单克隆抗体和基因工程抗体的制备
- 格式:ppt
- 大小:1.15 MB
- 文档页数:81
红细胞血型单克隆抗体及基因工程抗体的制备的开
题报告
1. 研究背景
血型是人体基因组中的重要表型,血型分类系统多种多样,主要有ABO血型系统和Rh血型系统。
血型抗原是血细胞表面的特定蛋白质和糖类成分,在输血和器官移植等医学实践中具有非常重要的意义。
因此,
对于血型抗原和抗体的研究和制备具有重要的意义。
目前,红细胞血型单克隆抗体及基因工程抗体成为了研究的热点,
这些抗体的制备可通过某些特异性标志物筛选肝炎病毒抗体、瘤细胞表
面分子抗体、药物代谢酶等。
由于这些抗体具有很高的特异性、敏感性
和稳定性,因此已被广泛用于诊断、治疗以及实验室研究等领域。
2. 研究目的
本研究旨在制备红细胞血型单克隆抗体及基因工程抗体,探究不同
制备方法以及对不同固定的红细胞抗原的适用性,为医学实践提供支持。
3. 研究方法
(1)红细胞血型单克隆抗体的制备
提取出兔、鼠或小鼠等动物的淋巴细胞后,与牛红细胞或猪红细胞
等固定红细胞进行融合,制备出单克隆抗体。
(2)基因工程抗体的制备
采用重组DNA技术合成特定的单克隆抗体,通过细胞处理和分离纯化,制备出基因工程抗体。
4. 研究进展和计划
目前,我们已经完成了红细胞血型单克隆抗体的制备,同时对基因
工程抗体的制备进行了初步实验。
下一步,我们将在不断实验和分析的
基础上,优化制备方法和条件,进一步探究两种抗体对不同血型固定红细胞的适用性差异,完善有关的研究成果。
基因工程制备抗体方案有哪些引言抗体是一种可以识别并结合特定抗原的蛋白质,具有重要的生物学功能和临床应用价值。
传统制备抗体的方法主要是从动物(如小鼠、兔子等)中提取抗体,但该方法存在一些缺点,如周期长、成本高、质量不稳定等。
因此,基因工程技术的发展使得制备抗体的方法得到了革命性的改变,可以通过基因工程技术在体外合成抗体,提高了抗体的质量和稳定性。
本文将介绍基因工程制备抗体的方法和流程,包括抗体的选择和克隆、表达、纯化和鉴定等环节。
通过基因工程方法获得的抗体,可以应用于药物研发、医学诊断、生物学研究等领域,具有广阔的应用前景。
1. 抗体的选择和克隆(1)抗原的选择制备抗体的第一步是选择合适的抗原。
抗原是引发免疫反应的物质,可以是蛋白质、多肽、多糖、药物等。
根据需要制备的抗体类型,可以选择相应的抗原。
例如,如果需要制备单克隆抗体,可选择单个抗原蛋白作为抗原进行制备。
(2)抗体基因的克隆在选择了合适的抗原后,下一步是将抗体基因克隆到表达载体中。
通常可以利用PCR方法从免疫细胞中扩增出抗体基因,并将其插入表达载体中。
选择合适的表达载体是非常重要的,通常选择在哺乳动物细胞或大肠杆菌中表达。
2. 抗体的表达(1)表达载体的构建在决定抗体表达载体后,接下来是进行表达载体的构建。
通常表达载体包括启动子、终止子、选择标记基因等,通过合成或限制性内切酶切割等方法将抗体基因插入表达载体中。
(2)转染和筛选将构建好的表达载体导入宿主细胞中,可以通过转染等方法实现。
转染后,需要进行筛选,筛选出表达抗体的稳定细胞株。
通常可以利用克隆技术选取高表达的细胞株。
3. 抗体的纯化(1)细胞培养和收获经过筛选的稳定细胞株可以进行大规模培养,收获细胞培养上清液。
(2)亲和层析纯化常用的抗体纯化方法包括亲和层析纯化。
可以利用蛋白A/G或其他具有特异性结合抗体的配体进行纯化。
通过这种方法可以高效地将目标抗体从细胞培养上清液中纯化出来。
4. 抗体的鉴定(1)免疫印迹(Western blot)通过Western blot方法,可以验证纯化得到的抗体是否具有结构完整,是否与目标抗原结合。
第四章单克隆抗体与基因工程抗体的制备将单个B细胞分离出来加以增殖形成一个克隆群落,该B细胞克隆产生出针对单一表位、结构相同、功能均一的抗体,称为单克隆抗体。
第一节杂交瘤技术的基本原理杂交瘤技术的原理是利用聚乙二醇(PEG)为细胞融合剂,使免疫的小鼠脾细胞与具有体外长期繁殖能力的小鼠骨髓瘤细胞融为一体,在HAT选择性培养基的作用下,只让融合成功的杂交瘤细胞生长,经过反复的免疫学检测、筛选和单个细胞培养(克隆化),最终获得既能产生所需单克隆抗体,又能长期繁殖的杂交瘤细胞系。
将这种杂交瘤细胞扩大培养,接种于小鼠腹腔,在小鼠腹腔积液中即可得到高效价的单克隆抗体。
杂交瘤技术是一项周期长和高度连续性的实验技术,涉及大量的细胞培养、免疫化学等方法。
具体包括两种亲本细胞的选择与制备,细胞融合,杂交瘤细胞的筛选与克隆化等。
一、杂交瘤技术(一)小鼠骨髓瘤细胞1.细胞株稳定,易于传代培养。
2.细胞株自身不会产生免疫球蛋白或细胞因子。
3.该细胞是次黄嘌呤鸟嘌呤磷酸核糖转化酶(HGPRT)或胸腺嘧啶激酶(TK)的缺陷株。
4.目前最常用的骨髓瘤细胞是NS-1和SP2/O细胞株。
(二)免疫脾细胞免疫时选用与骨髓瘤细胞同源的BALB/c小鼠,鼠龄8~12周,体重约20g,雌雄均可,但必须分笼。
免疫用抗原尽量提高其纯度和活性,免疫途径多用腹腔内或皮内多点注射法。
如为珍贵微量抗原,可用脾脏内直接注射法进行免疫。
(三)细胞融合细胞融合是产生杂交瘤细胞的中心环节。
PEG(聚乙二醇)有助于细胞融合。
(四)杂交瘤细胞的选择性培养将经过融合的细胞置于含有次黄嘌呤、甲氨蝶呤和胸腺嘧啶核苷的HAT培养基中。
1.脾细胞:在一般培养基中不能生长繁殖。
2.骨髓瘤细胞:采用的小鼠骨髓瘤细胞都是HGPRT或TK代谢缺陷型细胞,在HAT培养基中,不仅合成DNA的主要途径被氨基蝶呤阻断,又因缺乏HGPRT或TK而不能利用次黄嘌呤,虽有TK可利用胸腺嘧啶核苷,但终因缺乏嘌呤不能完整合成DNA,而使骨髓瘤细胞在HAT培养基中不能增殖而死亡。
基因工程抗体名词解释
基因工程抗体是由人工合成或修改的基因来产生的抗体,也称为重组抗体。
与传统的抗体不同,基因工程抗体不受限于动物来源,可以通过人工合成的方式来获得。
基因工程抗体的制备过程包括选择目标抗原、构建重组抗体基因、转染宿主细胞、高效表达和纯化等步骤。
因为基因工程抗体可以定制化地设计和制备,具有高度特异性和亲和力,因此在生物医学研究、临床诊断和治疗等方面具有广泛的应用前景。
常见的基因工程抗体包括单克隆抗体、人源化抗体、嵌合抗体和重组抗体等。
其中,单克隆抗体是指由单一克隆细胞产生的抗体,具有高度特异性和一致性;人源化抗体是将动物源的抗体人源化,避免了人体免疫系统对异种抗体的攻击;嵌合抗体是将两种或以上不同来源的抗体结合起来产生的新型抗体,具有更广泛的抗原覆盖范围和高亲和力;重组抗体则是根据目标抗原的结构和性质,设计并合成新的抗体基因来产生新型抗体,具有更高的特异性和亲和力。
基因工程抗体的发展将会在生物医学领域带来更多的应用和发展机会,同时也将推动基础研究和药物研发的进步。
单克隆抗体与基因工程抗体的制备技术掌握:1.杂交瘤技术的基本原理2.抗体工程的基本技术一、单克隆抗体技术(Monoclonal antibody,McAb)(一)概述:克隆(clone):由单个细胞繁殖、扩增而形成性状均一的细胞集落的过程称为克隆。
多克隆抗体(polyclonal antibody,PcAb):大多数抗原分子具有多个表位,每一种表位均可刺激机体一个B细胞克隆产生一种特异性抗体。
传统制备抗体的方法是用包含多种表位的抗原物质免疫动物,从而刺激多个B细胞克隆产生针对多种抗原表位的不同抗体。
因此,所获得的免疫血清实际上是含有多种抗体的混合物,称为多克隆抗体。
单克隆抗体(monoclonal antibody,McAb):由一个仅识别一种抗原表位的B细胞克隆产生的同源抗体,称为单克隆抗体−−→单个克隆→B−)淋巴细胞化学性质单一、特异性强的抗体(单克隆抗体细胞群①哺乳动物在感染病原体后,体内会形成多种相应的B淋巴细胞(浆细胞),因而产生多种特异性抗体。
②每一个B淋巴细胞只分泌一种特异性抗体。
多克隆抗体:劣势:均一性差、特异性低、排斥副反应强。
单克隆抗体:优势:活性专一、特异性强、纯度高、副反应弱。
(二)杂交瘤技术的基本原理1.杂交瘤技术的基本原理是通过融合两种细胞后同时保持两者的主要特性。
2.细胞的选择与融合:(1)亲本1:经过抗原免疫的B细胞,通常来源于免疫动物的脾细胞。
(2)亲本2:肿瘤细胞,通常选择多发性骨髓瘤细胞(Sp2/0)。
其具备以下特点为:①与B细胞为同一体系,可增加融合的成功率②稳定、易培养③自身不分泌Ig或CK④融合率高⑤是HGPRT缺陷株3.融合剂(fusogen)①引起融合的病毒:副粘病毒②化学制剂:聚乙二醇(PEG)③细胞电融合技术:电脉冲(三)选择培养基的应用1.细胞融合是一个随机的物理过程。
融合后可能出现以下情况:①脾细胞与瘤细胞②瘤细胞与瘤细胞③脾细胞与脾细胞④未融合的瘤细胞⑤未融合的脾细胞⑥细胞多聚体形式2.杂交瘤细胞的选择性培养基——HAT培养基细胞的DNA合成一般有两条途径:(1)主要途径:糖和氨基酸→核苷酸→DNA(2) 替代途径:1) 细胞融合的选择培养基中有三种关键成分:①次黄嘌呤(hypoxanthine,H)②甲氨蝶呤(aminopoterin,A)③胸腺嘧啶核苷(thymidine,T)2)三者取前缀缩写为HAT培养基3)原理:叶酸作为重要的辅酶参与DNA主要合成过程,氨基喋呤是叶酸的拮抗剂,能阻断该主要合成途径。
简述单克隆抗体制备原理。
单克隆抗体是一种通过人工合成而获得的高度特异性的抗体,通常用于检测、诊断和治疗各种疾病。
单克隆抗体的制备原理主要涉及以下几个步骤:
1. 细胞培养:选择适当的细胞系,如B细胞或T细胞等,将其培养在适宜条件下。
2. 分子标记:使用一定的技术和分子标记技术,如荧光标记、放射性标记等,将目标分子或目标分子的基因编码序列引入细胞中。
3. 基因重组:利用基因工程技术,如基因重组载体、基因编辑工具等,将目标分子的基因与相应的单克隆抗体基因进行重组。
4. 表达和处理:将重组后的单克隆抗体基因导入细胞中,使其表达目标分子。
随后,对表达后的单克隆抗体进行筛选和纯化。
5. 扩增和制备:利用适当的扩增技术和设备,如PCR、冻存技术等,将筛选得到的单克隆抗体进行扩增,并制备成所需的浓度和规模。
单克隆抗体制备的原理是基于人工合成抗体的概念,通过分子标记和基因工程技术,将目标分子的基因与单克隆抗体基因进行重组,
使其在细胞中表达并产生高特异性的抗体。
随后,通过筛选、纯化和扩增等技术,获得所需的单克隆抗体。
临床医学检验技术(中级)-单克隆抗体及基因工程抗体的制备1、将鼠源单克隆抗体以基因克隆及DNA重组技术改造,其大部分氨基酸序列为人源序列所取代A.人源化抗体B.小分子抗体C.抗体融合蛋白D.双特异性抗体E.抗体库技术2、特异性不同的两个小分子抗体连接在一起可得到A.人源化抗体B.小分子抗体C.抗体融合蛋白D.双特异性抗体E.抗体库技术3、将抗体分子片段与其他蛋白融合得到的是A.人源化抗体B.小分子抗体C.抗体融合蛋白D.双特异性抗体E.抗体库技术4、分子量小,具有抗原结合功能的分子片段是A.人源化抗体B.小分子抗体C.抗体融合蛋白D.双特异性抗体E.抗体库技术5、次黄嘌呤鸟嘌呤磷酸核糖转移酶是A.次黄嘌呤B.胸腺嘧啶核苷C.HGPRTD.甲氨蝶呤E.叶酸6、叶酸的拮抗剂是A.次黄嘌呤B.胸腺嘧啶核苷C.HGPRTD.甲氨蝶呤E.叶酸7、即有抗体分泌功能又有细胞永生性的是A.淋巴细胞B.小鼠脾细胞C.小鼠骨髓细胞D.小鼠骨髓瘤细胞E.杂交细胞8、可介导标记物与靶抗原结合或效应因子定位于靶细胞的是A.抗体融合蛋白B.双特异性抗体C.人源化抗体D.小分子抗体E.抗体库技术9、可将生物活性物质导向靶细胞特定部位的是A.抗体融合蛋白B.双特异性抗体C.人源化抗体D.小分子抗体E.抗体库技术10、降低异源性,有利于人体应用的是A.抗体融合蛋白B.双特异性抗体C.人源化抗体D.小分子抗体E.抗体库技术11、可在原核细胞中表达,在人体内穿透力强的是A.抗体融合蛋白B.双特异性抗体C.人源化抗体D.小分子抗体E.抗体库技术12、杂交瘤细胞的冻存均采用液氮保存的温度是A.-20℃B.-30℃C.-50℃D.-100℃E.-196℃13、聚乙二醇(PEG1000~2000)是目前最常用的细胞融合剂,使用浓度(W/V)一般为A.20%B.30%C.40%D.50%E.60%14、能在HAT培养基生长繁殖的细胞是A.小鼠脾细胞B.小鼠骨髓瘤细胞C.饲养细胞D.杂交瘤细胞E.免疫活性细胞15、以下有关单克隆抗体特点的叙述中不正确的是A.特异性强B.灵敏度高C.高度的均一性D.对pH、温度及盐类浓度耐受性强E.可重复性16、小鼠骨髓瘤细胞与以下哪种细胞融合,得到杂交瘤细胞,经培养可产生单克隆抗体A.经过免疫的B淋巴细胞B.经过免疫的T淋巴细胞C.未经过免疫的B淋巴细胞D.未经过免疫的T淋巴细胞E.以上均不对17、B细胞杂交瘤技术中细胞融合的选择培养基是A.HAT培养基B.次黄嘌呤培养基C.甲氨蝶呤培养基D.嘧啶核苷培养基E.胸腺嘧啶核苷培养基18、杂交瘤细胞保存最好在A.室温B.-4℃C.-20℃D.-70℃E.-196℃19、阳性杂交瘤细胞克隆化培养时,多少细胞数才能进行克隆化培养A.单个B.多个C.双个D.混合E.没有数目限制20、多发性骨髓瘤细胞是B淋巴细胞杂交瘤细胞的理想细胞,其原因不包括以下哪项A.稳定和易培养B.自身无分泌功能C.改变细胞恶性变化D.融合度高E.HGPRT缺陷21、用于制备单克隆抗体的骨髓瘤细胞不具有以下哪一特点A.稳定易培养B.自身可分泌免疫球蛋白C.融合率高D.HCPRT缺陷株E.是肿瘤细胞22、单克隆抗体的纯化一般不采用以下哪一种方法A.盐析法B.凝胶过滤法C.离子交换层析法D.辛酸提取法E.放射免疫法23、关于单克隆抗体特点的不正确叙述A.理化性状高度均一B.生物活性单一C.来源容易D.特异性强E.针对多种抗原决定簇24、保留抗原结合部位的最小功能片段是A.FabB.FvC.ScFvD.VHE.Fc25、将特异性不同的两个小分子抗体连接在一起则得到是A.嵌合抗体B.小分子抗体C.双特异性抗体D.单克隆抗体E.多克隆抗体26、杂交瘤细胞含有A.两亲本细胞各一半染色体B.两亲本细胞全部染色体C.两个染色体D.融合特有基因信息E.亲代某些特性基因27、以下关于噬菌体抗体库的说法不正确的是A.模拟单一的特异性抗体B.可以不使用人工免疫技术和细胞融合技术C.可获得人源化的抗体D.获得的抗体具有高亲和力E.抗体VH和VL基因重组增加了抗体的多样性28、目前,应用单克隆抗体制作的商品化试剂盒广泛应用于A.病原微生物抗原抗体的检测B.肿瘤抗原的检测C.免疫细胞及其亚群的检测D.激素及细胞因子的测定E.以上都是29、去除杂抗体的吸附剂应选用A.不含特异性抗原的抗原液B.含特异性抗原的抗原液C.含杂抗原的溶液D.含杂抗体的溶液E.牛血清白蛋白30、关于单克隆抗体的描述,不正确的是A.生物活性专一性B.纯度高C.特异性高D.可同时识别多个表位E.可用于诊断和治疗。
1.历史:1.1免疫学起源于中国。
远在唐代开元年间(公元713~741年),中国古代医师便发明了用人痘苗预防天花。
1.2发展1.2.1第一代抗体——多克隆抗体制备技术1890年德国学者贝苓(Behring)和日本学者北里在Koch研究所首先从抗原被动免疫后获得的免疫血清中发现,即多克隆抗体。
1891年,贝苓用动物抗血清成功地治疗了一个白喉患者,这是世界上第一次用人工被动免疫方法治疗病人的事例。
为此,他在1901年获得了诺贝尔奖。
1.2.2第二代抗体——单克隆抗体制备技术50年代末,Burnet创立了“细胞系选择学说”。
该学说认为,每个B淋巴细胞有独特的受体,只能接受某种抗原决定簇的刺激。
这一理论的确立为随后建立的第二代抗体制备技术奠定了理论基础。
两大技术的基础:一是1958年Nossal和Littleflel创建的“细胞融合技术”,一是1962年Potter和Boyce 建立的“人工诱导浆细胞瘤技术”。
于是,1975年德国学者Kohler和英国学者Milstein将产生抗体的淋巴细胞同肿瘤细胞融合,成功的建立了单克隆抗体技术。
1.2.3第三代抗体——基因工程抗体制备技术:1973年DNA重组技术或称基因工程技术的建立,被认为是20世纪生物学的一项最伟大的成就,这一技术被很快渗透到生命科学的各个领域。
进入80年代,日本学者Tonegawa利用基因工程技术首先成功地克隆了免疫球蛋白的V区和C区基因,并证明了B淋巴细胞发育中的基因重排现象,为基因工程抗体的制备奠定了基础,因而于1987年获得了诺贝尔奖。
1984年,美国学者Morrison等制备和表达成功第一个基因工程抗体——人鼠嵌合抗体,开创了制备基因工程抗体的先河。
2.单克隆抗体2.1定义:是由单一B细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体,称为单克隆抗体。
2.2一般过程:通常采用杂交瘤技术来制备,杂交瘤(hybridoma)抗体技术是在细胞融合技术的基础上,将具有分泌特异性抗体能力的致敏B细胞和具有无限繁殖能力的骨髓瘤细胞融合为B细胞杂交瘤。
中级临床医学检验技术临床免疫学及检验(单克隆抗体与基因工程抗体的制备、凝集反应)模拟试卷1(题后含答案及解析) 题型有:1. A1型题 2. B1型题1.制备单克隆抗体常选用小鼠的哪类细胞作为饲养细胞A.中性粒细胞B.K细胞C.肥大细胞D.成纤维细胞E.腹腔细胞正确答案:E解析:小鼠腹腔细胞含有巨噬细胞,除具有饲养作用外,还可清除死亡破碎细胞及微生物。
知识模块:单克隆抗体与基因工程抗体的制备2.下列有关单克隆抗体特点的叙述中错误的是A.特异性强B.灵敏度高C.高度的均一性D.对pH、温度及盐类浓度耐受性强E.可重复性正确答案:D解析:单克隆抗体纯度高,与抗原结合的特异性强,理化性状高度均一,有效抗体含量高,但抗原抗体反应仍受pH、温度及盐类浓度的影响。
知识模块:单克隆抗体与基因工程抗体的制备3.B细胞杂交瘤技术中细胞融合的选择培养基是A.HAT培养基B.次黄嘌呤培养基C.甲氨蝶呤培养基D.嘧啶核苷培养基E.胸腺嘧啶核苷培养基正确答案:A解析:细胞杂交瘤技术中细胞融合的选择培养基含有三种关键成分:次黄嘌呤(H)、氨基蝶呤(A)、胸腺嘧啶核苷(T),缩写为HAT培养基。
知识模块:单克隆抗体与基因工程抗体的制备4.多发性骨髓瘤细胞是B淋巴细胞杂交瘤细胞的理想细胞,其原因不包括下列哪项A.稳定和易培养B.自身无分泌功能C.改变细胞恶性变化D.融合度高E.HGPRT缺陷正确答案:C解析:多发性骨髓瘤是浆细胞异常增生的恶性肿瘤,细胞有恶性变化。
知识模块:单克隆抗体与基因工程抗体的制备5.关于单克隆抗体特点的错误叙述A.理化性状高度均一B.生物活性单一C.来源容易D.特异性强E.针对多种抗原决定簇正确答案:E解析:杂交瘤细胞产生的单克隆抗体是针对抗原分子上某一单个抗原决定簇的抗体,其特点是理化性状高度均一、生物活性单一、来源容易和特异性强。
知识模块:单克隆抗体与基因工程抗体的制备6.杂交瘤细胞含有A.两亲本细胞各一半染色体B.两亲本细胞全部染色体C.两个染色体D.融合特有基因信息E.亲代某些特性基因正确答案:B解析:杂交瘤细胞由两个细胞融合而成,含有两亲本细胞全部染色体,同时具有两种细胞的特性。