可靠性、可用性、失效率基础
- 格式:pdf
- 大小:3.22 MB
- 文档页数:6
可靠性和可用性区别简介可用性(Availability)是关于系统可供使用时间的描述,以丢失的时间为驱动(Be Driven By Lost Time)。
可靠性(Reliability)是关于系统无失效时间间隔的描述,以发生的失效个数为驱动(Be Driven By Number of Failure)。
两者都用百分数的形式来表示。
在一般情况下,可用性不等于可靠性,只有在没有宕机和失效发生的理想状态下,两者才是一样的。
1可用性可用性最简单的表示形式是:A = Uptime / ( Uptime + Downtime )如果我们要讨论一年的可用性,公式的分母就必须至少是8760小时。
固有可用性从设计的角度来看待可用性:A i = MTBF / ( MTBF + MTTR )MTBF,mean time between failureMTTR,mean time to repair或者A i = MTTF / ( MTTF + MTTR )MTTF,mean time to failMTTR,mean time to replace从上述公式可以看出。
如果平均失效间隔时间(MTBF,mean time between failure)或平均失效前时间(MTTF,mean time to fail)远大于平均修复时间(MTTR,mean time to repair)或者平均恢复时间(MTTR,mean time to replace),那么可用性将很高。
同样的,如果平均修复时间或平均恢复时间很小,那么可用性将很高。
如果可靠性下降(比如MTTF变小),那么就需要提高可维护性(比如减小MTTR)才能达到同样的可用性。
当然对于一定的可用性,可靠性增长了,可维护性也就不是那么重要了。
所以我们可以在可靠性和可维护性之间做出平衡,来达到同样的可用性,但是这两个约束条件必须同步改进。
如果系统操作中没有人为疏忽的发生,A i是我们可以观察到的最大的可用性了。
产品可靠性与可用性分析产品可靠性与可用性是衡量产品质量的重要指标。
可靠性关注产品运行过程中的故障率、维修时间等指标,而可用性则着眼于产品在实际使用中的效率和易用性。
本文将对产品的可靠性与可用性进行分析,以供相关领域的研究者和从业者参考。
一、可靠性分析可靠性是指产品在规定条件下,在一定时间内完成规定功能的能力。
在对产品可靠性进行分析时,可以采用故障率、失效率、平均故障间隔时间等指标来评估产品的可靠性水平。
1. 故障率分析故障率是指在单位时间内产品出现故障的概率。
一般来说,故障率越低,产品的可靠性就越高。
为了准确评估产品的故障率,可以通过大量的历史数据和实验数据进行统计分析。
通过分析故障率的变化趋势,可以预测产品在不同时间段内的可靠性变化。
2. 失效率分析失效率是指在产品正常使用期内,单位时间内产品失效的概率。
失效率与产品的可靠性密切相关,失效率越低,产品的可靠性就越高。
失效率分析可以通过对产品失效原因的统计和分析,找出影响产品可靠性的主要因素,并采取相应的措施进行改进。
3. 平均故障间隔时间分析平均故障间隔时间是指在产品正常使用情况下,连续两次故障之间的时间间隔的平均值。
通过分析平均故障间隔时间,可以评估产品的整体可靠性水平。
较长的平均故障间隔时间表明产品故障频率较低,可靠性较高。
二、可用性分析可用性是指产品在实际使用中能够方便、高效地完成用户需求的程度。
在产品的可用性分析中,可以考虑用户体验、系统响应时间、错误处理机制等因素来评估产品的可用性。
1. 用户体验分析用户体验是衡量产品可用性的重要指标之一。
产品应该能够提供简洁、直观、符合用户习惯的操作界面,使用户能够快速上手并高效地完成任务。
通过用户调研、用户测试等方法,可以了解用户对产品的满意度和改进建议,从而提升产品的可用性。
2. 系统响应时间分析系统响应时间是指用户发出请求后,系统给出反馈的时间间隔。
优秀的产品应该能够在较短的时间内响应用户的请求,以提高用户的工作效率和满意度。
可靠性基础知识研究可靠性的意义对于产品来说, 可靠性问题和人身安全, 经济效益密切相关 . 因此, 研究产品的可靠性问题, 显得十分重要 . 非常迫切 .1) 提高产品可靠性, 可以防止故障和事故障的发生, 尤其是避免灾难性的事故发生 .86 年1 月28 日, 美航天飞机” 挑战者号” 由于 1 个密封圈失效, 起飞76S 后爆炸, 其中7 名宇航员丧生, 造成12 亿美元的经济损失;92 年我国发射” 澳星号” 时由于一个小小零件的故障, 发射失败, 造成了巨大的经济损失和政治影响到 .2) 提高产品的可靠性, 能使产品总的费用降低 . 提高产品的可靠性, 首先要增加费用, 如选用好的元器件, 研制部分冗余功能的电路及进行可靠性设计、分析、实验,这些都需要经费。
然而,产品可靠性的提高使得维修费及停机检查损失费大大减小,使总费用降低。
3 )提高产品的可靠性,可以减少停机时间,提高产品可用率,一台设备可顶几台用,可以发挥几倍的效益。
美国GE 公司经过分析认为,对于发电、冶金、矿山、运输等连续作业的设备,即使可靠性提高1% ,成本提高10% 也是合算的。
4 )对于公司来讲,提高产品的可靠性,可以改善公司信誉,增强竞争力,扩大市场份额,从而提高经济效益。
一般所说的“ 可靠性” 指的是“ 可信赖的” 或“ 可信任的” 。
我们说一个人是可靠的,就是说这个人是说得到做得到的人,而一个不可靠的人是一个不一定能说得到做得到的人,是否能做到要取决于这个人的意志、才能和机会。
同样,一台仪器设备,当人们要求它工作时,它就能工作,则说它是可靠的;而当人们要求它工作时,它有时工作,有时不工作,则称它是不可靠的。
根据国家标准的规定,产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。
我国的可靠性工作起步较晚,20 世纪70 年代才开始在电子工业和航空工业中初步形成可靠性研究体系,并将其应用于军工产品。
可靠性理论基础知识可靠性理论基础知识1.可靠性定义我国军用标准GIB 451A-2005《可靠性维修性保障性术语》中,可靠性定义为:产品在规定的条件下,规定的时间内,完成规定功能的能力。
“规定条件”包括使用时的环境条件和工作条件。
“规定时间”是指产品规定了的任务时间。
“规定功能”是指产品规定了的必须具备的功能及其技术指标。
可靠性的评价可以使用概率指标或时间指标,这些指标有:可靠度、失效率、平均无故障工作时间、平均失效前时间、有效度等。
典型的失效率曲线是浴盆曲线,其分为三个阶段:早期失效期、偶然失效期、耗损失效期。
早期失效期的失效率为递减形式,即新产品失效率很高,但经过磨合期,失效率会迅速下降。
偶然失效期的失效率为一个平稳值,意味着产品进入了一个稳定的使用期。
耗损失效期的失效率为递增形式,即产品进入老年期,失效率呈递增状态,产品需要更新。
1.1可靠性参数1、失效概率密度和失效分布函数失效分布函数就是寿命的分布函数,也称为不可靠度,记为)(t F 。
它是产品或系统在规定的条件下和规定的时间内失效的概率,通常表示为)()(t T P t F ≤=失效概率密度是累积失效概率对时间t 的倒数,记为f(t)。
它是产品在包含t 的单位时间内发生失效的概率,可表示为)()()('t F dtt dF t f ==。
2、可靠度可靠度是指产品或系统在规定的条件下,规定的时间内,完成规定功能的概率。
可靠度是时间的函数,可靠度是可靠性的定量指标。
可靠度是时间的函数,记为)(t R 。
通常表示为?∞=-=>=t dt t f t F t T P t R )()(1)()(式中t 为规定的时间,T 表示产品寿命。
3、失效率已工作到时刻t 的产品,在时刻t 后单位时间内发生失效的概率成为该产品时刻t 的失效率函数,简称失效率,记为)(t λ。
)(1)()()()()()(''t F t F t R t F t R t f t -===λ。
希赛网软考频道小编为大家整理了信息安全工程师考点—计算机设备安全,希望对在备考信息安全工程师的考生有所帮助。
考点1、计算机设备安全【考法分析】本考点主要是对计算机设备安全的考查。
【要点分析】1.一般认为,计算机安全的定义,要包括计算机试题及其信息的完整性,机密性,抗否认性,可用性,可审计性,可靠性等几个关键因数;机密性:保证信息部被非授权访问;完整性:维护信息和试题的人为或非人为的非授权篡改;抗否认性:指保障用户无法再时候否认曾经对信息进行的生成,签发,接受等行为;可用性:授权用户根据需要可以随时访问所需信息;可审计性:保证计算机信息系统所处理的信息的完整性,准确性和可靠性,防止有意或无意地出现错误,乃至防止和发现计算机犯罪案件,除了采用其他安全措施之外,利用对计算机信息系统的审计的方法。
利用审计跟踪的工具,可以记录用户的活动;审计跟踪可以监控和扑捉各种安全事件;审计跟踪的另一个主要功能是保存,维护和管理审计日志。
可靠性:指计算机在规定的条件下和给定的时间内完成预定功能的概率;所谓“失效率”是指计算机在某一瞬间失效元件数与元件总数的比率。
影响计算机可靠性的因数有内因和外因两个方面:内因:机器本身的因数外因:指环境条件对系统可靠性,稳定性和维护水平的影响一般认为,在系统的可靠性工程中,元器件是基础,设计是关键,环境是保证。
除了保证系统的正常工作条件及正确使用和维护外,还要采取容错技术和故障诊断技术。
容错技术:指用增加冗余资源的方法来掩盖故障造成的影响;故障诊断技术:通过检测和排除系统元器件或线路故障。
2.由于计算机系统本身的脆弱性以及硬件和软件的开放性,加之缺乏完善的安全措施,容易给犯罪分子以可乘之机。
3.计算机系统安全涉及到许多学科,因此它是一个综合性很强的问题。
要想解决和计算机系统的安全,就必须首先从计算机的系统结构和基础出发,从计算机硬件环境出发,找到一条合理地解决问题的道路。
4.计算机系统安全是指:为了保证计算机信息系统安全可靠运行,确保计算机信息系统在对信息进行采集,处理,传输,存储过程中,不致收到人为(包括未授权使用计算机资源的人)或自然因数的危害,而使信息丢失,泄露或破坏,对计算机设备,设施(包括机房建筑,供电,空调等),环境人员等采取适当的安全措施。
1.7系统可靠性基础考什么?一、基本概念(1)系统的可靠性:从它开始运行(t=0)到某时刻t这段时间内能正常运行的概率,用R(t)表示。
(2)失效率:单位时间内失效的元件数与元件总数的比例,通常用λ表示。
当λ为常数时,可靠性与失效率的关系为:R(t)=e-λt。
(3)平均无故障时间(MTBF):两次故障之间系统能正常工作的时间的平均值。
它与失效率的关系为:MTBF=1/λ。
(4)平均失效前时间(MTTF):从故障发生到机器修复平均所需要的时间。
而通常用平均修复时间(MTTR)来表示计算机的可维修性,即计算机的维修效率。
(5)可用性:计算机的使用效率,它以系统在执行任务的任意时刻能正常工作的概率A来表示:A=MTBF/(MTBF+MTTF)。
二、系统可靠性模型(1)串联系统:假设一个系统由N个子系统组成,当且仅当所有的子系统都能正常工作时,系统才能正常工作,如图1-6(a)所示。
(2)并联系统:假如一个系统由N个子系统组成,只要有一个子系统正常工作,系统就能正常工作,如图1-6(b)所示。
(3)N模冗余系统:由N个(N=2n+1)相同的逻辑线路和一个表决器组成,只要有n+1个或n+1个以上能正常工作,系统就能正常工作,输出正确的结果,如图1-6(c)所示。
各系统的可靠性和失效率的计算公式如表1-3所示。
表1-3 系统的可靠性和失效率的计算公式注:是从N个元素中选i个元素的组合数,值为当N=3时,怎么考【试题1-30】 2007年11月真题1若某计算机系统由两个部件串联构成,其中一个部件的失效率为7×10-6/小时。
若不考虑其他因素的影响,并要求计算机系统的平均故障间隔时间为105小时,则另一个部件的失效率应为(1) /小时。
解析:平均无故障时间与失效率的关系为:MTBF=1/λ,则计算机系统的总失效率为系统平均故障间隔时间的倒数,即小时。
对于串联系统,计算机系统的总失效率为各部件失效率的和。
第五章可靠性基础知识第五章可靠性基础知识【考试趋势】单选3-4题,多选4-5题,综合分析1题。
考查方式以理解题和计算题为主。
总分值25-35分。
总分170分。
【大纲考点】基本脉络:可靠性概念——测量——模型——分析——试验——管理。
一、可靠性的基本概念及常用度量1.掌握可靠性、维修性与故障(失效)的概念与定义(重点)2.熟悉保障性、可用性与可信性的概念(难点)3.掌握可靠性的主要度量参数(难点)4.熟悉浴盆曲线(重点)5.了解产品质量与可靠性的关系二、基本的可靠性维修性设计与分析技术1.了解可靠性设计的基本内容和主要方法2.熟悉可靠性模型及串并联模型的计算(重点)3.熟悉可靠性预计和可靠性分配(难点)4.熟悉故障模式影响及危害性分析(重点)(难点)5.了解故障树分析(重点)6.熟悉维修性设计与分析的基本方法;三、可靠性试验三、可靠性试验1.掌握环境应力筛选(重点)2.了解可靠增长试验和加速寿命试验(重点)3.手续可靠性测定试验(难点)4.了解可靠性鉴定试验四、可信性管理1.掌握可信性管理基本原则与可信性管理方法(难点)2.了解故障报告分析及纠正措施系统(重点)3.了解可信性评审作用和方法第一节可靠性的基本概念及常用度量【考点解读】第一节可靠性的基本概念及常用度量学习目标要求:1、掌握可靠性、维修性与故障的概念与定义2、熟悉保障性、可用性及可信性的概念3、掌握可靠性的主要度量参数4、了解浴盆曲线5、了解产品质量与可靠性关系基本脉络是:可靠性——不可靠(故障)——可靠度——可靠度函数——常用指标——模型——地位意义(与质量的关系)典型考题典型考题:单选题22、下述设计方法中不属于可靠性设计的方法是()。
a、使用合格的部件b、使用连续设计c、故障模式影响分析d、降额设计23、产品使用寿命与()有关。
a、早期故障率b、规定故障率c、耗损故障率d、产品保修率一、故障(失效)及其分类一、故障(失效)及其分类1、故障定义:产品或产品的一部分不能或将不能完成预定功能的事件或状态称为故障。
可靠性分析与可靠性设计方法可靠性是指一个系统或者产品在规定条件下正常使用时能够保持期望的性能和效果的能力。
在实际的生产和使用中,可靠性是非常重要的,一旦可靠性没有得到保证,就会带来重大的经济损失和安全风险。
因此,可靠性分析和可靠性设计是非常重要的。
本文将展开讨论这两个方面的相关内容,希望能够对大家有所启发。
一、可靠性分析1.1 可靠性指标可靠性指标一般包括故障率、失效率、可用性等。
其中,故障率指的是单位时间内发生故障次数的频率,失效率是指已经运行的设备在接下来一段时间内发生故障的可能性,而可用性指的是设备在规定时间内工作正常的百分比。
这些指标的计算可以帮助我们了解一个系统的可靠性情况,根据结果指导是否需要进行维修或替换。
1.2 可靠性分析方法可靠性分析方法一般分为定性分析和定量分析。
其中,定性分析主要是使用经验分析和专家经验的方法来分析故障原因和可能性,其优点在于实施简单、投入少,但是一般只适用于简单的情况。
定量分析则是使用数学模型来进行可靠性计算,以便更精确地分析和预测设备或系统的可靠性。
定量分析方法包括故障树分析、失效模式及影响分析、可靠性块图法等。
这些方法都有特定的适用范围和优缺点,需要根据具体的情况选择适当的方法。
1.3 可靠性分析应用可靠性分析的应用范围非常广泛。
例如,在飞机、火车、汽车等交通工具的设计中,可靠性分析可以保证其安全性和可靠性。
在医疗设备的设计中,可靠性分析可以确保其能够安全可靠地为病人服务。
在核电站、石油化工等高危行业的实践中,可靠性分析可以保证设备或系统的安全性和可靠性,避免发生意外。
二、可靠性设计2.1 可靠性设计理念可靠性设计是指在产品或系统设计过程中考虑到可靠性因素,通过一系列的设计方法和技术来确保其可靠性。
可靠性设计理念包括“不出错设计”、“设计容错能力”、“设计多元备选”等。
不出错设计是指从源头上预防问题的发生,通过加强设计前的验证和测试等方式,杜绝设计缺陷。
系统工程之系统可靠性理论与工程实践讲义系统可靠性是系统工程中的重要概念,它是指系统在特定条件下保持正常运行的能力。
在实际工程中,系统可靠性的理论和工程实践是不可或缺的。
本讲义将介绍系统可靠性的基本理论和实践方法,并结合实例介绍如何应用于实际工程中。
一、系统可靠性的基本理论1. 可靠性概念可靠性是指系统在规定时间和规定使用条件下能够完成规定功能的概率。
可靠性可以用失效概率(failure probability)来度量,即系统在规定时间内失效的概率。
2. 失效模式与失效率失效模式是指系统失效的原因和方式,常见的失效模式有硬件失效、软件失效和人为失误等。
失效率是系统失效的频率,可以用失效率函数(failure rate function)表示,常用的失效率函数有指数分布、伽马分布和韦伯分布等。
3. 可靠性评估指标评估系统可靠性常用的指标有可用性和维护性。
可用性是指系统在规定时间内处于正常工作状态的时间比例。
维护性是指系统出现故障后恢复正常工作所需的时间。
4. 可靠性增长和可靠性增长率可靠性增长是指系统在运行一段时间后逐渐提高其可靠性。
可靠性增长可以通过故障数据进行可靠性增长率的计算,可靠性增长率是指单位时间内系统可靠性增加的速率。
二、系统可靠性的工程实践方法1. 可靠性要求的确定在系统设计初期,需要明确系统的可靠性要求。
可靠性要求的确定需要考虑系统的功能、使用条件和用户要求等因素,并依据相关标准和规范进行确定。
2. 可靠性设计的考虑在系统设计过程中,需要考虑如何增强系统的可靠性。
可靠性设计的主要方法有冗余设计、容错设计和检测与诊断设计。
冗余设计是指在系统中增加冗余部件来增加系统的可靠性。
容错设计是指设计系统能够自动检测和纠正错误的能力。
检测与诊断设计是指设计系统能够及时检测故障并对故障进行诊断。
3. 可靠性测试与验证在系统开发过程中,需要进行可靠性测试与验证。
可靠性测试是指通过实际测试来验证系统的可靠性,并对系统进行改进。
可靠性概述一、质量:能及结构、工艺、外观等)(用寿命特征衡量)(用失效率衡量)(用有效度衡量)能力(用可靠度衡量)、使用费用、维修费用来衡量)指标二、可靠性:1. 定义:指产品在规定的条件下和规定的时间内,完成规定功能的能力。
规定条件:使用条件、维护条件、环境条件、贮存条件、工作方式等。
规定的时间:产品可靠性的核心(可以以周期、动作次数、里程等单位代替)规定的功能:一般指产品的性能指标可靠性可针对产品全部功能的综合,也可针对某一具体性能,必须合理地、科学地给出失效判据或故障判据。
2. 可靠性是产品长期试验和统计推断的结果,其数值系指一批产品的总体而言,而不是针对单个产品。
3. 可靠性的数量指标:为特征量,其真值是理论上的数据,实际上难知,可靠性理论研究和具体估算时,可靠性特征量数值与所能利用的数据,数据处理方法以及某些假定有关。
4. 可靠性是一个与许多因素有关的综合性质是指标,它与设计、生产、使用维修等各阶段的是皆有密切的关系。
三、可靠性任务1. 根据可靠性定义内容,对产品可靠性提出明确的量化要求1) 明确“完成规定功能”的含义,准确地制订“完成规定功能”的标准,同时对产品故障(失效)判据作出说明。
2) 时间研究:时间t 与寿命的统计分析(从元件到系统)。
3) 规定的条件:环境条件和工作条件,通过可靠性试验并对试验结果进行统计分析而确定的。
2. 寻求提高可靠性的途径1) 通过筛选排除不合格的元器件和工艺材料等缺陷2) 通过改进设计而达到功能的增长3) 降低系统的复杂程度。
4) 提高元器件、零部件的可靠性。
5) 加强管理,尽可能减少人为差错,6) 可用储备系统,一个或多个储备部件并联工作,一个部件失效,仍能正常工作。
7)减额使用。
a)及时定期地替换快到耗损期的元器件或部件。
3.在满足规定可靠性的前提下,尽量降低产品的重量、体积和费用。
四、与经济性的关系可靠性的提高,必然会影响产品的重量、体积、研制周期和经费二、理论基础(主要数量特征)一、主要数量特征作用:1)对各种产品的可靠性提出明确的统一要求2)设计、制造产品时,利用数学方法,计算和预计它们的可靠性3)在产品制造出来后,可以按一定的试验方法,通过这些数量特征,来定量地评定它们的可靠性4)可以准确地对产品的可靠性水平进行定量的比较二、数量特征I.可靠度函数R(t)1)表示一批产品在规定的时间内完成规定动能的产品数占产品总数的比例。
1.失效率:失效率是指工作到某一时刻尚未失效的产品,在该时刻后,单位时间内发生失
效的概率
2.加速系数:增加一单位产量所需要增加的资本量
3.最小路集:如果在一条路集的弧序列中,任意除去其中一条弧后,它就不再是一条路集,
则称该路集为最小路集
4.冷储备系统:
5.可用性:可用性是用来衡量产品质量的重要指标,从用户角度来判断产品的有效性、学习性、
记忆性、使用效率、容错程度和令人满意的程度
6.维修保障性:
7.区间估计:参数估计的一种形式。
通过从总体中抽取的样本,根据一定的正确度与精确
度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计
8.割集:也叫做截集或截止集,它是导致顶上事件发生的基本事件的集合
9.可靠性:元件、产品、系统在一定时间内、在一定条件下无故障地执行指定功能的能
力或可能性。
可通过可靠度、失效率、平均无故障间隔产品可靠性
10.平均寿命:某种粒子在接近光速的状态下相对论性的效应下产生的寿命的平均值,也是
某种粒子产生后到衰变时为止平均存在的时间。
11.EMC设计:系统或设备在所处的电磁环境中能正常工作,同时不对其他系统和设备造
成干扰。
12.FTA:自由贸易协定(FreeTradeAgreement)的英文简称,它是独立关税主体之间以自愿
结合方式,就贸易自由化及其相关问题达成的协定
13.FMECA:故障模式、影响和危害性分析(Failure Mode, Effects and Criticality Analysis,
简称FMECA) 是在工程实践中总结出来的,以故障模式为基础,以故障影响或后果为目标的分析技术。