β<0,则 < - < ,则 sin( - )= .故 cos(α+ )= × + × = .故选 C.(1)若 α∈( ,π),tan(α+ )= ,则 sin α 等于( )5 5C .-D .- (2)计算: -sin 10°(-tan 5°)=________.答案 (1)A(2) 34 1-tan α 7 4 cos α ∴cos α=- sin α.∴sin 2α=.π π β π π β4 4 2 4 4 2π2π π 3π 4 44π 2 2 43π 2π π β π 4 4 2 2π β 6 4 23β 1 3 2 2 6 5 32 3 3 3 3 9思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.π π 1 2 4 73A.354 B.451+cos 20° 12sin 20° tan 5°2π tan α+1 1解析 (1)∵tan(α+ )= = ,3 sin α ∴tan α=- = ,43又∵sin 2α+cos 2α=1,9 25又∵α∈( ,π),∴sin α= .cos 25°-sin 25° (2)原式=-sin 10°· = cos 10° 2sin 10° sin 10° 222cos 4x -2cos 2x +(2)化简: =________.2tan ( -x )sin 2( +x ) (3)求值: =________.答案 (1)B (2) cos 2x (3) 3.故选 B. (4cos 4x -4cos 2x +1) (2)原式=2×sin ( -x )·cos 2( -x )cos ( -x )(2cos 2x -1)2 = =4sin ( -x )cos ( -x ) 2sin ( -2x )π 32 52cos 210° 4sin 10°cos 10° sin 5°cos 5° sin 20°-==== cos 10°-2sin 20° 2sin 10°cos 10°-2sin (30°-10°) 2sin 10°cos 10°-2sin 30°cos 10°+2cos 30°sin 10° 2sin 10°3 .题型二 三角函数公式的灵活应用例 2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为()A. 21 C.B.D. 2 23 21 2π π4 4cos 15°+sin 15°cos 15°-sin 15°12解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=12π4 ππ 4 4cos 22xπ π π 4 4 222= = cos 2x .(1+sin α+cos α)· (cos -sin ) (2)在△ABC 中,已知三个内角 A ,B ,C 成等差数列,则 tan +tan + 3tan tan 的值为(2cos 2 +2sin cos )· (cos -sin ) 2 因为 α∈(0,π),所以 cos >0,(2cos 2 +2sin cos )· (cos -sin ) 所以原式=2 =(cos +sin )·(cos -sin )=cos 2 -sin 2 =cos α.(2)因为三个内角 A ,B ,C 成等差数列,且 A +B +C =π,所以 A +C = , = ,tan 所以 tan +tan + 3tan tan =tan ⎝2+ 2 ⎭⎝1-tan 2tan 2 ⎭+ 3tan tan = 3⎝1-tan 2tan 2 ⎭+ 3tan tan = 3.cos 22x 1 2cos 2x 21+tan 15° tan 45°+tan 15° (3)原式= =1-tan 15° 1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用 及变形,如 tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式 的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.α α 2 2(1)已知 α∈(0,π),化简:=________. 2+2cos αA C A C2 2 2 2________.答案 (1)cos α (2) 3α α α α α 2 2 2 2 2解析(1)原式= .α 4cos 2α2α α α α α 2 2 2 2 2α 2cosα α α α α α2 2 2 2 2 22π A +C πA +C 3 2 32= 3,A C A C2 2 2 2⎛A C ⎫⎛ A C ⎫ A C 22⎛ A C ⎫ A C 22题型三 三角函数公式运用中角的变换例 3 (1)已知 α,β 均为锐角,且 sin α= ,tan(α-β)=- .则 sin(α-β)=________,cos β=⎛ (2)(2013· 课标全国Ⅱ)已知 sin 2α= ,则 cos 2⎝α+4⎭等于(6 3 2 3答案 (1)- 10解析 (1)∵α,β∈(0, ),从而- <α-β< .又∵tan(α-β)=- <0,∴- <α-β<0.∴sin(α-β)=- 10 ,cos(α-β)= .∵α 为锐角,sin α= ,∴cos α= .= × + ×(- )= . 1+cos2⎝α+4⎭(2)因为 cos 2⎝α+4⎭=1+cos ⎝2α+2⎭ 1-sin 2α2 2π⎫ 1-sin 2α 3 1 ⎛ 所以 cos ⎝ 4⎭ 22 6 2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β= - ,α= + ,3 15 3________.1 1 1 2A. B. C. D. 2 π⎫3)910 5010 (2)Aπ π π2 2 213π23 10 10 103 45 5∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)4 3 10 3 10 9 105 10 5 10 50⎛ π⎫ ⎛ π⎫ 2⎛ π⎫= = ,21- 2 α+ = = = ,选 A.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角” 有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所 求角”变成“已知角”.α+β α-β α+β α-β2 2 2 2α-β =(α+ )-( +β)等.,sin(α+β)= ,则 cos β 等于( )255 C. 或 D. 5 5 25(2)已知 cos(α- )+sin α= 3,则 sin(α+ )的值是________.答案 (1)A (2)-解析 (1)依题意得 sin α= 2 5, cos(α+β)=± 1-sin 2(α+β)=± .因为 > >- ,所以 cos(α+β)=- .=- × + × = . (2)∵cos(α- )+sin α= 3,∴ 3 cos α+ sin α= 3, 3( cos α+ sin α)= 3, 3sin( +α)= 3,∴sin( +α)= ,∴sin(α+ )=-sin( +α)=- .β α2 2 2(1)设 α、β 都是锐角,且 cos α=5 35 52 5 A.2 5 2 5 2552 5 B.或5π 4 7π6 5 645545又 α,β 均为锐角,所以 0<α<α+β<π,cos α>cos(α+β).4 5 4 5 5 54 5于是 cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α4 5 3 2 5 2 5 5 5 5 5 25π 4 6 53 42 2 51 3 42 2 5π 4 6 5π 46 57π π 46 6 5典例:(1)若 tan 2θ=-2 2,π<2θ<2π,则 2 =________.2sin (θ+ ) cos β ,则( )(2)(2014· 课标全国Ⅰ)设 α∈(0, ),β∈(0, ),且 tan α= A .3α-β=πC .3α+β=π(3)(2012· 大纲全国)已知 α 为第二象限角,sin α+cos α= 33 B .- 5 9 C. 5 9 D. 5A .- 5 (4)(2012· 重庆)sin 47°-sin 17°cos 30°2 B .-12 C.1A .- 3 解析 (1)原式=cos θ-sin θ 1-tan θsin θ+cos θ 1+tan θ,解得 tan θ=- 1∵π<2θ<2π,∴ <θ<π.∴tan θ=- 1 ”高考中的三角函数求值、化简问题θ 2cos 2 -sin θ-1 π 4 π π 1+sin β2 2π2 B .2α-β=2π2D .2α+β=23 ,则 cos 2α 等于(3cos 17° 等于()3 2 D. 2 思维点拨 (1)注意和差公式的逆用及变形.(2)“切化弦 ,利用和差公式、诱导公式找 α,β 的关系.(3)可以利用 sin 2α+cos 2α=1 寻求 sin α±cos α 与 sin αcos α 的联系. (4)利用和角公式将已知式子中的角向特殊角转化.=又 tan 2θ= 2tan θ=-2 2,即 2tan 2θ-tan θ- 2=0,1-tan 2θ2或 tan θ= 2.π2 2 ,)1+ 1故原式= 21- 12=3+2 2.cos β cos α cos β ∴sin(α-β)=cos α=sin( -α).∵α∈(0, ),β∈(0, ),∴α-β∈(- , ), -α∈(0, ),∴由 sin(α-β)=sin( -α),得 α-β= -α,∴2α-β= .(3)方法一∵sin α+cos α= 3 ,∴(sin α+cos α)2= ,∴2sin αcos α=- ,即 sin 2α=- .∴2k π+ <α<2k π+ π(k ∈Z ),∴4k π+π<2α<4k π+ π(k ∈Z ),∴cos 2α=- 1-sin 22α=- 5两边平方得 1+2sin αcos α= ,∴2sin αcos α=- .1+sin β sin α 1+sin β(2)由 tan α= 得 = ,即 sin αcos β=cos α+cos αsin β,π2π π2 2π π π π2 2 2 2π π2 2π213 32 23 3又∵α 为第二象限角且 sin α+cos α=π 32 432∴2α 为第三象限角,.333 >0,方法二 由 sin α+cos α= 3 13 323∵α 为第二象限角,∴sin α>0,cos α<0,∴sin α-cos α= (sin α-cos α)2 =1-2sin αcos α= 15 3.⎧sinα+cosα=3,由⎨663∴cos2α=2cos2α-1=-5.(4)原式==sin30°cos17°=sin30°=.,sin2α=,配方变形:1±sinα=⎝sin2±cos2⎭2,1+cosα=2cos2,1-cosα=2sin2.“”3⎩sinα-cosα=15,⎧⎪sinα=得⎨⎪⎩cosα=3+15,3-15.3sin(30°+17°)-sin17°cos30°cos17°=sin30°cos17°+cos30°sin17°-sin17°cos30°cos17°1cos17°2答案(1)3+22(2)B(3)A(4)C温馨提醒(1)三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.(2)三角求值要注意角的变换,掌握常见的配角技巧.方法与技巧1.巧用公式变形:和差角公式变形:t an x±tan y=tan(x±y)·(1tan x·tan y);倍角公式变形:降幂公式cos2α=1+cos2α1-cos2α22⎛αα⎫αα222.重视三角函数的“三变”:三变”是指“变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降11/182.在(0,π)范围内,sin(α+β)=2所对应的角α+β不是唯一的.⎛⎛1.已知tan(α+β)=,tan⎝β-4⎭=,那么tan⎝α+4⎭等于(18 B.1322 C.3A.13解析因为α++β-=α+β,所以α+=(α+β)-⎝β-4⎭,所以tan⎝α+4⎭=tan⎣(α+β)-⎝β-4⎭⎦tan(α+β)-tan⎝β-4⎭π⎫221+tan(α+β)tan⎝β-4⎭2.若θ∈[,],sin2θ=375 B.45 C.7A.3解析由sin2θ=3(sinθ+cosθ)2=373+74.又θ∈[,],∴sinθ+cosθ=同理,sinθ-cosθ=3-7次的灵活运用,要注意“1”的各种变通.23.在三角求值时,往往要估计角的范围后再求值.答案C4⎛π⎫⎡⎛π⎫⎤=ππ428,则sinθ等于()34 D.4答案D87和sin2θ+cos2θ=1得3+78+1=(4)2,ππ4234,∴sinθ=4.12/183.已知 tan α=4,则 的值为( )4 3解析 =,2tan α 4 解析 4cos 50°-tan 40°= 4sin 40°cos 40°-sin 40°= 2sin 80°-sin 40°=2sin (50°+30°)-sin 40°3sin 50°+cos 50°-sin 40° = == 3.5.已知 cos(x - )=- ,则 cos x +cos(x - )的值是()A .-B .± 解析 cos x +cos(x - )=cos x + cos x + sin x = cos x + sin x = 3( cos x + sin x )= 3cos(x - )=-1.6. =________.1-cos 100°1+cos 2α+8sin 2αsin 2αA .4 3C .465 B.2 3 D.答案 B1+cos 2α+8sin 2α 2cos 2α+8sin 2αsin 2α 2sin αcos α2+8tan 2α 65∵tan α=4,∴cos α≠0,分子、分母都除以 cos 2α 得 = .4.(2013· 重庆)4cos 50°-tan 40°等于()A. 2B. 2+ 32C. 3 D .2 2-1答案 Ccos 40°cos 40° cos 40°3sin 50° cos 40° cos 40°π 3 π6 3 32 33C .-12 33D .±1答案 Cπ 1 3 3 3 3 13 2 2 2 2 2 2π6sin 250°1+sin 10°答案解析1 2sin 250°=1+sin 10° 2(1+sin 10°)13 / 181-cos(90°+10°)1+sin10°2(1+sin10°)2(1+sin10°)28.3tan12°-3=________.-3 23⎝sin12°-=23sin(-48°)2cos24°sin12°cos12°sin24°cos24°=-4 3.21-sinα1+sinα=(1+sinα)2|cosα||cosα|1===.7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tanα=________.答案1解析根据已知条件:cosαcosβ-sinαsinβ=sinαcosβ-cosαsinβ,cosβ(cosα-sinα)+sinβ(cosα-sinα)=0,即(cosβ+sinβ)(cosα-sinα)=0.又α、β为锐角,则sinβ+cosβ>0,∴cosα-sinα=0,∴tanα=1.(4cos212°-2)sin12°答案-433sin12°cos12°解析原式=2(2cos212°-1)sin12°⎛1 23⎫2cos12°⎭=cos12°2cos24°sin12°-23sin48°==-23sin48°1sin48°9.已知解因为1+sinα-1+sinα-1-sinα1-sinα=-2tanα,试确定使等式成立的α的取值集合.1-sinα1+sinαcos2α-(1-sinα)2cos2α|1+sinα||1-sinα|=-14/18= 2sin α,|cos α| cos α 故 α 的取值集合为{α|α=k π 或 2k π+ <α<2k π+π 或 2k π+π<α<2k π+ ,k ∈Z }.10.已知 α∈⎝2,π⎭,且 sin ⎛π ⎫ αα 6 +cos = .⎫(2)若 sin(α-β)=- ,β∈⎝2,π⎭,求 cos β 的值.5解 (1)因为 sin +cos = ,两边同时平方,得 sin α= .又 <α<π,所以 cos α=- .(2)因为 <α<π, <β<π,所以-π<-β<- ,故- <α-β< .又 sin(α-β)=- ,得 cos(α-β)= . 3 4 1 ⎛ 3⎫ =- × + ×⎝-5⎭=- 2 5 2 10 11.已知 tan(α+ )= ,且- <α<0,则 等于( )cos (α- )A .-B .-C .- D.=1+sin α-1+sin α |cos α||cos α|2sin α 2sin α所以 =-2tan α=- .所以 sin α=0 或|cos α|=-cos α>0.π 3π2 22 2 2(1)求 cos α 的值;3 ⎛πα α 62 2 212π 3 22π π 2 2π π π2 2 23 45 5 cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)4 3+3 .B 组 专项能力提升(时间:25 分钟)π 1 π 2sin 2α+sin 2α4 2 2 π42 53 5 3 10 2 55 10 10515 / 18解析 由 tan(α+ )= tan α+1 1 = ,得 tan α=- .1-tan α 210 . 又- <α<0,所以 sin α=-π =2=2 2sin α2 (sin α+cos α)cos (α- )=-2 5⎛ 12.若 α∈⎝0,2⎭,且 sin 2α+cos 2α= ,则 tan α 的值等于(2 B.3 A. 2⎛ ∴sin 2α+cos 2α-sin 2α= ,∴cos 2α= ,∴cos α= 或- (舍去),∴α= ,∴tan α= 3.13.若 tan θ= ,θ∈(0, ),则 sin(2θ+ )=________. 答案 7 2解析 因为 sin 2θ= 2sin θcos θ sin 2θ+cos 2θ tan 2θ+1 5 又由 θ∈(0, ),得 2θ∈(0, ),所以 cos 2θ= 1-sin 22θ= ,所以 sin(2θ+ )=sin 2θcos +cos 2θsin = × 2 + × 2 10 .5 14.已知函数 f (x )=sin ⎝x + 4 ⎭+cos ⎝x - 4 ⎭,x ∈R .答案 Aπ 14 3π 102故2sin2α+sin 2α 2sin α(sin α+cos α) 45 .π⎫ 1 43 C. 2 D. 3 答案 Dπ⎫ 1 解析 ∵α∈⎝0,2⎭,且 sin 2α+cos 2α=4,1 1 4 4 1 12 2π31 π π2 4 4102tan θ 4= = ,π π4 235 π4)π π 4 4 4 5 2 3 2 7 2=⎛ 7π⎫ ⎛ 3π⎫16 / 18(2)已知 cos(β-α)= ,cos(β+α)=- ,0<α<β≤ ,求证:[f (β)]2-2=0. π π⎫ ⎛ ⎫ ⎛x - +sin x - =2sin x - ,=sin ⎝4⎭ ⎝ 4⎭⎝ 4⎭ (2)证明 由已知得 cos βcos α+sin βsin α= ,cos βcos α-sin βsin α=- ,∵0<α<β≤ ,∴β= ,∴[f (β)]2-2=4sin 2 -2=0.(2)若 x ∈[ , ],求 f (x )的取值范围.x + ·解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝ 4⎭x +cos⎝4⎭= + (sin 2x -cos 2x )+cos 2x= (sin 2x +cos 2x )+ .由 tan α=2,得 sin 2α= = = .2 2 2sin α+cos α tan α+1cos 2α-sin 2α1-tan 2αcos 2α===- .2sin α+cos 2α1+tan 2α所以,f (α)= (sin 2α+cos 2α)+ = .15.已知 f (x )=(1+ )sin 2x -2sin(x + )·sin(x - ).2(1)求 f (x )的最小正周期和最小值;4 4 π5 5 27π (1)解 ∵f (x )=sin ⎝x + 4 -2π⎭+cos ⎝x -4-2⎭⎛ π⎫ ⎛ π⎫ ⎛ π⎫∴T =2π,f (x )的最小值为-2.4545两式相加得 2cos βcos α=0,π π2 2π 41 π πtan x 4 4(1)若 tan α=2,求 f (α)的值;π π12 2⎛ π⎫⎛ π⎫1-cos 2x 1 ⎛ π⎫ = +2sin 2x +sin ⎝2x +2⎭1 12 21 12 2 2sin αcos α 2tan α 4 5351 1 32 2 517 / 18(2)由(1)得f(x)=(sin2x+cos2x)+sin⎝2x+4⎭+.由x∈⎣12,2⎦,得≤2x+≤.⎛2x+π⎫≤1,0≤f(x)≤2+1,≤sin⎝4⎭所以f(x)的取值范围是⎢0,2+1⎤⎦11 22=2⎛π⎫122⎡ππ⎤5ππ5π1244所以-222⎡⎣2⎥.18/18。
两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( )A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247. 所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115, 从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。
两角和与差的正弦公式与余弦公式角的和与差的正弦公式正弦函数是三角函数中的一种,描述了一个角度与其对应弧的长度之间的关系。
在数学中,角的和与差的正弦公式可以帮助我们计算两个角的正弦值之和与差。
具体来说,我们有以下两个公式:1.两角和的正弦公式:sin(A + B) = sinA * cosB + cosA * sinB这个公式告诉我们,两个角A和B的正弦值之和等于第一个角的正弦乘以第二个角的余弦,再加上第一个角的余弦乘以第二个角的正弦。
2.两角差的正弦公式:sin(A - B) = sinA * cosB - cosA * sinB这个公式告诉我们,两个角A和B的正弦值之差等于第一个角的正弦乘以第二个角的余弦,再减去第一个角的余弦乘以第二个角的正弦。
例如,假设角A的正弦值是0.5,角B的余弦值是0.7,我们可以使用两角和的正弦公式计算两个角的和的正弦值:sin(A + B) = sinA * cosB + cosA * sinB= 0.5 * 0.7 + cosA * sinB= 0.35 + cosA * sinB这样,我们可以使用已知的角A和B的正弦和余弦值,计算出两个角的和的正弦值。
角的和与差的余弦公式除了正弦函数之外,余弦函数也是三角函数中的一种,描述了一个角度与其对应弧的长度之间的关系。
与角的和与差的正弦公式类似,我们也可以使用公式来计算两个角的余弦值之和与差。
具体来说,我们有以下两个公式:1.两角和的余弦公式:cos(A + B) = cosA * cosB - sinA * sinB这个公式告诉我们,两个角A和B的余弦值之和等于第一个角的余弦乘以第二个角的余弦,再减去第一个角的正弦乘以第二个角的正弦。
2.两角差的余弦公式:cos(A - B) = cosA * cosB + sinA * sinB这个公式告诉我们,两个角A和B的余弦值之差等于第一个角的余弦乘以第二个角的余弦,再加上第一个角的正弦乘以第二个角的正弦。
滴水穿石不是靠力,而是因为不舍昼夜。
——苏联 奥维狄乌斯
§3.1.1 两角和与差的三角公式
编写人: 焦国华 审核人: 冯华芳 班级:_______ 姓名:___________
【预习目标】
1.知识与技能
能够利用单位圆中的三角函数线和向量的有关知识来推导两角差的余弦公式;
2.过程与方法
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
3.情感、态度、价值观
掌握利用两角差的余弦公式得到的两角和与差的正弦、正切公式.进一步体会向量的工具性作用.
【预习任务】
1.阅读教材P125,理解应用单位圆中的三角函数线推导两角差的余弦的方法
2.阅读教材P125――126,理解下列问题:
①在用向量的方法来推导两角差的余弦公式的过程中,角α、β为任意角都成立吗?
②掌握向量法的推导思想
3.写出两角和与差的余弦公式:
(1)C (α-β)= C (α+β)=
4.阅读教材P128,推导出两角和与差的正弦公式:
sin(α+β)= sin(α-β)=
5.由两角和与差的正余弦公式,推导出两角和与差的正切公式:
tan (α+β)= tan (α-β)=
【典型例题】
例1.已知sinα=-35,α是第四象限角,求sin(π4-α), cos(π4+α), tan(α-π4
)的值.
例2.利用和(差)角公式计算下列各式的值 (1) sin72ºsin48º-cos72ºsin42º; (2)1-3tan75º3+tan75º
滴水穿石不是靠力,而是因为不舍昼夜。
——苏联 奥维狄乌斯
例3.(1)已知sinα=45,α∈(π2,π),cosβ=-513,β是第三象限角,求cos(α-β)的值。
(2)若α是钝角,且cos(α-π4)=513,则cos α的值等于
【预习检测】
1.sin163°.sin223°+sin253°.sin313°等于( )
A .-12
B .12
C .-32
D .32
2.化简:sinx+sin(x+2π3)+ sin(x+4π3) tan23°+tan37°+3tan23°.tan37°
3.在△ABC 中,若cosAcosB >sinAsinB ,则△ABC 的形状为 ( )
A .锐角三角形
B .钝角三角形
C .直角三角形
D .无法确定
4.已知tan α和tan β是方程x 2+4x-2=0的两个根,求tan (α+β)的值
5.已知sin α-cos β=12, cos α-sin β=13,则sin(α+β)=
【预习反思】
滴水穿石不是靠力,而是因为不舍昼夜。
——苏联 奥维狄乌斯
§3.1.1 两角和与差的三角公式(二)
编写人: 焦国华 审核人: 冯华芳 班级:_______ 姓名:___________
【预习目标】
1.知识与技能
巩固两角和与差的三角公式,能利用公式进行三角函数式的求值、化简、证明。
注意公式的逆用与变形式;在应用公式时注意角之间的转化
2.过程与方法
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
3.情感、态度、价值观
掌握利用两角差的余弦公式得到的两角和与差的正弦、正切公式.进一步体会向量的工具性作用.
【预习任务】
1.两角和(差)正(余)弦公式的逆用:
sinαcos β+ cosαsin β= sinαcos β- cosαs in β=
cosαcos β+ sinαsin β= cosαcos β- sinαsin β=
2.两角和(差)正切公式的逆用
tan α+tan β= tan α-tan β=
3.辅助角公式,即形如asinx+bcosx=rsin(x+α)的变换
如:12sinx + 32cosx= sinx+cosx=
4.注意角之间的转化:
α=(α+β)-β α=(α+π3)-π3 (π4-x )+(π4+x )=π2
【典型例题】
例1.已知cos(α+β)= 513,cos β=45,α、β均为锐角,求sin α的值
例2.已知函数y= 32cosx-12sinx +1
(1)求函数的最小正周期 (2)求函数的最值及相应的x 的值
滴水穿石不是靠力,而是因为不舍昼夜。
——苏联 奥维狄乌斯
(3)求函数的单调递增区间
【预习检测】
1.要使sin α-3cos α=4m-64-m 有意义,则实数m 的取值范围为( )
A .m ≤73
B .m ≥-1
C .m ≤-1 或m ≥73
D .-1≤m ≤73
2.计算:tan20º+tan40º+ 3 tan20º·tan40º=
3.已知,sin α=4 3 7,cos(α+β)=-1114
,且α、β均为锐角,则β=
【预习反思】。