旋转经典题型
- 格式:doc
- 大小:185.24 KB
- 文档页数:4
23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。
【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。
初中数学旋转题型
在初中数学中,旋转是一个重要的概念和技能。
掌握旋转的原理和方法,可以帮助我们解决很多几何问题。
下面介绍一些初中数学中常见的旋转题型。
1. 点的旋转
在平面直角坐标系中,给定一个点P(x, y),绕原点旋转θ度,求旋转后的点坐标。
解法:设旋转后的点为P'(x', y'),则有:
x' = x*cosθ - y*sinθ
y' = x*sinθ + y*cosθ
其中,cosθ和sinθ可以通过三角函数表查找。
2. 图形的旋转
在平面直角坐标系中,给定一个图形,绕原点旋转θ度,求旋转后的图形。
解法:将图形上的每个点都按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的图形。
3. 对称图形的旋转
在平面直角坐标系中,给定一个对称图形,绕对称轴旋转θ度,求旋转后的图形。
解法:对称轴不变,将图形上的每个点都按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的图形。
4. 正方形的旋转
在平面直角坐标系中,给定一个正方形,绕其中心旋转θ度,求旋转后的正方形。
解法:连接正方形的对角线,得到两个对称轴,分别将正方形上的每个点按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的正方形。
5. 圆的旋转
在平面直角坐标系中,给定一个圆,绕其中心旋转θ度,求旋转后的圆。
解法:圆上每个点到圆心的距离不变,因此可以先求出旋转后的圆心坐标,然后将圆心和圆上的每个点都按照点的旋转方法进行旋转,就得到了旋转后的圆。
以上就是初中数学中常见的旋转题型,希望能对大家的学习有所帮助。
二、旋转图形的做法1. 在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形△OA′B′;(2)求点A在旋转过程中经过的路径长.2. 如图,在8×11的方格纸中,每个小正方形的边长均为1,△ABC的顶点均在小正方形的顶点处.(1)画出△ABC绕点A顺时针方向旋转90°得到的△AB′C′;(2)求点B运动到点B′所经过的路径的长.3.已知,如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,0), B(1,0),C(2,2).以A为旋转中心,把△ABC逆时针旋转90°,得到△AB′C′.(1)画出△AB′C′;(2)点B′的坐标为________;(3)求点C旋转到C′所经过的路线长.4. 如图,Rt△ABC中,∠C=90°,∠A=30°,AB=2.(1)用尺规作图,作出△ABC绕点A逆时针旋转60°后得到的△AB1C1(不写画法,保留画图痕迹);结论:__________________为所求。
(2)在(1)的条件下,连接B1C,求B1C的长。
5.如图,在8×8正方形网格中,每个小正方形的边长均为1个单位长度.将格点△ABC向下平移4个单位长度,得到△A’B’C’,再把△A’B’C’绕点O顺时针旋转90°,得到△A”B”C”,请你画出△A’B’C’和△A”B”C”.6.在平面直角坐标系xOy中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,9).(1)画出△ABC;(2)画出△ABC绕点A顺时针旋转90°后得到的△AB1C1,并求出CC1的长.三、对称中心的找法1.已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并简要说明理由.四、中心对称图形的做法1.如图,在正方形网络中,已知格点△ABC,请画出ABC△关于点B成中心对称的△A’BC’建议收藏下载本文,以便随时学习!建议收藏下载本文,以便随时学习!建议收藏下载本文,以便随时学习!4.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.(1)探究:线段BM、MN、NC之间的关系,并加以证明.(2)若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图②中画出图形,并说明理由.5. 如图,已知△ABC为等腰直角三角形,∠BAC=90°,E、F是BC边上点,且∠EAF=45°.求证:BE2+CF2=EF2..建议收藏下载本文,以便随时学习!建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙3. 如图17,正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45º.求证:EF=BE+DF.(2)若△AEF绕A点旋转,保持∠EAF=45º,问△CEF的周长是否随△AEF位置的变化而变化?(3)已知正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.八、应用1. 已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN 绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN 绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.2. (1)如图①,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45 °,求证:EF=BE+FD.(2)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请说明理由.5. 已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2;思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程:(Ⅱ)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.8. 如图,在正方形ABCD中,E、F分别是AB、BC的中点,求证:AM=AD.九、中心对称图形的认识1. 下列图形是中心对称图形的是2. 下列图形中,既是中心对称图形又是轴对称图形的是3.下列图形中,既是中心对称图形又是轴对称图形的是( ).A.等边三角形 B.菱形 C.等腰梯形 D.平行四边形。
专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
旋转最值题型一、等量旋转例1、阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是____________例2、△ABC 中,AB=4,AC=2,以BC 为边在△ABC 外作正方形BCDE,BD、CE 交于点O,则线段AO 的最大值为___________例3、已知线段AB,点C是平面内一动点,且AB=AC,连接BC,将线段BC绕点B顺时针旋转90°得到线段BD,连接CD,AD,AD交BC于点E。
若AB=2,当AD最长时,则DE的长为____________题型二、放缩旋转例4、如图,在△ABC中,∠ABC=90°,AB=2BC,AD=2,BD=4,连接CD,则CD长的最大值是_____________例5、如图,矩形ABCD,E为线段AD上一点,以CE为边,在其右侧作矩形CEFG,且ABBC=CE CG =12,AB=5,连接BE,BF,则BE+√55BF的最小值为_____________例6、已知正方形ABCD,E为边AB上一点,AE=1,AB=4,P是平面上一点,PE=1,将线段PB绕P点逆时针旋转90°得线段PQ,则CQ的最小值为_______________课后作业1、直线l上有两个动点A. B,直线l外有一点O,连接OA,OB, OA,OB长分别为2√2、4,以线段AB为边在l的另一侧作正方形ABCD,连接OD.随着动点A. B的移动,线段OD的长也会发生变化,在变化过程中,线段OD长的最大值是___________.2、如图,已知圆O的半径为10,OA=25,P为圆上的动点,∠P=30°,∠B=90°,在P的运动过程中,则OB的最小值___________3、如图,在△ABC中,AB=AC,∠BAC=120°,点D为△ABC外一点,连接BD、AD、CD,∠ADC=60°,BD=5,DC=4,则AD=________.。
旋转中三种几何模型十三类题型第一部分【模型图形归纳与题型目录】【模型1】等边三角形旋转模型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的P A、PB、PC三条线段集中于图(1-1-b)中的一个ΔP/CP中,此时ΔP/CP也为正三角形。
【模型2】正方形旋转模型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的P A、PB、PC三条线段集中于图(2-1-b)中的ΔCPP/中,此时ΔCPP/为等腰直角三角形。
【模型3】等腰直角三角形旋转模型在等腰直角三角形ΔABC中,∠C=900,P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP/CP为等腰直角三角形。
模型类型与题型目录【模型1】等边三角形旋转模型【题型1】利用等边三角形旋转模型求线段长....................................2;【题型2】利用等边三角形旋转模型求角度......................................4;【题型3】利用等边三角形旋转模型求面积......................................5;【题型4】利用等边三角形旋转模型进行推理....................................6;【模型2】正方形旋转模型【题型5】利用正方形的旋转模型求角度.......................................8;【题型6】利用正方形的旋转模型求线段长.....................................10;【题型7】利用正方形的旋转模型求面积.......................................12;【题型8】利用正方形的旋转模型进行推理.....................................13;【模型3】等腰直角三角形旋转模型【题型9】利用等腰直角三角形的旋转模型求线段长.............................16;【题型10】利用等腰直角三角形的旋转模型求角度..............................17;【题型11】利用等腰直角三角形的旋转模型求面积..............................18;【题型12】利用等腰直角三角形的旋转模型进行推理............................19;【题型13】拓展与延伸......................................................22.第二部分【题型展示与方法点拨】【题型1】利用等边三角形旋转模型求线段长1.(2024·重庆沙坪坝·模拟预测)如图,△ABC,△CDE都是等边三角形,将△CDE绕点C旋转,使得点A,D,E在同一直线上,连接BE.若BE=2,AE=7,则CD的长是.【答案】5【分析】本题主要考查等边三角形的性质,旋转的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.根据题意证明△CBE≌△CAD(SAS),即可求解.解:∵△ABC,△CDE都是等边三角形,∴BC=AC,CE=DC,∠ACB=∠DCE=60°,∵∠ACD+∠DCB=∠ACB=60°,∠DCB+∠BCE=∠DCE=60°,∴∠ACD=∠BCE,在△CBE和△CAD中,BC =AC∠BCE =∠ACD CE =DC,∴△CBE ≌△CAD (SAS ),∴BE =AD ,∵BE =2,AE =7,∴BE =AD =2,∴DE =AE -AD =7-2=5,∴CD =5.故答案为:5.2.(2024·河南驻马店·三模)如图,在等边三角形ABC 中,AB =2,点P 在AB 上,且BP =32,将BP 绕点B 在平面内旋转,点P 的对应点为点Q ,连接AQ ,CQ .当QA =QC 时,AQ 的长为.【答案】72或312【分析】延长BQ 1交AC 于点H ,由等边三角形的性质可得AB =BC =AC =2,再根据线段垂直平分线的判定可得AH =CH =1,利用勾股定理求得BH =3,根据旋转的性质分两种情况讨论:当点Q 在线段BH 上时;当点Q 在线段HB 的延长线上时,求出Q 1H ,Q 2H 的值,再利用勾股定理求解即可.解:如图,延长BQ 1交AC 于点H ,∵△ABC 是等边三角形,∴AB =BC =AC =2,又∵QA =QC ,∴BQ 1垂直平分AC ,∴AH =CH =1,∴BH =22-12=3,∵将BP 绕点B 在平面内旋转,点P 的对应点为点Q ,∴BP =BQ =32,当点Q 1在线段BH 上时,Q 1H =32,∴AQ 1=AH 2+Q 1H 2=34+1=72,当点Q 在线段HB 的延长线上时,Q 2H =332,∴AQ 2=AH 2+Q 2H 2=274+1=312,故答案为:72或312.【点拨】本题考查等边三角形的性质、线段垂直平分线的判定、勾股定理、旋转的性质,利用分类讨论思想解决问题是解题的关键.【题型2】利用等边三角形旋转模型求角度3.(23-24七年级下·海南海口·期末)如图,△ABC是等边三角形,D是BC边上任意一点(与点B、C不重合),△ADC经顺时针旋转后与△AEB重合.连接ED,则∠ADE=度;设∠BAD=x°,则∠AEB的度数为度(用含有x的代数式表示).【答案】60x+60【分析】本题考查了等边三角形的判定和性质,图形旋转的性质,三角形内角和定理、外角和定理的运用,掌握等边三角形的判定和性质是解题的关键.根据等腰三角形的性质,旋转的性质可得AE=AD,∠EAD=60°,可判定△AED是等边三角形,根据∠ADC=∠AEB,及三角形外角的性质即可求解.解:∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BCA=∠BAC=60°,∵△ADC旋转与△AEB重合,∴AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠ADE=60°;∵△ADC旋转后与△AEB重合,∴∠AEB=∠ADC,∵△ABC是等边三角形,∴∠ABC=60°,在△ABD中,∠ADC是外角,∴∠ADC=∠BAD+∠ABD=x+60,∴∠AEB=∠ADC=x+60,故答案为:60,x+60.4.(23-24八年级下·贵州毕节·期末)如图,P是等边三角形ABC内一点,将线段PB绕点B沿顺时针方向旋转60°得到线段BP ,连接CP ,PP .若PB=3,PC=4,P A=5,则∠BPC的度数是.【答案】150°/150度【分析】本题考查了等边三角形的判定和性质,旋转的性质,全等三角形的判定和性质,勾股定理的逆定理的运用,掌握全等三角形的判定和性质,勾股定理逆定理的计算是解题的关键.根据等边三角形,旋转的性质可证△BPP 是等边三角形,可得∠ABP =∠CBP ,由此可证△ABP ≌△CBP ,根据勾股定理逆定理可得△CPP 是直角三角形,结合∠BPC =∠CPP +∠BPP 即可求解.解:∵△ABC 是等边三角形,∴AB =BC =AC ,ABC =∠ACB =∠BAC =60°,∴∠ABP +∠PBC =60°,∵PB 绕点B 旋转60°得P B ,∴PB =P B ,∠PBP =∠PBC +∠CBP =60°,∴△BPP 是等边三角形,∠BPP =∠BP P =∠PBP =60°,∴∠ABP =∠CBP ,在△ABP ,△CBP 中,AB =CB∠ABP =∠CBP BP =BP,∴△ABP ≌△CBP SAS ,∴AP =CP =5,且PP =PB =P B =3,CP =4,∵CP 2=52=25,CP 2=42=16,PP 2=32=9,即PP 2+CP 2=CP 2,∴△CPP 是直角三角形,∠CPP =90°,∴∠BPC =∠CPP +∠BPP =90+60=150°,故答案为:150°.【题型3】利用等边三角形旋转模型求面积5.(2024·广东河源·一模)等边三角形ABC 的边长为2,将该三角形绕顶点A 在平面内旋转30°,则旋转后的图形与原图形重叠部分的面积为()A.6-33B.6-32C.32D.34【答案】A【分析】本题考查了旋转的性质,等边三角形的性质,掌握旋转的性质是解题的关键.由旋转的性质可得∠BAD =30°,可得AD ⊥CD ,由等边三角形的性质和直角三角形的性质可求CD =1,AD =3,由三角形的面积公式可求解.解:如图,设AB 与BC 的交点为D ,∵将该三角形绕顶点A 在平面内旋转30°,∴∠BAD =30°=∠CAD ,∠B =60°=∠B ,∴AD ⊥CD ,AF ⊥B C ,∴BD =CD =1=BF =C F ,AD =3CD =3=AF ,∴S △ACD =12×CD ⋅AD =12×1×3=32,∵CF =AC -AF =2-3,∴EF =23-3,∴S △EFC =12×(2-3)(23-3)=73-122,∴旋转后的图形与原图形重叠部分的面积=32-73-122=6-33,故选:A 6.(21-22九年级上·新疆乌鲁木齐·阶段练习)如图,△ABC 是等边三角形,点P 在△ABC 内,P A =2,将△P AB 绕点A 逆时针旋转得到△QAC ,则△APQ 的面积等于()A.5B.6C.3D.23【答案】C【分析】根据等边三角形的性质推出AC =AB ,∠CAB =60°,根据旋转的性质得出△CQA ≅△BP A ,推出AQ =AP ,∠CAQ =∠BAP ,求出∠P AQ =60°,得出△APQ 是等边三角形,即可求出答案.解:∵△ABC 是等边三角形,∴AC =AB ,∠CAB =60°,∵将△P AB 绕点A 逆时针旋转得到△QAC∴△CQA ≅△BP A ,∴AQ =AP ,∠CAQ =∠BAP ,∴∠CAB =∠CAP +∠BAP =∠CAP +∠CAQ =60°,即∠P AQ =60°,∴△APQ 是等边三角形,∴QP =P A =2,过点Q 作QE ⊥AP 于点E ,如图,则PE =12AP =1,由勾股定理得,QE =QP 2-PE 2=3∴△APQ 的面积=12AP ×QE =12×2×3=3故选:C .【点拨】本题考查了等边三角形的性质和判定,全等三角形的性质和判定,旋转的性质等知识点,关键是得出△APQ 是等边三角形,注意“有一个角等于60°的等腰三角形是等边三角形,等边三角形的对应边相等,每个角都等于60°.【题型4】利用等边三角形旋转模型进行推理7.(2024九年级·全国·竞赛)如图,在等边△ABC 中,点D 为BC 上一点,连接AD ,将△ABD 绕点A 按逆时针方向旋转60°得到△ACE ,连接DE ,若AB =10cm ,AD =8cm ,则下列结论错误的是()A.∠CDE=∠ADBB.CE∥ABC.△CDE的周长是18cmD.△ADE是等边三角形【答案】A【分析】根据等边三角形得性质得AB=AC和∠B=60°,由旋转的性质得∠DAE=60°和AD=AE,则△ADE为等边三角形,则∠ADE=60°,结合三角形外角定理得∠ADC=∠B+∠BAD和AB>BD,可判定∠ADB>∠EDC,由等边三角形和旋转得∠BAC=∠ACE,可判定CE∥AB,由旋转得BD=CE,等边三角形的性质得DE=AD,可得C△CDE=DE+EC+CD=AD+BC.解:∵△ABC为等边三角形,∴AB=AC,∠B=60°,∵△ABD绕点A按逆时针方向旋转60°得到△ACE,∴∠DAE=60°,AD=AE,∴△ADE为等边三角形,则∠ADE=60°,∵∠ADC=∠B+∠BAD,∴∠ADE+∠EDC=∠B+∠BAD,即∠EDC=∠BAD,∵AB>BD,∴∠ADB>∠BAD,则∠ADB>∠EDC,故A错误;∵△ABC为等边三角形,∴∠BAC=∠B=60°,∵△ABD绕点A按逆时针方向旋转60°得到△ACE,∴∠ACE=∠B=60°,∴∠BAC=∠ACE,则CE∥AB,故B正确;∵△ABD绕点A按逆时针方向旋转60°得到△ACE,∴BD=CE,∵△ADE为等边三角形,∴DE=AD,∵AB=BC=10cm,AD=8cm,∴C△CDE=DE+EC+CD=AD+BD+CD=AD+BC=18cm,故C正确;∵△ABD绕点A按逆时针方向旋转60°得到△ACE,∴∠DAE=60°,AD=AE,∴△ADE为等边三角形,故D正确;故选:A.【点拨】本题主要考查等边三角形的判定和性质、旋转的性质、三角形外角定理和平行线的判定,解题的关键是熟悉等边三角形的性质和旋转的性质.8.(23-24八年级上·山东济宁·期末)如图,已知△ABE,∠ABE=120°,将△ABE绕点B顺时针旋转60°得到△CBD,连接AC,ED,AE和CD交于点P.则下列结论中正确的是()A.∠APC=30°B.AC与BE不平行C.△BDE可以看作是△ABC平移而成的D.△ABC和△BDE都是等边三角形【答案】D【分析】本题考查了旋转的性质,等边三角形的判定与性质,平行线的判定,平移的性质,熟练掌握旋转的性质,以及等边三角形的判定与性质是解题的关键.设AE与BC相交于点F,根据旋转可得:∠ABC=∠DBE=60°,△ABE≌△CBD,从而可得∠BAE=∠BCD,BA=BC,BE=BD,进而可得△ABC和△BED 都是等边三角形,然后利用等边三角形的性质可得∠BAC=60°,从而可得∠BAC=∠DBE=60°,进而可得AC∥BE,再利用三角形内角和定理,以及对顶角相等可得∠APC=∠ABC=60°,最后根据AB≠BD,可得△ABC和△BED不全等,从而利用平移的性质可得△BDE不可以看作是△ABC平移而成的,即可解答.解:如图:设AE与BC相交于点F,由旋转得:∠ABC=∠DBE=60°,△ABE≌△CBD,∴∠BAE=∠BCD,BA=BC,BE=BD,∴△ABC和△BED都是等边三角形,∴∠BAC=60°,∴∠BAC=∠DBE=60°,∴AC∥BE,∵∠AFB=∠CFP,∠APC=180°-∠BCD-∠CFP,∠ABC=180°-∠BAE-∠AFB,∴∠APC=∠ABC=60°,∵AB≠BD,∴△ABC和△BED不全等,∴△BDE不可以看作是△ABC平移而成的,故A、B、C不符合题意,D符合题意,故选:D.【题型5】利用正方形的旋转模型求角度9.(22-23八年级下·江苏无锡·期中)如图,已知正方形ABCD,P是正方形ABCD内一点.若P A=2,PB=2,PC=10,则∠APB的度数为°;△PBC的面积为.【答案】1353【分析】将△ABP 绕点B 顺时针旋转90°,使得AB 与BC 重合,根据旋转的性质可得△BPP 是等腰直角三角形,然后求出PP ′,再根据勾股定理逆定理判定出△PP C 是直角三角形,然后求出∠BP C 的度数,再根据旋转的性质可得∠APB =∠BP C ,过点B 作BH ⊥PP ,垂足为H ,过点C 作CG ⊥BP ,垂足为G ,证明△BHP 是等腰直角三角形,求出PH ,进而求出AB ,易得△BCP 是等腰三角形,推出BG =PG =1,求出CG ,即可求解.解:如图,将△ABP 绕点B 顺时针旋转90°,使得AB 与BC 重合,则P C =P A =2,△BPP 是等腰直角三角形,∵PB =2,∴PP =2PB =22,在△PP C 中,PP 2+P C 2=22 2+2 2=10,PC 2=10 2=10,∴PP 2+P C 2=PC 2,∴△PP C 是直角三角形,∴∠BP C =∠BP P +∠PP C =45°+90°=135°∵△CBP 是△ABP 绕点B 顺时针旋转90°得到,∴∠APB =∠BP C =135°;∵BP =BP ,∠PBP =90°,∴∠BPP =45°,∴∠APB +∠BPP =180°,∴A ,P ,P 三点共线,过点B 作BH ⊥PP ,垂足为H ,过点C 作CG ⊥BP ,垂足为G ,∵△BPP 是等腰直角三角形,∠BHP =90°,∠BPP =45°,∴△BHP 是等腰直角三角形,∴BH =PH ,∵BP =2,∴BH =PH =2,∴AH =AP +PH =22,∴AB =BH 2+AH 2=10,∵四边形ABCD 是正方形,∴BC =AB =10,∴PC =BC ,∴△BCP 是等腰三角形,∴BG =PG =12BP =1,∴CG =BC 2-BG 2=3,∴S△BCP =12BP ⋅CG =3,故答案为:135,3.【点拨】本题主要考查了旋转的性质,勾股定理逆反定理,正方形性质,等腰三角形的判定与性质,熟练掌握性质定理是本题关键.10.(23-24八年级下·广东江门·期中)如图,P为正方形ABCD内一点,P A=2,PB=4,PC=6,则∠APB=.【答案】135°/135度【分析】此题考查了旋转的性质及勾股定理的逆定理,将△APB绕B点顺时针旋转90°并连接PE,构造两个直角三角形:Rt△PBE和Rt△PCE,利用勾股定理逆定理解答即可.解:将△APB绕B点顺时针旋转90°并连接PE,∵将△APB绕B点顺时针旋转90°,得△BEC,∴△BEC≌△BP A,∠APB=∠BEC,∴△BEP为等腰直角三角形,∴∠BEP=45°,∵PB=4,∴PE=42,∵PC=6,CE=P A=2,∴PC2=PE2+CE2,∴∠PEC=90°,∴∠APB=∠BEC=∠BEP+∠PEC=45°+90°=135°.故答案为:135°.【题型6】利用正方形的旋转模型求线段长11.(22-23九年级上·浙江台州·期中)如图,边长为1的正方形ABCD绕点A逆时针旋转60°得到正方形AEFG,连接CF,则CF的长是()A.2B.1.5C.3D.32-3【答案】A【分析】本题主要考查了正方形的性质,旋转的性质,等边三角形的性质与判定,连接AC、AF,证明△ACF为等边三角形,求得AC 便可得出结果.解:连接AC 、AF ,由旋转性质得,AC =AF ,∠CAF =60°,∴△ACF 为等边三角形,∴AC =CF ,∵边长为1的正方形ABCD ,∴AB =BC =1,∴AC =AB 2+BC 2=2,∴CF =AC =2故选:A .12.(23-24九年级上·湖北武汉·期末)如图,边长为3的正方形ABCD 绕点C 顺时针旋转30°后得到正方形EFCG ,EF 交AD 于点H ,则AH 的长是.【答案】3-1【分析】本题考查了旋转的性质,考查了正方形的性质.连接CH ,如图,根据旋转的性质得∠DCG =30°,∠CFH =∠B =90°,CF =CD =3,再根据“HL ”证明△CHF ≌△CHD ,则∠HCF =∠HCD =30°,然后利用含30度的直角三角形三边的关系求出DH 即可得到AH 的长.解:连接CH ,如图,∵边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,∴∠DCG =30°,∠CFH =∠B =90°,CF =CD =3,∴∠DCF =60°,在Rt △CHF 和Rt △CHD 中CH =CHCF =CD ,∴△CHF ≌△CHD ,∴∠HCF =∠HCD ,∵∠HCF +∠HCD =∠DCF ,∴∠HCF =∠HCD =30°在Rt △CDH 中,∵∠DCH =30°,∴DH =33CD =33×3=1,∴AH =3-1,故答案为3-1.【题型7】利用正方形的旋转模型求面积13.(24-25九年级上·全国·假期作业)如图,正方形ABCD 的边长为1;将其绕顶点C 按逆时针方向旋转一定角度到CEFG 的位置,使得点B 落在对角线CF 上,则阴影部分的面积是()A.14B.2-2C.2-1D.12【答案】C【分析】本题考查了正方形的性质及旋转的性质,等腰三角形的判定;依据△BFH 、△CEF 为等腰直角三角形,即可得到阴影部分的面积.解:正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到CEFG 位置,使得点B 落在对角线CF 上,∴EF =CE =BC =1,∴CF =2,∴BF =2-1,∵∠BFE =45°,∴BH =BF =CF -BC =2-1,∴阴影部分的面积=12×1×1-12×(2-1)2=2-1,故选:C .14.(24-25九年级上·内蒙古巴彦淖尔·开学考试)如图,边长为1的正方形ABCD 绕点A 顺时针旋转30°到AB C D 的位置,则图中阴影部分的面积为()A.12B.33C.1-33D.1-34【答案】C【分析】根据旋转的性质和正方形的性质得出AD =AB =AB ,∠BAB =∠DAD =30°,利用HL 证明Rt △AD E ≌Rt △ABE ,得出∠EAD =∠EAB =30°,利用含30°角的直角三角形的性质及勾股定理求出BE =33,根据S 阴影=S 正方形ABCD -2S △ABE 即可得答案.解:如图,连接AE ,∵边长为1的正方形ABCD 绕点A 顺时针旋转30°到AB C D 的位置,∴AD =AB =AB ,∠BAB =∠DAD =30°,∴∠BAD =60°,在Rt △AD E 和Rt △ABE 中,AD=AB AE =AE ,∴Rt △AD E ≌Rt △ABE ,∴∠EAD =∠EAB =30°,∴BE =12AE ,即AE =2BE ,∵在Rt △ABE 中,AE 2=BE 2+AB 2,∴(2BE )2=BE 2+12,解得:BE =33,∴S 阴影=S 正方形ABCD -2S △ABE =1×1-2×12×33×1=1-33.故选:C .【点拨】本题考查旋转的性质、正方形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质及勾股定理,熟练掌握相关性质和判定定理是解题关键.【题型8】利用正方形的旋转模型进行推理15.(23-24八年级下·山东济南·期末)如图,正方形ABCD 边长为52,E 从B 出发沿对角线BD 向D 运动,连接CE ,将线段CE 绕C 点顺时针旋转90°得到CF ,连接DF ,EF 设BE =m ,下列说法:①△DEF 是直角三角形;②当m =4时,EF =213;③有且只有一个实数m ,使得S △DEF =12.5;④取EF 中点G ,连接BG ,CG ,△BCG 的面积随着m 的增大而增大.正确的有()A.1个B.2个C.3个D.4个【答案】C 【分析】根据正方形的性质可得∠CBD =∠BDC =45°,BC =DC ,∠BCD =90°再根据旋转的性质可得CE =CF ,∠ECF =90°,从而证得△BCE ≌△DCF ,得到∠DBC =∠CDF =45°,即可求得∠BDF =∠BDC +∠CDF =90°,可判断①正确;根据正方形的性质可得BD 的长,再根据△BCE ≌△DCF 可得DF 的长,再利用勾股定理可得EF =213,可判断②正确;根据题意列出关于△DEF 面积的一元二次方程,求得有且只有一个实数m =5,使得S △DEF =12.5,可判断③正确;连接DG ,作GH ⊥CD 于点H ,可得GH ∥BC ,由∠EDF =∠ECF =90°,点G 为EF 的中点,可得DG =CG =12EF ,则CH =DH =522,从而求得S △BCG =12.5,可判断④错误;即可解题.解:∵四边形ABCD 是正方形,BD 为对角线,∴AB =BC =CD =AD ,∠CBD =∠BDC =45°,∠BCD =90°,∵线段CE 绕C 点顺时针旋转90°得到CF ,∴CE =CF ,∠ECF =90°,又∵∠BCE =∠BCD -∠ECD ,∠DCF =∠ECF -∠ECD ,∴∠BCE =∠DCF ,在△BCE 和△DCF 中:BC =DC∠BCE =∠DCF CE =CF,∴△BCE ≌△DCF SAS ,∴∠DBC =∠CDF =45°,∴∠EDF =∠BDC +∠CDF =90°,∴△DEF 是直角三角形,故①正确;∵正方形ABCD 边长为52,∴BD =BC 2+CD 2=10,∵△BCE ≌△DCF ,BE =m ,m =4,∴DF =BE =4,∴EF =DF 2+DE 2=DF 2+BD -BE 2=213,故②正确;由题可知:S △DEF =12⋅DE ⋅DF =12⋅BD -BE ⋅BE =1210-m m =5m -12m 2,要S △DEF =12.5,则5m -12m 2=12.5,整理得:m -5 2=0,解得:m =5,∴有且只有一个实数m ,使得S △DEF =12.5,故③正确;如图,连接DG ,作GH ⊥CD 于点H ,则∠GHD =∠BCD =90°,∴GH ∥BC ,∴CH 与△BCG 的边BC 上的高相等,∵∠EDF =∠ECF =90°,点G 为EF 的中点,∴DG =CG =12EF ,∴CH =DH =12DC =12×52=522,∴S △BCG =12BC ⋅CH =12×52×522=12.5,∴△BCG 的面积不随着m 的变化而变化,故④错误;故选:C .【点拨】本题考查了正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质、勾股定理,解一元二次方程,旋转的性质,直角三角形性质,综合运用以上知识是解题的关键.16.(23-24八年级下·河北唐山·期中)如图,点E为正方形ABCD内一点,∠AEB=90°,将△AEB绕点B按顺时针方向旋转90°,得到△CBG.延长AE交CG于点F,连接DE,下列结论:①AF⊥CG;②四边形BEFG是正方形,③若DA=DE,则2CF=CG;④若∠DAE=60°,S四边形ABCD =4S四边形BGFE其中正确的结论是()A.①②③④B.①②④C.①③D.①④【答案】A【分析】本题考查了正方形的判定和性质,旋转的性质,全等三角形的判定和性质,等边三角形的性质,设AF交BC于K,由∠ABK=90°及将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBG,可得∠KAB=∠BCG,即可得∠KFC=90°,从而判断①正确;由旋转的性质可得∠AEB=∠CGB=90°,BE=BG,∠EBG=90°,由正方形的判定可证四边形BEFG是正方形,可判断②正确;过点D作DH⊥AE于H,由等腰三角形的性质可得AH=12AE,DH⊥AE,由“AAS”可得△ADH≌△BAE,可得AH=BE=12AE,由旋转的性质可得AE=CG,从而可得CF=FG,可判断③正确;由等边三角形的性质得到AD=AE,可得AD=2BE,再根据正方形的面积可得,可判断④正确;灵活运用以上性质进行推理是解题的关键.解:设AF交BC于K,如图,∵四边形ABCD是正方形,∴∠ABK=90°,∴∠KAB+∠AKB=90°,∵将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBG,∴∠KAB=∠BCG,∵∠AKB=∠CKF,∴∠BCG+∠CKF=90°,∴∠KFC=90°,∴AF⊥CG,故①正确;∵将Rt△ABE绕点B按顺时针方向旋转90°,∴∠AEB=∠CGB=90°,BE=BG,∠EBG=90°,又∵∠BEF=90°,∴四边形BEFG是矩形,又∵BE=BG,∴四边形BEFG是正方形,故②正确;如图,过点D作DH⊥AE于H,∵DA=DE,DH⊥AE,∴AH=12AE,∠ADH+∠DAH=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAH+∠EAB=90°,∴∠ADH=∠EAB,又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE AAS,∴AH=BE=12AE,∵将Rt△ABE绕点B按顺时针方向旋转90°,∴AE=CG,∵四边形BEFG是正方形,∴BE=GF,∴GF=12CG,∴CF=FG,故③正确;若∠DAE=60°,则∠EAB=30°,∵BE=12AE,∴BE=12AD,即AD=2BE,∵四边形ABCD和四边形BGFE是正方形,∴S四边形ABCD =4S四边形BGFE,故④正确;∴正确的有①②③④,故选:A.【题型9】利用等腰直角三角形的旋转模型求线段长17.(23-24九年级上·山东济宁·阶段练习)如图,△ABC是等腰直角三角形,∠ABC=90°,将△BPC绕点B逆时针旋转后,能与△BP A重合,连接PP ,如果BP=3,那么PP 的长等于()A.42B.23C.32D.33【答案】C【分析】本题考查了旋转的性质,勾股定理,解题的关键是掌握旋转前后对应线段相等,对应线段的夹角等于旋转角.根据旋转的性质得出∠PBP =∠ABC=90°,BP=BP =3,再根据勾股定理即可解答.解:∵△BPC绕点B逆时针旋转后,能与△BP A重合,BP=3,∠ABC=90°,∴∠PBP =∠ABC=90°,BP=BP =3,∴PP =BP2+BP 2=32,故选:C.18.(22-23八年级下·山东菏泽·期末)如图,D是等腰直角三角形ABC内一点,BC是斜边,将△ABD绕点A按逆时针方向旋转到△ACD 的位置,如果AD=3,那么DD 的长是.【答案】32【分析】证明△ADD 是等腰直角三角形即可解决问题.解:由旋转可知:△ABD≌△ACD ,∴∠BAD=∠CAD ,AD=AD =3,∴∠BAC=∠DAD =90°,即△ADD 是等腰直角三角形,∴DD =AD2+AD 2=32+32=32,故答案为:32.【点拨】本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【题型10】利用等腰直角三角形的旋转模型求角度19.(2024·山东聊城·三模)如图,点D是等腰直角三角形ABC内的一点,且∠BAC=90°,AB=AC,将△ABD绕点A按逆时针方向旋转90°,得到△AEC,连接ED,交AC于点F.若∠BAD=62°,则∠EFC=.【答案】107°/107度【分析】本题考查旋转的性质,等腰三角形的性质,余角的性质,三角形外角的性质.熟练掌握旋转的性质是解题的关键.先由旋转的性质得AE=AD,∠DAE=90°,再根据等腰直角三角形的性质和余角性质求得∠AED=∠ADE=45°,∠CAE=∠BAD=62°,然后由三角形外角性质求解即可.解:由旋转可得:AE=AD,∠DAE=90°,∴∠AED=∠ADE=45°,∵∠CAD+∠BAD=∠BAC=90°,∠CAD+∠CAE=∠DAE=90°,∴∠CAE=∠BAD=62°,∴∠EFC=∠E+∠CAE=45°+62°=107°,故答案为:107°.20.(22-23八年级下·江苏·开学考试)如图,在等腰直角三角形ABC中,∠A=90°,P是ΔABC内一点,P A=1,PB=3,PC=7,那么∠CP A=度.【答案】135【分析】将ΔABP绕A点逆时针旋转90°,然后连接PQ,可得AQ=AP=1,CQ=PB=3,∠QAC=∠P AB,∠QP A=45°,证明PC2+PQ2=7+2=9=CQ2,可得∠QPC=90°,从而可得答案.解:将ΔABP绕A点逆时针旋转90°,然后连接PQ,则AQ=AP=1,CQ=PB=3,∠QAC=∠P AB,∠QAP=90°,∴PQ2=AQ2+AP2=2,且∠QP A=45°,在ΔCPQ中,PC2+PQ2=7+2=9=CQ2∴∠QPC=90°,∴∠CP A=∠QP A+∠QPC=135°.故答案为:135.【点拨】本题考查的是旋转的性质,勾股定理与勾股定理的逆定理的应用,熟练的利用旋转的性质解题是关键.【题型11】利用等腰直角三角形的旋转模型求面积21.(23-24八年级上·四川宜宾·期末)如图,在等腰直角三角形ABC的斜边上取异于B,C的两点E,F,使∠EAF=45°,CF=3,EF=5,则以EF、BE、CF为边的三角形的面积为.【答案】6【分析】首先把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG,可得△ACF≌△ABG.进而得到AG=AF,BG=CF=3,∠ABG=∠ACF=45°,,再证明△BEG是直角三角形,进而即可得解.解:把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG.则△ACF≌△ABG,∴AG=AF,BG=CF=3,∠ABG=∠ACF=45°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°.∴∠GBE=∠ABC+∠ABG=90°,∴BE=EG2-BG2=52-32=4,×3×4=6,∴以EF、BE、CF为边的三角形的面积为12故答案为:6.【点拨】本题考查了勾股定理及等腰直角三角形的性质,旋转的性质,正确作出辅助线后得出直角三角形是解答此题的关键.22.(23-24八年级下·福建·期末)将直角边长为6cm的等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB C ,则图中阴影部分的面积是cm2.【答案】63【分析】本题考查了旋转的性质,等腰三角形的性质.关键是通过旋转的性质判断阴影部分三角形的特点,计算三角形的面积.设AB与B C 交于D点,根据旋转角∠CAC =15°,等腰直角△ABC的一锐角∠CAB=45°,可求∠C AD,旋转前后对应边相等,对应角相等,AC =AC=6cm,∠C =∠C=90°,根据勾股定理求得C D,进而根据三角形的面积公式可求阴影部分面积.解:设AB与B C 交于D点,根据旋转性质得∠CAC =15°,而∠CAB=45°,∴∠C AD=∠CAB-∠CAC =30°,又∵AC =AC=6cm,∠C =∠C=90°,∴AD=2C D,由勾股定理得,AD2-C D2=AC 2,即4C D2-C D2=62,∴C D=23cm,×6×23=63cm2.∴阴影部分的面积=12故答案为:63.【题型12】利用等腰直角三角形的旋转模型进行推理23.(22-23八年级上·四川宜宾·期末)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连接CE.下列结论:①BD= CE;②BD2+CD2=2AE2;③∠DAC=∠CED;④在△ABC内存在唯一一点P,使得P A+PB+PC 的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+3.其中含所有正确结论的选项是.【答案】①②③【分析】①正确.证明△BAD ≌△CAE ,可得结论;②正确.根据△BAD ≌△CAE 得到∠ABC =∠ACB =∠ACE =45°,得到∠DCE =90°证明即可;③正确.根据△BAD ≌△CAE 得到∠BDA =∠CEA ,根据三角形外角性质,得到∠BDA =45°+∠DAC ,∠CEA =45°+∠CED 证明即可;④错误.将△BPC 绕点B 顺时针旋转60°得到△BNM ,连接PN ,当点A ,点P ,点N ,点M 共线时,P A +PB +PC 值最小,此时∠APB =∠BPC =∠CP A =120°,PB =PC ,AD ⊥BC ,设PD =t ,则BD =PD =3t ,构建方程求出t ,可得结论.解:∵△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,∴AB =AC ,AD =AE ,∠ABD =∠ACD =∠ADE =∠AED =45°,∴∠BAD =90°-∠DAC =∠CAE ,∵BA =CA∠BAD =∠CAE DA =EA,∴△BAD ≌△CAE SAS ,∴BD =CE ,故①正确;∵△BAD ≌△CAE ,∴∠ABC =∠ACB =∠ACE =45°,∴∠DCE =90°,∴DC 2+CE 2=DE 2,∵BD =CE ,AD 2+AE 2=DE 2=2AE 2,∴BD 2+CD 2=2AE 2;故②正确;∵△BAD ≌△CAE ,∴∠BDA =∠CEA ,根据三角形外角性质,得到∠BDA =45°+∠DAC ,∠CEA =45°+∠CED ,∴∠DAC =∠CED ,故③正确;将△BPC 绕点B 顺时针旋转60°得到△BNM ,连接PN ,根据旋转性质,得到△PBN 是等边三角形,当点A ,点P ,点N ,点M 共线时,P A +PB +PC 值最小,此时∠APB =∠BPC =∠CP A =120°,PB =PC ,AD ⊥BC ,∠BPD =60°,∠PBD =30°设PD=t,则BD=AD=3t,根据题意,得BD=PD=3t,解得t=3+1,故CE=BD=AD=3t=3+3故④错误.故答案为:①②③.【点拨】本题考查等腰直角三角形的性质,全等三角形的判定和性质,旋转的性质,直角三角形的性质,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.24.(2023·天津河北·二模)如图,已知△ABC为等腰直角三角形,∠CBA=90°,将△ABC绕点A顺时针旋转60°得到△ADE,点B,C的对应点分别为点D,E,下列结论中错误的是()A.BC=ADB.AC=CEC.∠CAE-∠BAC=10°D.△ABD是等边三角形【答案】C【分析】根据旋转可知AB=AD,AC=AE,∠CAE=∠BAD=60°,则得△ABD和△ACE是等边三角形,即可作答.解:根据旋转的性质可知AB=AD,AC=AE,∠CAE=∠BAD=60°,∴△ABD和△ACE是等边三角形,故选项D结论正确,∴AC=CE,故选项B结论正确;∵△ABC为等腰直角三角形,∠CBA=90°,∴AB=BC,∠BAC=45°∴BC=AD,故选项A结论正确,∠CAE-∠BAC=60°-45°=15°,故选项C结论错误,符合题意;故选:C.【点拨】本题考查了旋转的性质和全等三角形的判定与性质,得出△ABD和△ACE是等边三角形是解答本题的关键.第三部分【拓展延伸】【题型13】拓展延伸25.如图,P 在等边△ABC 内且∠APC =120°,则PB P A 的最小值是()A.12B.33C.22D.32【答案】D【分析】将△APC 旋转60°到△ADB ,由于要求PB P A的最小值,我们不断让P A 变大,点P 往下移,如图1,根据直角三角形中斜边比直角边大,当PE 与PB 重合时取到最小值,如图2,当P A ⊥PB 时,取到最小值,此时P A ∥BD ,P A =PD ,且∠PDB =60°,可得PB P A 的最小值.解:将△APC 旋转60°到△ADB ,由于要求PB P A 的最小值,我们不断让P A 变大,点P 往下移,如图1,当CP ⊥AB 时,P A =PB ,PB P A =1,PB P A=PB PD ,根据直角三角形中斜边比直角边大,当PE 与PB 重合时取到最小值,如图3,当P A ⊥PB 时,取到最小值,此时P A ∥BD ,P A =PD ,且∠PDB =60°,可得PB P A=32.故选:D .【点拨】本题考查等边三角形的性质,垂线段最短,旋转变换等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中压轴题.26.(2024九年级·全国·竞赛)如图,△ABC 和△ADE 都为等腰直角三角形,点D 在AC 上,点E 在BA 的延长线上,AB =AC =10cm ,AD =AE =6cm ,现将△ADE 绕点A 旋转60°,得到△AD E ,连接BE 、CD ,过点A 作AF ⊥BE ,垂足为点F ,直线AF 交CD 于点G ,则线段FG 的长度为cm .【答案】7+1573或7-1573【分析】分△ADE 按顺时针旋转和逆时针旋转两种情况讨论,过点E 作E M ⊥BE ,垂足为点M ,过点C 作CH ∥AD 交AG 的延长线于点H ,连接HD ,利用勾股定理,含30度角的直角三角形的特征求出AM =3cm ,E M =33cm ,根据等面积法求出AF =1573cm ,证明△ABE ≌△CAH AAS ,得到AD =CH ,易得四边形ACHD 为平行四边形,利用平行四边形对角线互相平分的性质即可求解.解:如图1和图2,过点E 作E M ⊥BE ,垂足为点M ,过点C 作CH ∥AD 交AG 的延长线于点H ,连接HD ,则有∠E AM =60°,AE =AE =6cm ,得∠AE M =30°,AM =3cm ,E M =33cm ,∴BM =AB +AM =13cm ,BE =ME 2+BM 2=14cm ,由等面积法有12BE ⋅AF =12AB ⋅E M ;∴AF =1573cm ,∵∠GAD +∠FAE =90°=∠FAE +∠AE F ,∠HAC +∠FAB =90°=∠FAB +∠ABF ,∴∠GAD =∠AE F ,∠HAC =∠ABF ,∵CH ∥AD ,∴∠AHC =∠GAD ,∴∠AHC =∠AE F ,∵AB =AC ,∴△ABE ≌△CAH AAS ,∴AE =CH =AD =AD =6cm ,BE =AH =14cm ,∵CH ∥AD ,∴四边形ACHD 为平行四边形,∴AG =12AH =7cm ,∴在图1中,FG =AF +AG =7+1573cm ,在图2中,同理得:FG =AG -AF =7-1573cm .。
专题02 图形的旋转(七大类型)【题型1 生活中的旋转现象】【题型2 利用旋转的性质求角度】【题型3 利用旋转的性质求线段长度】【题型4 旋转中的坐标与图形变换】【题型5 作图-旋转变换】【题型6 旋转对称图形】【题型7 旋转中周期性问题】【题型1 生活中的旋转现象】1.(2023春•沭阳县月考)下列运动属于数学上的旋转的有( )A.钟表上的时针运动B.城市环路公共汽车C.地球绕太阳转动D.将等腰三角形沿着底边上的高对折【答案】A【解答】解:A、钟表上的时针运动,属于旋转,故此选项正确;B、城市环路公共汽车,不属于旋转,故此选项错误;C、地球绕太阳转动,不属于旋转,故此选项错误;D、将等腰三角形沿着底边上的高对折,不属于旋转,故此选项错误;故选:A.2.(2022秋•隆安县期中)下列运动形式属于旋转的是( )A.飞驰的动车B.匀速转动的摩天轮C.运动员投掷标枪D.乘坐升降电梯【答案】B【解答】解:由题意知,匀速转动的摩天轮属于旋转,故选:B.3.(2021秋•栖霞市期末)下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )A.B.C.D.【答案】D【解答】解:A、B、C这三个图都只能由旋转得到,不能由平移得到,只有D 既可经过平移,又可经过旋转得到,故选:D.4.(2022春•诏安县期中)下列现象不是旋转的是( )A.传送带传送货物B.飞速转动的电风扇C.钟摆的摆动D.自行车车轮的运动【答案】A【解答】解:传送带传送货物的过程中没有发生旋转.故选:A【题型2 利用旋转的性质求角度】5.(2023春•肃州区校级期中)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△AB'C使得点A恰好落在AB上,则旋转角度为( )A.30°B.60°C.90°D.150°【答案】B【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故选:B.6.(2023春•曹县期末)如图,△ABC绕点A顺时针旋转50°,得到△ADE,点E落在BC边上,连接BD,当BD⊥BC时,∠ABC的度数为( )A.20°B.25°C.30°D.35°【答案】B【解答】解:∵△ABC绕点A顺时针旋转50°,得到△ADE,∴AB=AD,∠BAD=50°,∴∠ABD=∠ADB==65°,又∵BD⊥BC,∴∠DBC=90°,∴∠ABC=∠DBC﹣∠DBA=90°﹣65°=25°,故选:B.7.(2023春•顺德区期末)如图,将△ABC绕点A逆时针旋转90°得到△ADE,连接BD,则∠ABD的度数为( )A.30°B.45°C.55°D.60°【答案】B【解答】解:∵将△ABC绕点A逆时针旋转90°得到△ADE,∴AB=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,故选:B.8.(2023春•惠安县期末)如图,将△ABC绕点B逆时针旋转80°,得到△EBD.若点A、D、E在同一条直线上,则∠CAD的度数为( )A..100°B..90°C..80°D..110°【答案】A【解答】解:∵将△ABC绕点B逆时针旋转80°,得到△EBD,∴∠EBA=80°,BE=BA,∠CAB=∠E,∴∠E=∠BAE=∠CAB,∵∠CAD=∠CAB+∠BAE,∴∠CAD=∠BAE+∠E,∵∠EBA=80°,∴∠E+∠BAE=100°,即∠CAD=100°,故选:A.9.(2023•普兰店区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是( )A.50°B.60°C.40°D.30°【答案】A【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C,∠AOC=80°∴∠DOC=80°﹣α∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选:A.10.(2023•小店区校级一模)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC'∥AB,划∠BAB′的度数是( )A.35°B.40°C.50°D.70°【答案】B【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,∵将△ABC在平面内绕点A旋转到△AB′C′的位置,∴∠C′AB′=∠CAB=70°,AC′=AC,∴∠C=∠AC′C=∠C′CA=70°,∴∠C′AC=180°﹣70°﹣70°=40°,∴∠C′AC=∠BAB′=40°,即旋转角的度数是40°,故选:B.【题型3 利用旋转的性质求线段长度】11.(2023•扎兰屯市一模)如图,P为正方形ABCD内一点,PC=1,将△CDP 绕点C逆时针旋转得到△CBE,则PE的长是( )A.1B.C.2D.2【答案】B【解答】解:∵将△CDP绕点C逆时针旋转得到△CBE,∴∠BCD=∠PCE=90°,PC=CE=1,∴PE===,故选:B.12.(2023春•沈河区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在边AB上,则点B'与点B之间的距离为( )A.4B.2C.3D.【答案】B【解答】解:如图,连接BB',∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠BCB'=∠ACA',CB=CB',CA=CA',∵∠A=60°,∴△ACA'是等边三角形,∠ABC=30°,∴∠ACA'=60°,AB=2AC,∴∠BCB'=60°,∴△BCB'是等边三角形,∴BB'=BC,在Rt△ABC中,AB=2AC=4,∴BC===2,∴BB'=2,故选:B.13.(2023春•沙坪坝区校级期中)如图,在边长为4的正方形ABCD中,M为边AB上一点,且,将CM绕着点M顺时针旋转使得点C落在AB延长线上的点E处,连接CE,则点M到直线CE的距离是( )A.2B.C.5D.【答案】D【解答】解:∵正方形ABCD的边长为4,∴AB=BC=4,∠ABC=90°,∵,∴BM=3,在Rt△BMC中,由勾股定理得,CM==5,∵将CM绕着点M顺时针旋转使得点C落在AB延长线上的点E处,∴CM=CE=5,∴BE=2,在Rt△CBE中,由勾股定理得,CE==2,设点M到直线CE的距离为h,则S=,△MCE∴h=,∴点M到直线CE的距离是2,故选:D.14.(2023•阿荣旗一模)如图,边长为2的正方形ABCD的对角线相交于点O,正方形EFGO绕点O旋转,若两个正方形的边长相等,则两个正方形的重合部分的面积( )A.B.C.1D.2【答案】C【解答】解:如图:OE交AB于点N,O交BC于点M,∵四边形ABCD和四边形OEFG是两个边长相等的正方形,∴OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOG=90°,∴∠BON=∠MOC,在△OBN与△OCM中,,∴△OBN≌△OCM(ASA),∴S△OBN =S△OCM,∴四边形OMBN的面积等于△BOC的面积,即重合部分的面积等于正方形面积的,∴两个正方形的重合部分的面积=,故选:C.15.(2023•凤阳县二模)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转到△ABG的位置,点D的对应点是点B.若DF=3,则BE的长为( )A.B.C.1D.2【答案】D【解答】解:∵将△ADF绕点A顺时针旋转到△ABG的位置,点D的对应点是点B.∴∠ADF=∠ABG=90°,AF=AG,∠DAF=∠GAB,∴∠ABG+∠ABE=180°,∴点G、B、E共线,∵∠EAF=45°,∴∠DAF=∠BAE=∠GAB+∠BAE=45°,∴∠EAF=∠GAE,∵AE=AE,∴△EAF≌△EAG(SAS),∴EF=EG,设BE=x,则EF=EG=x+3,CE=6﹣x,在Rt△ECF中,由勾股定理得,32+(6﹣x)2=(x+3)2,解得x=2,∴BE=2,故选:D【题型4 旋转中的坐标与图形变换】16.(2023•沛县三模)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转90°得到点A',则点A'坐标为( )A.(1,−)B.(−,1)C.(0,2)D.(,1)【答案】D【解答】解:如图所示,过A作AB⊥x轴于B,过A'作A'C⊥x轴于C,∵∠AOA'=90°=∠ABO=∠OCA',∴∠BAO+∠AOB=90°=∠A'OC+∠AOB,∴∠BAO=∠COA',又∵AO=OA',∴△AOB≌△OA'C(AAS),∴A'C=BO=1,CO=AB=,∴点A′坐标为(,1),故选:D.17.(2023春•六盘水期中)平面直角坐标系中,O为坐标原点,点A的坐标为(6,﹣1),将OA绕原点按顺时针方向旋转90°得OB,则点B的坐标为( )A.(﹣6,1)B.(﹣1,﹣6)C.(﹣6,﹣1)D.(﹣1,6)【答案】B【解答】解:作BC⊥x轴于点C,∵点A的坐标为(6,﹣1),将OA绕原点顺时针方向旋转90°得OB,∴OB=OA,∠BOC=90°,∴点B的坐标为(﹣1,﹣6),故选:B.18.(2023•南海区校级三模)如图,A(2,0),C(0,4),将线段AC绕点A 顺时针旋转90°到AB,则B点坐标为( )A.(6,2)B.(2,6)C.(2,4)D.(4,2)【答案】A【解答】解:过点B作BD⊥x轴于D,∵A(2,0),C(0,4),∴OA=2,OC=4,∵∠AHB=∠AOC=∠BAC=90°,∴∠CAO+∠ACO=90°,∠CAO+∠BAD=90°,•∴∠ACO=∠BAD,在△AOC和△BAD中,,∴△AOC≌△BAD(AAS),∴BD=OA=2,AD=OC=4,∴OD=AD+OA=6,∴C(6,2).故答案为:A.19.(2023•商丘模拟)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为( )A.(6,4)B.(4,3)C.(7,4)D.(8,6)【答案】C【解答】解:过A′作A'C⊥x轴于点C,由旋转可得∠O'=90°,O'B⊥x轴,∴四边形O'BCA'为矩形,∴BC=A'O'=OA=3,A'C=O'B=OB=4,∴OC=OB+BC=7,∴点A'坐标为(7,4).故选:C.20.(2023•柘城县模拟)如图,平面直角坐标系中,A为第一象限一点,B(2,0),∠OBA=120°,OB=AB,将△OAB绕O点逆时针旋转30°,此时点A 的对应点A1的坐标为( )A.(3,)B.(,3)C.(2,2)D.(2,2)【答案】B【解答】解:如图,过点A作AD⊥x轴于D,过点A1作A1H⊥OB于H.∵B(2,0),∠OBA=120°,OB=AB,∴∠AOB=30°,∠ABD=60°,AB=OB=2,∴AD=AB=,∴OA=2AD=2,∵OA1=OA=2,∴△OAB绕点O逆时针旋转30°得到△OA1B1,则∠A1OH=60°,∴OH=OA1=,A1H=OH=3,∴点A1的坐标是(,3),故选:B.21.(2023•大冶市校级一模)如图,在平面直角坐标系中,A(1,0),B(﹣2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是( )A.(4,3)B.(4,4)C.(5,3)D.(5,4)【答案】C【解答】解:如图,过点B作BE⊥x轴于E,过点C作CF⊥x轴于F.∵A(1,0),B(﹣2,4),∴OA=1,BE=4,OE=2,AE=3,∵∠AEB=∠AFC=∠BAC=90°,∴∠B+∠BAE=90°,∠BAE+∠CAF=90°,∴∠B=∠CAF,∵AB=AC,∴△BEA≌△AFC(AAS),∴CF=AE=3,AF=BE=4,OF=1+4=5,∴C(5,3),故选:C.【题型5 作图-旋转变换】22.(2023•蜀山区校级三模)在平面直角坐标系中,△ABC的三个顶点在格点上(每个方格的边长均为1个单位长度).(1)请画出△ABC关于x轴对称的图形△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小(不写作法,保留作图痕迹).【答案】(1)见解答;(2)见解答;(3)见解答.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,P即为所求.23.(2023•合肥模拟)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点),直线l也经过格点.(1)画出△ABC关于直线l对称的△A′B′C′;(2)将线段AB绕点A′顺时针旋转90°得到线段DE,画出线段DE.【答案】(1)见解答.(2)见解答.【解答】解:(1)如图,△A′B′C′即为所求.(2)如图,线段DE即为所求.24.(2023春•崂山区期末)在平面直角坐标系中,△ABC的位置如图,网格中小正方形边长为1,点A坐标为(1,2),请解答下列问题:(1)作出△ABC绕点O的逆时针旋转90°得到的△A1B1C1;(2)计算△A1B1C1的面积.【答案】(1)见解析;【解答】解:(1)如图所示,△A1B1C1即为所求;(2)△A1B1C1的面积=4×2﹣=.25.(2022秋•雄县期末)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别为(﹣1,0),(﹣2,﹣2).(1)△A1B1C1与△ABC关于点O成中心对称,请在图中画出△A1B1C1,并直接写出点C1的坐标;(2)在(1)的基础上,将△ABC绕点A1逆时针旋转90°后得到△A2B2C2,请在图中画出△A2B2C2,并直接写出点C2的坐标.【答案】(1)图见解析,C1的坐标为(4,1);(2)图见解析,点C2的坐标为(2,﹣5).【解答】解:(1)△A1B1C1如图,点C1的坐标为(4,1);(2)解:△A2B2C2如图;点C2的坐标为(2,﹣5).【题型6 旋转对称图形】26.(2023•东方校级二模)将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )A.B.【答案】C【解答】解:∵△AOB绕点O旋转180°得到△DOE,∴作图正确的是C选项图形.故选:C.27.(2023•宁江区三模)下列图形绕某点旋转90°后,能与原来图形重合的是( )A.B.【答案】B【解答】解:A、绕它的中心旋转60°才能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项符合题意;C、绕它的中心旋转180°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°能与原图形重合,故本选项不合题意.故选:B.35.(2023•海安市模拟)如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为( )A.45B.60C.72D.144【答案】C【解答】解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.28.(2023•南关区校级三模)如图,图案由三个叶片组成,且其绕点O旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为( )平方厘米.A.2B.4C.6D.8【答案】B【解答】解:∵三个叶片的总面积为12平方厘米,∴一个叶片的总面积为4平方厘米,∵∠AOB=120°,∴阴影部分的面积之和一个叶片的总面积为4平方厘米,故选:B.29.(2022春•丰县月考)如图,以点O为旋转中心旋转如图所示的图形,若旋转后的图形与原图形重合,是旋转角可以为( )A.60°B.180°C.90°D.120°【答案】D【解答】解:O为圆心,连接三角形的三个顶点,即可得到∠AOB=∠BOC=∠AOC=120°,所以旋转120°或240°后与原图形重合.故选:D.30.(2021春•子洲县期中)将图绕其中心旋转某一角度后会与原图形重合,这个角不能是( )A.90°B.120°C.180°D.270°【答案】B【解答】解:图形可看作由一个基本图形旋转90°所组成,故最小旋转角为90°.则该图形绕其中心旋转90°n(n取1,2,3…)后会与原图形重合.故这个角不能是120°.故选:B.31.(2022秋•澄海区期末)把图中的五角星图案,绕着它的中心旋转,旋转角至少为 72 度时,旋转后的五角星能与自身重合.【答案】见试题解答内容【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,旋转角至少为72°.故答案为:72.【题型7 旋转中周期性问题】32.(2023•渠县校级模拟)如图,正方形OABC的顶点A,C在坐标轴上,将正方形绕点O第1次逆时针旋转45°得到正方形OA1B1C1,依此方式,连续旋转至第2023次得到正方形OA2023B2023C2023.若点A的坐标为(1,0),则点B2023的坐标为( )A.(1,﹣1)B.C.D.(﹣1,1)【答案】C【解答】解:∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:,由旋转的性质得:,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴,B 2(﹣1,1),,B4(﹣1,﹣1),,B 6(1,﹣1),…,发现是8次一循环,则2023÷8=252…7,∴点B2023的坐标为;故选:C.33.(2023春•中原区校级期中)如图,Rt△AOB中,∠AOB=90°,OA=3,OB=4,将△AOB沿x轴依次以三角形三个顶点为旋转中心顺时针旋转,分别得图②,图③,则旋转到图⑩时直角顶点的坐标是( )【答案】B【解答】解:∵∠AOB=90°,OA=3,OB=4,∴AB===5,根据图形,每3个图形为一个循环组,3+5+4=12,所以,图⑨的直角顶点在x轴上,横坐标为12×3=36,所以,图⑨的顶点坐标为(36,0),又∵图⑩的直角顶点与图⑨的直角顶点重合,∴图⑩的直角顶点的坐标为(36,0).故选:B.34.(2023•叶县模拟)如图,在平面直角坐标系中,正方形ABCD的边AB在x 轴上,点B(3,0),点D(1,2),将正方形ABCD绕点A逆时针旋转,每次旋转90°,当第2023次旋转结束时,点C的坐标是( )A.(﹣1,﹣2)B.(﹣1,2)C.(2,﹣3)D.(3,﹣2)【答案】D【解答】解:由题可知,将矩形ABCO绕点O逆时针旋转,每次旋转90°,∴每旋转4次则回到原位置,∵2023÷4=505……3,∴第2023次旋转结束后,图形顺时针旋转了90°,∵点B(3,0),点D(1,2),∴C(3,2),∴第2023次旋转结束时,点C的坐标是(3,﹣2),故选:D.35.(2023春•迁安市期中)将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为,将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为( )A.B.C.D.【答案】D【解答】解:由题意可知:6次旋转为1个循环,第一次旋转时:过点A′作x轴的垂线,垂足为C,如图所示:由A的坐标为可知:,AB=3,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,,由旋转性质可知:△AOB≌△A′OB′,∴∠A′OB′=∠AOB=60°,OA′=OA,∴∠A′OC=180°﹣∠A′OB′﹣∠AOB=60°,在△A′OC与△AOB中:,∴△A′OC′≌△AOB(AAS),∴,A′C=AB=3,∴此时点A′对应坐标为,当第二次旋转时,如所示:此时A′点对应点的坐标为.当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为,当第4次旋转时,第4次的点A对应点与第1次旋转的A′点对应点中心对称,故坐标为,当第5次旋转时,第5次的点A对应点与第2次旋转的A′点对应点中心对称,故坐标为.第6次旋转时,与A点重合.故前6次旋转,点A对应点的坐标分别为:、、、、、.由于2023÷6=337⋅⋅⋅⋅⋅⋅1,故第2023次旋转时,A点的对应点为.故选:D.36.(2023•太康县一模)如图,平面直角坐标系中,有一个矩形ABOC,边BO 在x轴上,边OC在y轴上,AB=1,BO=2.将矩形ABOC绕着点O顺时针旋转90度,得到矩形A1B1OC1,再将矩形A1B1OC1,绕着点C1顺时针旋转90°得到矩形A2B2O1C1,依次旋转下去,则经过第2023次旋转,点A的对应点的坐标是( )A.(3033,1)B.(3033,2)C.(3033,0)D.(3032,0)【答案】C【解答】解:由题意,A1(1,2),A2(3,0),A3(3,0),A4(4,1),……,四次应该循环,∵2023÷4=505…3,∴A2023在x轴上,坐标为(505×6+3,0),即(3033,0).故选:C.37.(2023•鲁山县一模)如图,在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO=AB,∠OAB=120°,△AOB绕点O逆时针旋转,每次旋转90°,则第2023次旋转后,点B的坐标为( )A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥y轴于H,在Rt△ABH中,∠AHB=90°,∠BAH=180°﹣120°=60°,AB=OA=2,∴∠ABH=30°,∴AH=AB=1,OH=OA+AH=3,由勾股定理得BH==,∵AB=OA=2,∠OAB=120°,∴∠AOB=30°,∴OB=2BH=2,∴B(,3),B1(﹣,3),B2(﹣2,0),B3(﹣,﹣3),B4(,﹣3),B5(2,0),....,6次一个循环,∴2023÷6=337……1,∴第2023次旋转后,点B的坐标为(﹣,3).故选:D.38.(2023•阜新模拟)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…则正方形铁片连续旋转2024次后,点P的坐标为( )A.(6070,2)B.(6072,2)C.(6073,2)D.(6074,1)【答案】C【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2024÷4=506,P2024的纵坐标与P4相同为2,横坐标为1+12×506=6073,∴P2024(6073,2).故选:C.。
九年级数学上册第二十三章旋转经典大题例题单选题1、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD=DC=1AC=2√22∴OD是△ABC的中位线∴BC=2OD∵OA2=OD2+AD2∴(4−x)2=x2+(2√2)2,解得x=1∴BC=2OD=2x=2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD的长是解题的关键.2、如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤答案:C分析:根据旋转变换及全等图形的定义对应边相等,对应角相等的图形是全等图形对个图进行一一分析判断即可解:②以右下角顶点为定点顺时针旋转90°后,两个实线图形刚好重合,③中为平行四边形,而①中为梯形,所以不能和①中图形完全重合,④可上下反转成②的情况,然后旋转可和①中图形完全重合,⑤可旋转180°后可和①中图形完全重合,∴与①中由实线围成的图形全等的有②④⑤.故选择C.小提示:本题考查多边形全等的判定,掌握全等图形的定义,关键是会通过图形的旋转使它们全等.3、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣12答案:D分析:首先根据关于原点对称的点的坐标特点可得a+2+4=0,2−b=0,可得a,b的值,再代入求解即可得到答案.解:∵点(a+2,2)关于原点的对称点为(4,﹣b),∴a+2+4=0,2−b=0,解得:a=−6,b=2,∴ab=−12,故选D小提示:本题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的横纵坐标都互为相反数.4、如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为()A.(7,3√3)B.(7,5)C.(5√3,5)D.(5√3,3√3)答案:A分析:如图,过点D作DE⊥x轴于点E.证明△AOC是等边三角形,解直角三角形求出DE,CE,可得结论.解:如图,过点D作DE⊥x轴于点E.∵B(6,0),∴OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等边三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=1CD=3,DE=√CD2−CE2=3√3,2∴OE=OC+CE=4+3=7,∴D(7,3√3),故选:A.小提示:本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质.5、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.6、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.7、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.8、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.9、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.10、已知两点M1(x1,y1),M2(x2,y2),若x1+x2=0,y1+y2=0,则点M1与M2()A.关于y轴对称B.关于x轴对称C.关于原点对称D.以上均不对答案:C分析:首先利用等式求出x1=−x2,y1=−y2,然后可以根据横纵坐标的关系得出结果.∵x1+x2=0,y1+y2=0,∴x1=−x2,y1=−y2,∵两点M1(x1,y1),M2(x2,y2),∴点M1与M2关于原点对称,故选:C.小提示:本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点M1与M2横纵坐标的关系是解题关键.填空题11、如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,AB=5,BC=9,则BD=______.答案:√106分析:连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=9,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=√52+92=√106.所以答案是:√106.小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、以原点为中心,把M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.答案:(−4,3)分析:建立平面直角坐标系,根据旋转的性质得出N点坐标,由此即可得出答案.解:如图:由旋转的性质可得:M点横坐标等于N点纵坐标的值,M点纵坐标的值等于N点横坐标的绝对值,又∵M(3,4),∴N(-4,3),所以答案是:(-4,3).小提示:此题考查有关点的坐标旋转的性质,结合坐标轴和旋转的特点确定坐标即可.13、如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.答案:2分析:点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =4√33,进而得P 1A =P 1F 1=AF 1=8√33,求得点F 1的坐标为(4√33,0),当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =√3x -4,再由线段中垂线性质得出F 1F 2=AF 1=8√33,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×ℎ,即12×4√33×4=12×8√33×ℎ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =4√33, ∴P 1A =P 1F 1=AF 1=8√33, ∴点F 1的坐标为(4√33,0), 如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan∠OF 1F 2=OF 2OF 1=4√33=√3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b , 则{4√33k +b =0b =−4,解得{k =√3b =−4, ∴直线F 1F 2的解析式为y =√3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=8√33, 在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×ℎ,∴12×4√33×4=12×8√33×ℎ,解得h =2,即线段OF的最小值为2,故答案为2.小提示:本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.14、已知点P(m−2,m)关于原点对称的点在第三象限,则m的取值范围是_______.答案:m>2分析:根据关于原点对称的点的性质可得点P在第一象限,进而得出不等式组,再解不等式组即可.解:∵点P(m−2,m)关于原点对称的点在第三象限,∴点P(m−2,m)在第一象限,∴{m−2>0,m>0解得:m>2,所以答案是:m>2.小提示:此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.15、如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△AB,则线段B1D的长度为______.A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,OD=12答案:1.5cm##3cm2分析:先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出ODAB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,则问题得解.=12∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=√OA2+OB2=5cm,∴OD=1AB=2.5cm,2∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.所以答案是:1.5cm.小提示:本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握勾股定理是解题的关键.解答题16、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.答案:(1)画图见解析,(2)画图见解析分析:(1)分别确定A,B向右平移4个单位后的对应点A1,B1,再连接A1B1即可;(2)分别确定A,B绕原点O旋转180°后的对应点A2,B2,再连接A2B2即可.解:(1)如图,线段A1B1即为所求作的线段,(2)如图,线段A2B2即为所求作的线段,小提示:本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键. 17、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.答案:(1)A(-2,0),B(-1,√3),C(0,0)(2)A′(−1,√3),B′(1,√3)分析:(1)作高线BC,根据等边三角形的性质和勾股定理求OC和BC的长,写出三点的坐标,注意象限的符号问题;(2)如图2,由旋转可知:A′与B重合,B与B′关于y轴对称,可得:A′,B′的坐标.(1)解:如图1,过B作BC⊥OA于C,∵△AOB是等边三角形,且OA=2,OA=1,∴OC=12由勾股定理得:BC=√22−12=√3,∴A(−2,0),B(−1,√3),O(0,0);(2)解:如图2,∵∠AOB=60°,OA=OB,∴A′与B重合,∴A′(−1,√3),由旋转得:∠BOB′=60°,OB=OB′,∵∠AOD=90°,∴∠BOD=30°,∴∠DOB′=30°,∴BB′⊥OD,DB=DB′,∴B′(1,√3).小提示:本题考查了坐标与图形变换、等边三角形的性质、旋转的性质,熟练掌握旋转和等边三角形的性质是关键,并注意点所在象限的符号问题.18、如图,一伞状图形,已知∠AOB=120°,点P是∠AOB角平分线上一点,且OP=2,∠MPN=60°,PM与OB交于点F,PN与OA交于点E.(1)如图一,当PN与PO重合时,探索PE,PF的数量关系(2)如图二,将∠MPN在(1)的情形下绕点P逆时针旋转α度(0<α<60°),继续探索PE,PF的数量关系,并求四边形OEPF的面积.答案:(1)PE=PF,证明详见解析;(2)PE=PF,√3分析:(1)根据角平分线定义得到∠POF=60°,推出△PEF是等边三角形,得到PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,根据角平分线的性质得到PQ=PH,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF,S四边形OEPF=S四边形OQPH,求得OQ=1,QP=√3,根据三角形的面积公式即可得到结论.解:(1)∵∠AOB=120°,OP平分∠AOB,∴∠POF=60°,∵∠MPN=60°,∴∠MPN=∠FOP=60°,∴ΔPEF是等边三角形,∴PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,∵OP平分∠AOB,∴PQ=PH,∠PQO=∠PHO=90°,∵∠AOB=120°,∴∠QPH=60°,∴∠QPE+∠FPH+∠EPH,∴∠QPE=∠EPF,在ΔQPE与ΔHPF中{∠EQP=∠FHP ∠QPE=∠HPFPQ=PH,∴ΔQPE≌ΔHPF(AAS),∴PE=PF,S四边形OEPF =S四边形OQPH,∵PQ⊥OA,PH⊥OB,OP平分∠AOB,∴∠QPO=30°,∴OQ=1,QP=√22−12=√3,∴SΔOPQ=12×1×√3=√32,∴四边形OEPF的面积=2SΔOPQ=√3小提示:本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.。
初三旋转题型旋转题型的题目有很多,以下是一些常见的题型和解题思路:1. 题目:在等腰三角形ABC中,∠BAC=120°,AB=AC,点E、F是BC边上的两点,∠BAE=∠CAF=30°,连接AE、AF、EF,则△AEF的面积与△ABC的面积之比为 _______.首先,由于∠BAC=120°,AB=AC,所以∠ABC=∠ACB=30°。
然后,由于∠BAE=∠CAF=30°,所以∠EAF=∠BAC−∠BAE−∠CAF=60°。
接着,因为∠ABC=∠ACB=30°和AB=AC,我们可以得出△ABE≌△ACF。
因此,△ABE 和△ACF的面积相等。
2. 题目:在平面直角坐标系中,点A的坐标为$(2,3)$,将线段OA绕点O 按顺时针方向旋转90°得到线段OB,则点B的坐标是____.首先,点A的坐标为$(2,3)$,那么点A和原点O之间的向量是$(2,3)$。
按照题目要求,线段OA绕原点O按顺时针方向旋转90°。
根据向量旋转的性质,新的向量应该是原向量乘以单位旋转矩阵。
单位旋转矩阵是一个2x2矩阵,其形式为:$\begin{bmatrix} \cos 90^\circ & -\sin 90^\circ \\ \sin 90^\circ &\cos 90^\circ \end{bmatrix}$将原向量$(2,3)$乘以这个单位旋转矩阵,得到新的向量$(-3, 2)$。
因此,点B的坐标是$(-3, 2)$。
3. 题目:将正方形绕着它的旋转中心至少旋转多少度才能和原来的图形重合.正方形有4个对称轴,每个角都是90度。
因此,正方形绕着它的旋转中心至少需要旋转90度才能和原来的图形重合。
图形的旋转经典题一.选择题(共10小题)1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D 两点间的距离为()A.B.2C.3 D.23.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.74.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形5.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()6题7题9题A.π+πB.2π+2 C.3π+3πD.6π+67.(2016?松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°9.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.410.等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°二.填空题(共6小题)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是______.11题12题13题12.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为______.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是______.14.如图,在△ABC 中,∠C=90°,∠B=55°,点D 在BC 边上,DB=2CD ,若将△ABC 绕点D 逆时针旋转α度(0<α<180)后,点B 恰好落在初始位置时△ABC 的边上,则α等于______.15.如图,用扳手拧螺母时,旋转中心为______,旋转角为______. 16.在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为______. 三.解答题(共8小题)17.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF .(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°. 18.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形). (1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2、C 2的坐标. 19.如图,在平面直角坐标系xOy 中,每个小正方形的边长均为1,线段AB 和DE 的端点A 、B 、D 、E 均在小正方形的顶点上.(1)画出以AB 为一边且面积为2的Rt △ABC ,顶点C 必须在小正方形的顶点上;(2)画出一个以DE 为一边,含有45°内角且面积为的△DEF ,顶点F 必须在小正方形的顶点上;(3)若点C 绕点Q 顺时针旋转90°后与点F 重合,请直接写出点Q 的坐标. 20.(1)如图(1),直线a ∥b ,A ,B 两点分别在直线a ,b 上,点P 在a ,b 外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论; (2)如图(2),直线a ∥b ,点P 在直线a ,b 直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a 绕点A 按逆时针方向旋转一定角度交直线b 于点M ,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.21.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PA=3,PB=1,PC=2,求∠BPC 的度数.小强在解决此题时,是将△APC 绕C 旋转到△CBE 的位置(即过C 作CE ⊥CP ,且使CE=CP ,连接EP 、EB ).你知道小强是怎么解决的吗? (2)请根据(1)的思想解决以下问题:如图2所示,设P 是等边△ABC 内一点,PA=3,PB=4,PC=5,求∠APB 的度数. 22.如图1,在等腰直角△ABC 中,AB=AC ,∠BAC=90°,将一块三角板中含45°角的顶点放在A 上,从AB 边开始绕点A 逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC 于点D ,直角边所在的直线交直线BC 于点E .操作一:在线段BC 上取一点M ,连接AM ,旋转中发现:若AD 平分∠BAM ,则AE 也平分∠MAC .请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.23.如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.(2016?玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.2.(2016?宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C 落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016?朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.4.(2016?莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.5.(2016?呼伦贝尔校级一模)下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动【分析】根据旋转的定义来判断:旋转就是将图形绕某点转动一定的角度,旋转后所得图形与原图形的形状、大小不变,对应点与旋转中心的连线的夹角相等.【解答】解:传送带传送货物的过程中没有发生旋转.故选:A.【点评】本题考查了旋转,正确理解旋转的定义是解题的关键.6.(2016?无锡校级模拟)如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(2016?松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.(2016?和平区一模)一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°【分析】根据菱形是中心对称图形解答.【解答】解:∵菱形是中心对称图形,∴把菱形绕它的中心旋转,使它与原来的菱形重合,旋转角为180°的整数倍,∴旋转角至少是180°.故选C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.(2016春?雅安期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(2015?浠水县校级模拟)等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°【分析】根据等边三角形的性质及旋转对称图形得到性质确定出最小的旋转角即可.【解答】解:等边三角形ABC绕着它的中心,至少旋转120°才能与它本身重合.故选B【点评】此题考查了旋转对称图形,熟练掌握旋转的性质是解本题的关键.二.填空题(共6小题)11.(2016?邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2016?高青县模拟)如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为.【分析】如图,首先运用旋转变换的性质证明CD=CB(设为λ);运用勾股定理求出AB的长度;再次运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,由题意得CD=CB(设为λ);由勾股定理得:AB2=BD2﹣AD2,而BD=,AD=1,∴AB=4,AC=4﹣λ;由勾股定理得:λ2=12+(4﹣λ)2,解得:.故答案为.【点评】该题主要考查了旋转变换的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、勾股定理等几何知识点,这是灵活运用、解题的基础和关键.13.(2016?海曙区一模)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【分析】根据旋转的性质可得AB=AB′,然后判断出△ABB′是等腰直角三角形,根据等腰直角三角形的性质可得∠ABB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′C′A,然后根据旋转的性质可得∠C=∠B′C′A.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.14.(2016?太原二模)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120 .【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质的应用,能求出∠B′DB 的度数是解题的关键,作出图形更形象直观.15.(2016?怀柔区二模)如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.16.(2016?瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.三.解答题(共8小题)17.(2016?荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.18.(2016?丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A 1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.(2016?呼兰区模拟)如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB 和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.【分析】(1)和(2)分别画出图形;(3)作FC的中垂线,得Q(5,0).【解答】(1)S△ABC=×2×2=2;(2)S△DEF=2×3﹣1×2﹣×1×3=;∵ED=EF,∠DFE=90°,∴∠FDE=45°;(3)由勾股定理得:FC==,CQ==,FQ==,∴FC2=CQ2+FQ2,CQ=FQ,∴∠FQC=90°,∴点C绕点Q顺时针旋转90°后与点F重合;则点Q(5,0).【点评】本题考查了作图﹣旋转变换,对于画定值面积的三角形,利用面积的和、差先试求某点所组成的图形的面积是否符合题意,再确定这一点;同时根据勾股定理计算所成的三角形是否为直角三角形或等腰直角三角形.20.(2016春?重庆期末)(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b 外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.【分析】(1)设直线AP交直线b于O,根据平行线的性质得出∠2=∠AOB,根据三角形外角性质求出∠AOB=∠1+∠3,即可得出答案;(2)延长AP交直线b于O,根据平行线的性质得出∠ABO=∠2=50°,根据三角形的外角性质得出∠1=∠AOB+∠3,代入求出即可;(3)延长AP交直线b于O,根据三角形外角性质得出∠AOB=∠2+∠4,∠1=∠3+∠AOB,求出∠1=∠2+∠4+∠3,代入求出即可.【解答】(1)∠2=∠1+∠3,证明:设直线AP交直线b于O,如图1,∵直线a∥直线b,∴∠2=∠AOB,∵∠AOB=∠1+∠3,∴∠2=∠1+∠3;(2)解:延长AP交直线b于O,如图2,∵直线a∥直线b,∠2=50°,∴∠ABO=∠2=50°,∵∠3=30°,∴∠1=∠AOB+∠3=50°+30°=80°;(3)解:延长AP交直线b于O,如图3,∵∠AOB=∠2+∠4,∠1=∠3+∠AOB,∴∠1=∠2+∠4+∠3,∵∠1=100°,∠4=40°,∴∠2+∠3=∠1﹣∠4=60°.【点评】本题考查了平行线的性质,三角形外角性质的应用,能灵活运用性质进行推理是解此题的关键.21.(2014秋?五常市校级期中)(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC 的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.【分析】(1)如图1,首先证明BE2=PE2+PB2,得到∠BPE=90°;证明∠CPE=45°即可解决问题.(2)如图2,作旋转变换;首先证明∠AQP=60°;其次证明PQ2+CQ2=PC2,得到∠PQC=90°,求出∠AQC=150°,即可解决问题.【解答】解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.【点评】该题主要考查了旋转变换的性质、等边三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.22.(2014秋?苏州期中)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.【分析】(1)如图1,根据图形、已知条件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,得出FE=CE,∠AFE=∠C=45°.再证明∠DFE=90°.然后在Rt△DFE中应用勾股定理即可证明.【解答】(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)证明:如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∠B=∠AFD=45°.∵∠BAD=∠FAD,∴由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,,∴△AEF≌△AEC(SAS),∴FE=CE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.【点评】本题考查了旋转的性质,角平分线的定义,等腰直角三角形的性质,轴对称的性质,全等三角形的判定和性质等知识点.注意,旋转前后,图形的大小和形状都不改变.23.(2014秋?利川市校级期中)如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.【分析】(1)根据等边三角形的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB;(2)连接AN,BM,根据等边三角形的性质及旋转的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB.【解答】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.【点评】此题主要考查学生对等边三角形的性质、旋转的性质及全等三角形的判定方法的综合运用.24.(2014秋?江西期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE ⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE ﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.。
3题图
A B
C D
E
B
A
F
D
E
C 能力拓展:
1.如图,四边形ABCD 是正方形,点E 是AB 边上的点,BE=1.将△BCE 绕点C 顺时针旋转900
得到△DCF.已知EF=25.求正方形ABCD 的边长是_________。
2.如图14,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP / 重合,如果AP=3,那么线段P P /
的长_______
3.如图,把边长为1cm 的正方形ABCD 的对角线AC 分成n 段,以每一段为对角线作正方形,所有小正方形的周长之和为 .
4.如图,在直角△ABC 中,∠C =90°,∠A =35°,以直角顶点C 为旋转中心,将△ABC 旋转到△A'B'C 的位置,其中A'、B'分别是A 、B 的对应点,且点B 在斜边A'B'上,直角边CA'交AB 于点D ,这时∠BDC 的度数是___________
5.如图,边长为1的正方形ABCD 绕点A 逆时针旋转0
30到正方形///
AB C D ,则图中阴影部分面积为( ) A.313-
B 、33
C 、314-
D 、1
2
6.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=600,则∠EFD 的度数为( )
A 、100
B 、150
C 、200
D 、250
7.如图所示,已知P 为正方形ABCD 外的一点.PA=1,PB=2.将△ABP 绕点B 顺时针旋转900
,使点P 旋转至
点P ’ ,且AP ’=3,求∠B P ’
C 的度数。
A B
C
D
P
P
’
8.如图,P是等边三角形ABC内的一点,连结PA、PB、PC,•以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.
A (2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明
理由.
P
B
C
Q
《图形的平移与旋转》知识梳理:
一、平移变换:
1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2.性质:(1)平移前后图形全等;
(2)对应点连线平行(或在同一直线上)且相等。
3.平移的作图步骤和方法:
(1)分清题目要求,确定平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关健点;(3)沿一定的方向,按一定的距离平移各个关健点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。
二、旋转变换:
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角
练习题:基础题
1.下列说法正确的是( )
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.平移和旋转的共同点是改变图形的位置
C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D.由平移得到的图形也一定可由旋转得到
2.国旗上的四个小五角星,通过怎样的移动可以相互得到()
A.轴对称B.平移 C.旋转 D.平移和旋转
3.将长度为5cm 的线段向上平移10cm所得线段长度是()
A、10cm
B、5cm
C、0cm
D、无法确定
4.下列图形中,是由(1)仅通过平移得到的是( )。